Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,8 +5,8 @@ import os
|
|
| 5 |
import json
|
| 6 |
import logging
|
| 7 |
import pandas as pd
|
| 8 |
-
import numpy as np
|
| 9 |
-
import matplotlib.pyplot as plt
|
| 10 |
from typing import Optional, List, Dict, Any
|
| 11 |
|
| 12 |
# ------------------------
|
|
@@ -41,7 +41,16 @@ body {
|
|
| 41 |
}
|
| 42 |
.plot-container {
|
| 43 |
min-height: 400px; /* Ensure plot area is visible */
|
|
|
|
|
|
|
|
|
|
| 44 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
"""
|
| 46 |
|
| 47 |
theme = gr.themes.Soft(
|
|
@@ -79,38 +88,56 @@ def fetch_content_from_url(url: str, timeout: int = 15) -> str:
|
|
| 79 |
|
| 80 |
# Limit the amount of data read to avoid excessive memory usage
|
| 81 |
max_bytes_to_read = 2 * 1024 * 1024 # 2MB limit for initial read
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
soup = BeautifulSoup(content, 'html.parser')
|
| 87 |
|
| 88 |
# Attempt to find main content block
|
| 89 |
# Prioritize more specific semantic tags
|
| 90 |
-
|
|
|
|
| 91 |
|
| 92 |
|
| 93 |
if main_content:
|
| 94 |
# Extract text from common text-containing tags within the main block
|
| 95 |
-
text_elements = main_content.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li', 'blockquote', 'figcaption'])
|
| 96 |
text = ' '.join([elem.get_text() for elem in text_elements])
|
| 97 |
else:
|
| 98 |
# Fallback to extracting text from body if no main block found
|
| 99 |
-
text_elements = soup.body.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li', 'blockquote', 'figcaption'])
|
| 100 |
text = ' '.join([elem.get_text() for elem in text_elements])
|
| 101 |
-
logger.warning(f"No specific content tags (<article>, <main>, etc.) found for {url}, extracting from body.")
|
| 102 |
|
| 103 |
# Clean up extra whitespace
|
| 104 |
text = ' '.join(text.split())
|
| 105 |
|
| 106 |
# Limit text length *after* extraction and cleaning
|
| 107 |
# Adjust based on API limits/cost. WordLift's typical text APIs handle up to ~1M chars.
|
| 108 |
-
max_text_length = 1000000
|
| 109 |
if len(text) > max_text_length:
|
| 110 |
logger.warning(f"Extracted text for {url} is too long ({len(text)} chars), truncating to {max_text_length} chars.")
|
| 111 |
text = text[:max_text_length]
|
| 112 |
|
| 113 |
-
return text.strip() if text else None # Return None if text is empty after processing
|
|
|
|
| 114 |
|
| 115 |
except requests.exceptions.RequestException as e:
|
| 116 |
logger.error(f"Failed to fetch content from {url}: {e}")
|
|
@@ -172,13 +199,14 @@ def call_wordlift_api(text: str, keywords: Optional[List[str]] = None) -> Option
|
|
| 172 |
# Plotting Logic
|
| 173 |
# ------------------------
|
| 174 |
|
| 175 |
-
def plot_average_radar(average_scores: Dict[str, float], avg_overall: Optional[float]) -> Any:
|
| 176 |
"""Return a radar (spider) plot as a Matplotlib figure showing average scores."""
