Update app.py
Browse files
app.py
CHANGED
|
@@ -9,26 +9,43 @@ import os
|
|
| 9 |
# OpenAI API Key
|
| 10 |
api_key = os.getenv("OPENAI_API_KEY")
|
| 11 |
|
|
|
|
| 12 |
# Function to encode the image
|
| 13 |
def encode_image(image_array):
|
| 14 |
# Convert numpy array to an image file and encode it in base64
|
| 15 |
img = Image.fromarray(np.uint8(image_array))
|
| 16 |
-
img_buffer = os.path.join(
|
|
|
|
|
|
|
| 17 |
img.save(img_buffer, format="JPEG")
|
| 18 |
-
|
| 19 |
with open(img_buffer, "rb") as image_file:
|
| 20 |
return base64.b64encode(image_file.read()).decode("utf-8")
|
| 21 |
|
|
|
|
| 22 |
# Function to generate product description using OpenAI API
|
| 23 |
-
def generate_product_description(image,
|
| 24 |
# Encode the uploaded image
|
| 25 |
base64_image = encode_image(image)
|
| 26 |
|
| 27 |
-
headers = {
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
}
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
# Payload with base64 encoded image as a Data URL
|
| 33 |
payload = {
|
| 34 |
"model": "gpt-4o-mini",
|
|
@@ -36,28 +53,31 @@ def generate_product_description(image, text_input=None):
|
|
| 36 |
{
|
| 37 |
"role": "user",
|
| 38 |
"content": [
|
| 39 |
-
{"type": "text", "text":
|
| 40 |
{
|
| 41 |
"type": "image_url",
|
| 42 |
-
"image_url": {
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
}
|
| 46 |
-
]
|
| 47 |
}
|
| 48 |
],
|
| 49 |
-
"max_tokens": 300
|
| 50 |
}
|
| 51 |
|
| 52 |
-
response = requests.post(
|
|
|
|
|
|
|
| 53 |
response_data = response.json()
|
| 54 |
|
| 55 |
# Handle errors
|
| 56 |
if response.status_code != 200:
|
| 57 |
-
raise ValueError(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
# Extract and return the generated message
|
| 60 |
-
return response_data["choices"][0]["message"]
|
| 61 |
|
| 62 |
css = """
|
| 63 |
#output {
|
|
@@ -68,18 +88,44 @@ css = """
|
|
| 68 |
"""
|
| 69 |
|
| 70 |
with gr.Blocks(css=css) as demo:
|
| 71 |
-
gr.Markdown("WordLift Product Description Generation - [
|
| 72 |
with gr.Tab(label="WordLift Product Description Generation"):
|
| 73 |
with gr.Row():
|
| 74 |
with gr.Column():
|
| 75 |
input_img = gr.Image(label="Input Picture")
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
submit_btn = gr.Button(value="Submit")
|
| 78 |
with gr.Column():
|
| 79 |
output_text = gr.Textbox(label="Output Text")
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
submit_btn.click(
|
| 82 |
-
generate_product_description,
|
|
|
|
|
|
|
| 83 |
)
|
| 84 |
|
| 85 |
# Launch Gradio app
|
|
|
|
| 9 |
# OpenAI API Key
|
| 10 |
api_key = os.getenv("OPENAI_API_KEY")
|
| 11 |
|
| 12 |
+
|
| 13 |
# Function to encode the image
|
| 14 |
def encode_image(image_array):
|
| 15 |
# Convert numpy array to an image file and encode it in base64
|
| 16 |
img = Image.fromarray(np.uint8(image_array))
|
| 17 |
+
img_buffer = os.path.join(
|
| 18 |
+
"/tmp", f"temp_image_{datetime.now().strftime('%Y%m%d_%H%M%S')}.jpg"
|
| 19 |
+
)
|
| 20 |
img.save(img_buffer, format="JPEG")
|
| 21 |
+
|
| 22 |
with open(img_buffer, "rb") as image_file:
|
| 23 |
return base64.b64encode(image_file.read()).decode("utf-8")
|
| 24 |
|
| 25 |
+
|
| 26 |
# Function to generate product description using OpenAI API
|
| 27 |
+
def generate_product_description(image, description_type, custom_instruction=None):
|
| 28 |
# Encode the uploaded image
|
| 29 |
base64_image = encode_image(image)
|
| 30 |
|
| 31 |
+
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
|
| 32 |
+
|
| 33 |
+
# Set the description type or custom instruction
|
| 34 |
+
description_prompts = {
|
| 35 |
+
"Short Formal": "Create a compelling and succinct product description from the image.",
|
| 36 |
+
"Bullet Points": "Provide a detailed product description in bullet points based on the image.",
|
| 37 |
+
"Amazon Optimized": "Write an Amazon-style product description that includes key features, benefits, and a call to action.",
|
| 38 |
+
"Fashion": "Generate a stylish and trendy product description suitable for a fashion item based on the image.",
|
| 39 |
+
"Sport": "Create an energetic and engaging product description for a sports-related item based on the image.",
|
| 40 |
}
|
| 41 |
|
| 42 |
+
if description_type == "Other" and custom_instruction:
|
| 43 |
+
instruction = custom_instruction
|
| 44 |
+
else:
|
| 45 |
+
instruction = description_prompts.get(
|
| 46 |
+
description_type, "Create a product description based on the image."