|
| 177 |
|
| 178 |
-
|
|
|
|
| 179 |
# Return a placeholder figure if no valid data is available
|
| 180 |
fig, ax = plt.subplots(figsize=(6, 6))
|
| 181 |
-
ax.text(0.5, 0.5, "No successful evaluations to plot.", horizontalalignment='center', verticalalignment='center', transform=ax.transAxes, fontsize=12)
|
| 182 |
ax.axis('off') # Hide axes
|
| 183 |
plt.title("Average Content Quality Scores", size=16, y=1.05)
|
| 184 |
plt.tight_layout()
|
|
@@ -186,16 +214,16 @@ def plot_average_radar(average_scores: Dict[str, float], avg_overall: Optional[f
|
|
| 186 |
|
| 187 |
|
| 188 |
categories = list(average_scores.keys())
|
| 189 |
-
values
|
|
|
|
|
|
|
| 190 |
|
| 191 |
-
# Ensure values are floats, replace None with 0 for plotting
|
| 192 |
-
values = [float(v) if v is not None else 0 for v in values]
|
| 193 |
|
| 194 |
num_vars = len(categories)
|
| 195 |
# Calculate angles for the radar chart
|
| 196 |
angles = [n / float(num_vars) * 2 * np.pi for n in range(num_vars)]
|
| 197 |
angles += angles[:1] # Complete the circle
|
| 198 |
-
|
| 199 |
|
| 200 |
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(projection='polar'))
|
| 201 |
|
|
@@ -205,8 +233,8 @@ def plot_average_radar(average_scores: Dict[str, float], avg_overall: Optional[f
|
|
| 205 |
annotation_color = '#191919'
|
| 206 |
|
| 207 |
# Plot data
|
| 208 |
-
ax.plot(angles,
|
| 209 |
-
ax.fill(angles,
|
| 210 |
|
| 211 |
# Set tick locations and labels
|
| 212 |
ax.set_xticks(angles[:-1])
|
|
@@ -214,22 +242,27 @@ def plot_average_radar(average_scores: Dict[str, float], avg_overall: Optional[f
|
|
| 214 |
|
| 215 |
# Set y-axis limits. Max score is 100.
|
| 216 |
ax.set_ylim(0, 100)
|
|
|
|
| 217 |
|
| 218 |
# Draw grid lines and axes
|
| 219 |
ax.grid(True, alpha=0.5, color=fill_color)
|
| 220 |
ax.set_facecolor(background_color)
|
| 221 |
|
| 222 |
-
# Add score annotations next to points
|
| 223 |
-
for angle,
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
|
| 230 |
-
# Add title
|
| 231 |
-
|
| 232 |
-
plt.title(
|
| 233 |
|
| 234 |
plt.tight_layout()
|
| 235 |
return fig
|
|
@@ -260,40 +293,45 @@ def evaluate_urls_batch(url_data: pd.DataFrame):
|
|
| 260 |
'Content Accuracy', 'Content Depth', 'Readability Score (API)',
|
| 261 |
'Readability Grade Level', 'SEO Score', 'Word Count', 'Error/Details'
|
| 262 |
])
|
| 263 |
-
return empty_summary_df, {}, plot_average_radar(None, None) # Pass None to plotting function
|
| 264 |
|
| 265 |
summary_results = []
|
| 266 |
full_results = {}
|
| 267 |
|
| 268 |
# Lists to store scores for calculating averages
|
|
|
|
| 269 |
purpose_scores = []
|
| 270 |
accuracy_scores = []
|
| 271 |
depth_scores = []
|
| 272 |
-
readability_scores = []
|
| 273 |
seo_scores = []
|
| 274 |
overall_scores = []
|
| 275 |
|
| 276 |
-
# Ensure columns exist
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
keywords_col = url_data.get('Target Keywords (comma-separated)', pd.Series(dtype=str))
|
| 280 |
|
| 281 |
|
| 282 |
for index, url in enumerate(urls):
|
| 283 |
-
url = url.strip()
|
| 284 |
-
keywords_str = keywords_col.iloc[index].strip()
|
| 285 |
keywords = [kw.strip() for kw in keywords_str.split(',') if kw.strip()]
|
| 286 |
|
| 287 |
-
# Generate a unique key for full_results
|
| 288 |
-
result_key = url if url else
|
| 289 |
-
# Ensure unique key in case of duplicate empty URLs, maybe use index always?
|
| 290 |
-
result_key = f"Row_{index}_{url}" if url else f"Row_{index}"
|
| 291 |
|
| 292 |
|
| 293 |
if not url:
|
| 294 |
summary_results.append(["", "Skipped", "-", "-", "-", "-", "-", "-", "-", "-", "Empty URL"])
|
| 295 |
full_results[result_key] = {"status": "Skipped", "error": "Empty URL input."}
|
| 296 |
logger.warning(f"Skipping evaluation for row {index}: Empty URL")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
continue # Move to next URL
|
| 298 |
|
| 299 |
logger.info(f"Processing URL: {url} (Row {index}) with keywords: {keywords}")
|
|
@@ -307,6 +345,13 @@ def evaluate_urls_batch(url_data: pd.DataFrame):
|
|
| 307 |
summary_results.append([url, status, "-", "-", "-", "-", "-", "-", "-", "-", error_msg])
|
| 308 |
full_results[result_key] = {"status": status, "error": error_msg}
|
| 309 |
logger.error(f"Processing failed for {url} (Row {index}): {error_msg}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
continue # Move to next URL
|
| 311 |
|
| 312 |
# 2. Call WordLift API
|
|
@@ -324,25 +369,27 @@ def evaluate_urls_batch(url_data: pd.DataFrame):
|
|
| 324 |
metadata = api_result.get('metadata', {})
|
| 325 |
|
| 326 |
# Append scores for average calculation (only for successful calls)
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
|
|
|
| 333 |
|
| 334 |
|
| 335 |
# Append data for the summary table row
|
|
|
|
| 336 |
summary_row.extend([
|
| 337 |
status,
|
| 338 |
-
f'{qs.get("overall", "-"): .1f}',
|
| 339 |
-
f'{content_breakdown.get("purpose", "-"): .0f}'
|
| 340 |
-
f'{content_breakdown.get("accuracy", "-"): .0f}'
|
| 341 |
-
f'{content_breakdown.get("depth", "-"): .0f}'
|
| 342 |
-
f'{readability_breakdown.get("score", "-"): .1f}',
|
| 343 |
-
f'{readability_breakdown.get("grade_level", "-"): .0f}'
|
| 344 |
-
f'{seo_breakdown.get("score", "-"): .1f}',
|
| 345 |
-
f'{metadata.get("word_count", "-"): .0f}'
|
| 346 |
None # No error
|
| 347 |
])
|
| 348 |
full_results[result_key] = api_result # Store full API result
|
|
@@ -359,15 +406,33 @@ def evaluate_urls_batch(url_data: pd.DataFrame):
|
|
| 359 |
full_results[result_key] = {"status": status, "error": error_msg, "details": details}
|
| 360 |
logger.error(f"API call failed for {url} (Row {index}): {error_msg} {details}")
|
| 361 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
summary_results.append(summary_row)
|
| 363 |
|
| 364 |
-
# Calculate Averages *after* processing all URLs
|
| 365 |
-
avg_purpose = np.nanmean(purpose_scores)
|
| 366 |
-
avg_accuracy = np.nanmean(accuracy_scores)
|
| 367 |
-
avg_depth = np.nanmean(depth_scores)
|
| 368 |
-
avg_readability = np.nanmean(readability_scores)
|
| 369 |
-
avg_seo = np.nanmean(seo_scores)
|
| 370 |
-
avg_overall = np.nanmean(overall_scores)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
|
| 372 |
# Prepare scores for the radar plot function
|
| 373 |
average_scores_dict = {
|
|
@@ -393,7 +458,6 @@ def evaluate_urls_batch(url_data: pd.DataFrame):
|
|
| 393 |
# using f-strings like f'{value: .1f}' or f'{value: .0f}', and setting '-' for None.
|
| 394 |
# This ensures that pandas DataFrame displays formatted strings directly.
|
| 395 |
|
| 396 |
-
|
| 397 |
return summary_df, full_results, average_radar_fig # Return the plot too
|
| 398 |
|
| 399 |
# ------------------------
|
|
@@ -416,11 +480,14 @@ with gr.Blocks(css=css, theme=theme) as demo:
|
|
| 416 |
row_count=(1, 30), # Allow adding rows up to 30
|
| 417 |
col_count=(2, "fixed"),
|
| 418 |
value=[
|
| 419 |
-
["https://
|
| 420 |
-
["https://
|
| 421 |
["https://www.example.com/non-existent-page", ""], # Example of a failing URL
|
| 422 |
-
["", ""] # Example of an empty row
|
| 423 |
-
|
|
|
|
|
|
|
|
|
|
| 424 |
label="URLs and Keywords"
|
| 425 |
)
|
| 426 |
submit_button = gr.Button("Evaluate All URLs", elem_classes=["primary-btn"])
|
|
@@ -467,6 +534,9 @@ if __name__ == "__main__":
|
|
| 467 |
logger.error(" # in your script before getting the key.")