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
# Payload with base64 encoded image as a Data URL
|
| 50 |
payload = {
|
| 51 |
"model": "gpt-4o-mini",
|
|
|
|
| 53 |
{
|
| 54 |
"role": "user",
|
| 55 |
"content": [
|
| 56 |
+
{"type": "text", "text": instruction},
|
| 57 |
{
|
| 58 |
"type": "image_url",
|
| 59 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
|
| 60 |
+
},
|
| 61 |
+
],
|
|
|
|
|
|
|
| 62 |
}
|
| 63 |
],
|
| 64 |
+
"max_tokens": 300,
|
| 65 |
}
|
| 66 |
|
| 67 |
+
response = requests.post(
|
| 68 |
+
"https://api.openai.com/v1/chat/completions", headers=headers, json=payload
|
| 69 |
+
)
|
| 70 |
response_data = response.json()
|
| 71 |
|
| 72 |
# Handle errors
|
| 73 |
if response.status_code != 200:
|
| 74 |
+
raise ValueError(
|
| 75 |
+
f"OpenAI API Error: {response_data.get('error', {}).get('message', 'Unknown Error')}"
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Extract and return only the generated message content
|
| 79 |
+
return response_data["choices"][0]["message"]["content"]
|
| 80 |
|
|
|
|
|
|
|
| 81 |
|
| 82 |
css = """
|
| 83 |
#output {
|
|
|
|
| 88 |
"""
|
| 89 |
|
| 90 |
with gr.Blocks(css=css) as demo:
|
| 91 |
+
gr.Markdown("WordLift Product Description Generation - [FREE]")
|
| 92 |
with gr.Tab(label="WordLift Product Description Generation"):
|
| 93 |
with gr.Row():
|
| 94 |
with gr.Column():
|
| 95 |
input_img = gr.Image(label="Input Picture")
|
| 96 |
+
description_type = gr.Dropdown(
|
| 97 |
+
label="Select Description Type",
|
| 98 |
+
choices=[
|
| 99 |
+
"Short Formal",
|
| 100 |
+
"Bullet Points",
|
| 101 |
+
"Amazon Optimized",
|
| 102 |
+
"Fashion",
|
| 103 |
+
"Sport",
|
| 104 |
+
"Other",
|
| 105 |
+
],
|
| 106 |
+
value="Short Formal",
|
| 107 |
+
)
|
| 108 |
+
custom_instruction = gr.Textbox(
|
| 109 |
+
label="Custom Instruction (Only for 'Other')", visible=False
|
| 110 |
+
)
|
| 111 |
submit_btn = gr.Button(value="Submit")
|
| 112 |
with gr.Column():
|
| 113 |
output_text = gr.Textbox(label="Output Text")
|
| 114 |
|
| 115 |
+
# Toggle visibility of custom instruction based on selected type
|
| 116 |
+
def toggle_custom_instruction(type_selection):
|
| 117 |
+
return gr.update(visible=(type_selection == "Other"))
|
| 118 |
+
|
| 119 |
+
description_type.change(
|
| 120 |
+
toggle_custom_instruction,
|
| 121 |
+
inputs=[description_type],
|
| 122 |
+
outputs=[custom_instruction],
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
submit_btn.click(
|
| 126 |
+
generate_product_description,
|
| 127 |
+
[input_img, description_type, custom_instruction],
|
| 128 |
+
[output_text],
|
| 129 |
)
|
| 130 |
|
| 131 |
# Launch Gradio app
|