|
| 468 |
logger.error("----------------------------------------------------------\n")
|
| 469 |
# You might want to sys.exit(1) here if the API key is mandatory
|
|
|
|
|
|
|
|
|
|
| 470 |
|
| 471 |
logger.info("Launching Gradio app...")
|
| 472 |
# Consider using share=True for easy sharing, but be mindful of security/costs
|
|
|
|
| 5 |
import json
|
| 6 |
import logging
|
| 7 |
import pandas as pd
|
| 8 |
+
import numpy as np
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
from typing import Optional, List, Dict, Any
|
| 11 |
|
| 12 |
# ------------------------
|
|
|
|
| 41 |
}
|
| 42 |
.plot-container {
|
| 43 |
min-height: 400px; /* Ensure plot area is visible */
|
| 44 |
+
display: flex;
|
| 45 |
+
justify-content: center; /* Center the plot */
|
| 46 |
+
align-items: center; /* Center vertically if needed */
|
| 47 |
}
|
| 48 |
+
/* Specific style for the plot title to potentially reduce overlap */
|
| 49 |
+
.plot-container .gradio-html-title {
|
| 50 |
+
text-align: center;
|
| 51 |
+
width: 100%; /* Ensure title centers */
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
"""
|
| 55 |
|
| 56 |
theme = gr.themes.Soft(
|
|
|
|
| 88 |
|
| 89 |
# Limit the amount of data read to avoid excessive memory usage
|
| 90 |
max_bytes_to_read = 2 * 1024 * 1024 # 2MB limit for initial read
|
| 91 |
+
# Read only up to max_bytes_to_read
|
| 92 |
+
content_bytes = b''
|
| 93 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 94 |
+
if not chunk:
|
| 95 |
+
break
|
| 96 |
+
content_bytes += chunk
|
| 97 |
+
if len(content_bytes) >= max_bytes_to_read:
|
| 98 |
+
logger.warning(f"Content for {url} exceeded {max_bytes_to_read} bytes, stopped reading.")
|
| 99 |
+
break
|
| 100 |
+
|
| 101 |
+
# Use detect_encoding if possible, fallback to utf-8
|
| 102 |
+
try:
|
| 103 |
+
# Attempt to get encoding from headers or detect it
|
| 104 |
+
encoding = requests.utils.get_encoding_from_headers(response.headers) or requests.utils.guess_json_utf(content_bytes)
|
| 105 |
+
content = content_bytes.decode(encoding, errors='replace')
|
| 106 |
+
except Exception as e:
|
| 107 |
+
logger.warning(f"Could not detect encoding for {url}, falling back to utf-8: {e}")
|
| 108 |
+
content = content_bytes.decode('utf-8', errors='replace')
|
| 109 |
+
|
| 110 |
|
| 111 |
soup = BeautifulSoup(content, 'html.parser')
|
| 112 |
|
| 113 |
# Attempt to find main content block
|
| 114 |
# Prioritize more specific semantic tags
|
| 115 |
+
# Added some common class names as fallback
|
| 116 |
+
main_content = soup.find('article') or soup.find('main') or soup.find(class_=lambda x: x and ('content' in x.lower() or 'article' in x.lower() or 'post' in x.lower() or 'body' in x.lower()))
|
| 117 |
|
| 118 |
|
| 119 |
if main_content:
|
| 120 |
# Extract text from common text-containing tags within the main block
|
| 121 |
+
text_elements = main_content.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li', 'blockquote', 'figcaption', 'pre', 'code'])
|
| 122 |
text = ' '.join([elem.get_text() for elem in text_elements])
|
| 123 |
else:
|
| 124 |
# Fallback to extracting text from body if no main block found
|
| 125 |
+
text_elements = soup.body.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li', 'blockquote', 'figcaption', 'pre', 'code'])
|
| 126 |
text = ' '.join([elem.get_text() for elem in text_elements])
|
| 127 |
+
logger.warning(f"No specific content tags (<article>, <main>, etc.) or common class names found for {url}, extracting from body.")
|
| 128 |
|
| 129 |
# Clean up extra whitespace
|
| 130 |
text = ' '.join(text.split())
|
| 131 |
|
| 132 |
# Limit text length *after* extraction and cleaning
|
| 133 |
# Adjust based on API limits/cost. WordLift's typical text APIs handle up to ~1M chars.
|
| 134 |
+
max_text_length = 1000000 # 1 Million characters
|
| 135 |
if len(text) > max_text_length:
|
| 136 |
logger.warning(f"Extracted text for {url} is too long ({len(text)} chars), truncating to {max_text_length} chars.")
|
| 137 |
text = text[:max_text_length]
|
| 138 |
|
| 139 |
+
return text.strip() if text and text.strip() else None # Return None if text is empty after processing
|
| 140 |
+
|
| 141 |
|
| 142 |
except requests.exceptions.RequestException as e:
|
| 143 |
logger.error(f"Failed to fetch content from {url}: {e}")
|
|
|
|
| 199 |
# Plotting Logic
|
| 200 |
# ------------------------
|
| 201 |
|
| 202 |
+
def plot_average_radar(average_scores: Dict[str, Optional[float]], avg_overall: Optional[float]) -> Any:
|
| 203 |
"""Return a radar (spider) plot as a Matplotlib figure showing average scores."""
|
| 204 |
|
| 205 |
+
# Check if we have any valid scores to plot
|
| 206 |
+
if not average_scores or all(v is None or pd.isna(v) for v in average_scores.values()):
|
| 207 |
# Return a placeholder figure if no valid data is available
|
| 208 |
fig, ax = plt.subplots(figsize=(6, 6))
|
| 209 |
+
ax.text(0.5, 0.5, "No successful evaluations to plot\naverage scores.", horizontalalignment='center', verticalalignment='center', transform=ax.transAxes, fontsize=12)
|
| 210 |
ax.axis('off') # Hide axes
|
| 211 |
plt.title("Average Content Quality Scores", size=16, y=1.05)
|
| 212 |
plt.tight_layout()
|
|
|
|
| 214 |
|
| 215 |
|
| 216 |
categories = list(average_scores.keys())
|
| 217 |
+
# Convert None/NaN values to 0 for plotting, but keep track of original for annotation
|
| 218 |
+
values_raw = [average_scores[cat] for cat in categories]
|
| 219 |
+
values_for_plot = [float(v) if v is not None and pd.notna(v) else 0 for v in values_raw]
|
| 220 |
|
|
|
|
|
|
|
| 221 |
|
| 222 |
num_vars = len(categories)
|
| 223 |
# Calculate angles for the radar chart
|
| 224 |
angles = [n / float(num_vars) * 2 * np.pi for n in range(num_vars)]
|
| 225 |
angles += angles[:1] # Complete the circle
|
| 226 |
+
values_for_plot += values_for_plot[:1] # Complete the circle for values
|
| 227 |
|
| 228 |
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(projection='polar'))
|
| 229 |
|
|
|
|
| 233 |
annotation_color = '#191919'
|
| 234 |
|
| 235 |
# Plot data
|
| 236 |
+
ax.plot(angles, values_for_plot, 'o-', linewidth=2, color=line_color, label='Average Scores')
|
| 237 |
+
ax.fill(angles, values_for_plot, alpha=0.4, color=fill_color)
|
| 238 |
|
| 239 |
# Set tick locations and labels
|
| 240 |
ax.set_xticks(angles[:-1])
|
|
|
|
| 242 |
|
| 243 |
# Set y-axis limits. Max score is 100.
|
| 244 |
ax.set_ylim(0, 100)
|
| 245 |
+
ax.set_yticks([0, 20, 40, 60, 80, 100]) # Explicitly set y-ticks
|
| 246 |
|
| 247 |
# Draw grid lines and axes
|
| 248 |
ax.grid(True, alpha=0.5, color=fill_color)
|
| 249 |
ax.set_facecolor(background_color)
|
| 250 |
|
| 251 |
+
# Add score annotations next to points - Use raw values if not None/NaN
|
| 252 |
+
for angle, value_raw, value_plotted in zip(angles[:-1], values_raw, values_for_plot[:-1]):
|
| 253 |
+
if value_raw is not None and pd.notna(value_raw):
|
| 254 |
+
# Adjust position slightly based on angle and value
|
| 255 |
+
# More sophisticated positioning needed for perfect placement, simple offset below
|
| 256 |
+
# Let's just add text slightly outside the point along the radial line
|
| 257 |
+
radius = value_plotted + 5 # Offset outward
|
| 258 |
+
# Ensure annotation stays within limits if needed, but 105 should be fine for ylim 100
|
| 259 |
+
ax.text(angle, radius, f'{value_raw:.1f}', color=annotation_color,
|
| 260 |
+
horizontalalignment='center', verticalalignment='center', fontsize=9)
|
| 261 |
|
| 262 |
|
| 263 |
+
# Add title - Only "Overall: XX.X/100" part
|
| 264 |
+
overall_title_text = f'Overall: {avg_overall:.1f}/100' if avg_overall is not None and pd.notna(avg_overall) else 'Overall: -'
|
| 265 |
+
plt.title(overall_title_text, size=16, y=1.1, color=annotation_color) # y=1.1 places it above the plot area
|
| 266 |
|
| 267 |
plt.tight_layout()
|
| 268 |
return fig
|
|
|
|
| 293 |
'Content Accuracy', 'Content Depth', 'Readability Score (API)',
|
| 294 |
'Readability Grade Level', 'SEO Score', 'Word Count', 'Error/Details'
|
| 295 |
])
|
| 296 |
+
return empty_summary_df, {}, plot_average_radar(None, None) # Pass None, None to plotting function
|
| 297 |
|
| 298 |
summary_results = []
|
| 299 |
full_results = {}
|
| 300 |
|
| 301 |
# Lists to store scores for calculating averages
|
| 302 |
+
# Initialize with None/NaN to correctly handle empty inputs or failures
|
| 303 |
purpose_scores = []
|
| 304 |
accuracy_scores = []
|
| 305 |
depth_scores = []
|
| 306 |
+
readability_scores = [] # Note: API returns float like 2.5
|
| 307 |
seo_scores = []
|
| 308 |
overall_scores = []
|
| 309 |
|
| 310 |
+
# Ensure columns exist and handle potential NaNs from the DataFrame input
|
| 311 |
+
urls = url_data.get('URL', pd.Series(dtype=str)).fillna('') # Replace NaN URLs with empty strings
|
| 312 |
+
keywords_col = url_data.get('Target Keywords (comma-separated)', pd.Series(dtype=str)).fillna('') # Replace NaN keywords with empty strings
|
|
|
|
| 313 |
|
| 314 |
|
| 315 |
for index, url in enumerate(urls):
|
| 316 |
+
url = url.strip()
|
| 317 |
+
keywords_str = keywords_col.iloc[index].strip()
|
| 318 |
keywords = [kw.strip() for kw in keywords_str.split(',') if kw.strip()]
|
| 319 |
|
| 320 |
+
# Generate a unique key for full_results based on index and URL/placeholder
|
| 321 |
+
result_key = f"Row_{index}" + (f": {url}" if url else "")
|
|
|
|
|
|
|
| 322 |
|
| 323 |
|
| 324 |
if not url:
|
| 325 |
summary_results.append(["", "Skipped", "-", "-", "-", "-", "-", "-", "-", "-", "Empty URL"])
|
| 326 |
full_results[result_key] = {"status": "Skipped", "error": "Empty URL input."}
|
| 327 |
logger.warning(f"Skipping evaluation for row {index}: Empty URL")
|
| 328 |
+
# Append None to scores lists for skipped/failed rows
|
| 329 |
+
purpose_scores.append(np.nan)
|
| 330 |
+
accuracy_scores.append(np.nan)
|
| 331 |
+
depth_scores.append(np.nan)
|
| 332 |
+
readability_scores.append(np.nan)
|
| 333 |
+
seo_scores.append(np.nan)
|
| 334 |
+
overall_scores.append(np.nan)
|
| 335 |
continue # Move to next URL
|
| 336 |
|
| 337 |
logger.info(f"Processing URL: {url} (Row {index}) with keywords: {keywords}")
|
|
|
|
| 345 |
summary_results.append([url, status, "-", "-", "-", "-", "-", "-", "-", "-", error_msg])
|
| 346 |
full_results[result_key] = {"status": status, "error": error_msg}
|
| 347 |
logger.error(f"Processing failed for {url} (Row {index}): {error_msg}")
|
| 348 |
+
# Append None to scores lists for skipped/failed rows
|
| 349 |
+
purpose_scores.append(np.nan)
|
| 350 |
+
accuracy_scores.append(np.nan)
|
| 351 |
+
depth_scores.append(np.nan)
|
| 352 |
+
readability_scores.append(np.nan)
|
| 353 |
+
seo_scores.append(np.nan)
|
| 354 |
+
overall_scores.append(np.nan)
|
| 355 |
continue # Move to next URL
|
| 356 |
|
| 357 |
# 2. Call WordLift API
|
|
|
|
| 369 |
metadata = api_result.get('metadata', {})
|
| 370 |
|
| 371 |
# Append scores for average calculation (only for successful calls)
|
| 372 |
+
# Use .get() with None default, then convert to float, allowing NaN
|
| 373 |
+
purpose_scores.append(float(content_breakdown.get('purpose')) if content_breakdown.get('purpose') is not None else np.nan)
|
| 374 |
+
accuracy_scores.append(float(content_breakdown.get('accuracy')) if content_breakdown.get('accuracy') is not None else np.nan)
|
| 375 |
+
depth_scores.append(float(content_breakdown.get('depth')) if content_breakdown.get('depth') is not None else np.nan)
|
| 376 |
+
readability_scores.append(float(readability_breakdown.get('score')) if readability_breakdown.get('score') is not None else np.nan)
|
| 377 |
+
seo_scores.append(float(seo_breakdown.get('score')) if seo_breakdown.get('score') is not None else np.nan)
|
| 378 |
+
overall_scores.append(float(qs.get('overall')) if qs.get('overall') is not None else np.nan)
|
| 379 |
|
| 380 |
|
| 381 |
# Append data for the summary table row
|
| 382 |
+
# Use .get() with '-' default for display
|
| 383 |
summary_row.extend([
|
| 384 |
status,
|
| 385 |
+
f'{qs.get("overall", "-"): .1f}' if qs.get('overall') is not None else "-",
|
| 386 |
+
f'{content_breakdown.get("purpose", "-"): .0f}' if content_breakdown.get('purpose') is not None else "-",
|
| 387 |
+
f'{content_breakdown.get("accuracy", "-"): .0f}' if content_breakdown.get('accuracy') is not None else "-",
|
| 388 |
+
f'{content_breakdown.get("depth", "-"): .0f}' if content_breakdown.get('depth') is not None else "-",
|
| 389 |
+
f'{readability_breakdown.get("score", "-"): .1f}' if readability_breakdown.get('score') is not None else "-",
|
| 390 |
+
f'{readability_breakdown.get("grade_level", "-"): .0f}' if readability_breakdown.get('grade_level') is not None else "-",
|
| 391 |
+
f'{seo_breakdown.get("score", "-"): .1f}' if seo_breakdown.get('score') is not None else "-",
|
| 392 |
+
f'{metadata.get("word_count", "-"): .0f}' if metadata.get('word_count') is not None else "-",
|
| 393 |
None # No error
|
| 394 |
])
|
| 395 |
full_results[result_key] = api_result # Store full API result
|
|
|
|
| 406 |
full_results[result_key] = {"status": status, "error": error_msg, "details": details}
|
| 407 |
logger.error(f"API call failed for {url} (Row {index}): {error_msg} {details}")
|
| 408 |
|
| 409 |
+
# Append None/NaN to scores lists for failed rows
|
| 410 |
+
purpose_scores.append(np.nan)
|
| 411 |
+
accuracy_scores.append(np.nan)
|
| 412 |
+
depth_scores.append(np.nan)
|
| 413 |
+
readability_scores.append(np.nan)
|
| 414 |
+
seo_scores.append(np.nan)
|
| 415 |
+
overall_scores.append(np.nan)
|
| 416 |
+
|
| 417 |
+
|
| 418 |
summary_results.append(summary_row)
|
| 419 |
|
| 420 |
+
# Calculate Averages *after* processing all URLs, ignoring NaNs
|
| 421 |
+
avg_purpose = np.nanmean(purpose_scores)
|
| 422 |
+
avg_accuracy = np.nanmean(accuracy_scores)
|
| 423 |
+
avg_depth = np.nanmean(depth_scores)
|
| 424 |
+
avg_readability = np.nanmean(readability_scores)
|
| 425 |
+
avg_seo = np.nanmean(seo_scores)
|
| 426 |
+
avg_overall = np.nanmean(overall_scores)
|
| 427 |
+
|
| 428 |
+
# Convert potentially NaN averages to None if there were no valid scores
|
| 429 |
+
avg_purpose = avg_purpose if pd.notna(avg_purpose) else None
|
| 430 |
+
avg_accuracy = avg_accuracy if pd.notna(avg_accuracy) else None
|
| 431 |
+
avg_depth = avg_depth if pd.notna(avg_depth) else None
|
| 432 |
+
avg_readability = avg_readability if pd.notna(avg_readability) else None
|
| 433 |
+
avg_seo = avg_seo if pd.notna(avg_seo) else None
|
| 434 |
+
avg_overall = avg_overall if pd.notna(avg_overall) else None
|
| 435 |
+
|
| 436 |
|
| 437 |
# Prepare scores for the radar plot function
|
| 438 |
average_scores_dict = {
|
|
|
|
| 458 |
# using f-strings like f'{value: .1f}' or f'{value: .0f}', and setting '-' for None.
|
| 459 |
# This ensures that pandas DataFrame displays formatted strings directly.
|
| 460 |
|
|
|
|
| 461 |
return summary_df, full_results, average_radar_fig # Return the plot too
|
| 462 |
|
| 463 |
# ------------------------
|
|
|
|
| 480 |
row_count=(1, 30), # Allow adding rows up to 30
|
| 481 |
col_count=(2, "fixed"),
|
| 482 |
value=[
|
| 483 |
+
["https://wordlift.io/blog/en/query-fan-out-ai-search/", "query fan out, ai search, google, ai"], # Added first URL
|
| 484 |
+
["https://wordlift.io/blog/en/entity/google-knowledge-graph/", "google knowledge graph, entity, semantic web, seo"], # Added second URL
|
| 485 |
["https://www.example.com/non-existent-page", ""], # Example of a failing URL
|
| 486 |
+
["", ""], # Example of an empty row
|
| 487 |
+
["", ""], # Add some extra empty rows for easier input
|
| 488 |
+
["", ""],
|
| 489 |
+
["", ""],
|
| 490 |
+
],
|
| 491 |
label="URLs and Keywords"
|
| 492 |
)
|
| 493 |
submit_button = gr.Button("Evaluate All URLs", elem_classes=["primary-btn"])
|
|
|
|
| 534 |
logger.error(" # in your script before getting the key.")
|
| 535 |
logger.error("----------------------------------------------------------\n")
|
| 536 |
# You might want to sys.exit(1) here if the API key is mandatory
|
| 537 |
+
# import sys
|
| 538 |
+
# sys.exit(1)
|
| 539 |
+
|
| 540 |
|
| 541 |
logger.info("Launching Gradio app...")
|
| 542 |
# Consider using share=True for easy sharing, but be mindful of security/costs
|