Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,45 +1,66 @@
|
|
| 1 |
-
import
|
|
|
|
| 2 |
import numpy as np
|
|
|
|
| 3 |
import random
|
| 4 |
-
from
|
| 5 |
-
from diffusers.utils import make_image_grid, load_image
|
| 6 |
|
| 7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
|
| 9 |
if torch.cuda.is_available():
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
MAX_IMAGE_SIZE = 1024
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
| 43 |
|
| 44 |
css="""
|
| 45 |
#col-container {
|
|
@@ -48,17 +69,12 @@ css="""
|
|
| 48 |
}
|
| 49 |
"""
|
| 50 |
|
| 51 |
-
if torch.cuda.is_available():
|
| 52 |
-
power_device = "GPU"
|
| 53 |
-
else:
|
| 54 |
-
power_device = "CPU"
|
| 55 |
-
|
| 56 |
with gr.Blocks(css=css) as demo:
|
| 57 |
|
| 58 |
with gr.Column(elem_id="col-container"):
|
| 59 |
gr.Markdown(f"""
|
| 60 |
# Text-to-Image Gradio Template
|
| 61 |
-
Currently running on {
|
| 62 |
""")
|
| 63 |
|
| 64 |
with gr.Row():
|
|
@@ -81,7 +97,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 81 |
label="Negative prompt",
|
| 82 |
max_lines=1,
|
| 83 |
placeholder="Enter a negative prompt",
|
| 84 |
-
visible=
|
| 85 |
)
|
| 86 |
|
| 87 |
seed = gr.Slider(
|
|
@@ -101,7 +117,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 101 |
minimum=256,
|
| 102 |
maximum=MAX_IMAGE_SIZE,
|
| 103 |
step=32,
|
| 104 |
-
value=
|
| 105 |
)
|
| 106 |
|
| 107 |
height = gr.Slider(
|
|
@@ -109,7 +125,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 109 |
minimum=256,
|
| 110 |
maximum=MAX_IMAGE_SIZE,
|
| 111 |
step=32,
|
| 112 |
-
value=
|
| 113 |
)
|
| 114 |
|
| 115 |
with gr.Row():
|
|
@@ -119,26 +135,31 @@ with gr.Blocks(css=css) as demo:
|
|
| 119 |
minimum=0.0,
|
| 120 |
maximum=10.0,
|
| 121 |
step=0.1,
|
| 122 |
-
value=
|
| 123 |
)
|
| 124 |
|
| 125 |
num_inference_steps = gr.Slider(
|
| 126 |
label="Number of inference steps",
|
| 127 |
minimum=1,
|
| 128 |
-
maximum=
|
| 129 |
step=1,
|
| 130 |
-
value=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
)
|
| 132 |
-
|
| 133 |
-
gr.Examples(
|
| 134 |
-
examples = examples,
|
| 135 |
-
inputs = [prompt]
|
| 136 |
-
)
|
| 137 |
|
| 138 |
run_button.click(
|
| 139 |
-
fn =
|
| 140 |
-
inputs = [prompt, negative_prompt,
|
| 141 |
outputs = [result]
|
| 142 |
)
|
| 143 |
|
| 144 |
-
demo.
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from diffusers import StableDiffusionXLPipeline
|
| 3 |
import numpy as np
|
| 4 |
+
import gradio as gr
|
| 5 |
import random
|
| 6 |
+
from compel import Compel, ReturnedEmbeddingsType
|
|
|
|
| 7 |
|
| 8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
|
| 10 |
if torch.cuda.is_available():
|
| 11 |
+
torch.cuda.max_memory_allocated(device=device)
|
| 12 |
+
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
| 13 |
+
pipe = pipe.to(device)
|
| 14 |
+
else:
|
| 15 |
+
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
| 16 |
+
pipe = pipe.to(device)
|
| 17 |
+
|
| 18 |
+
pipe.safety_checker = None
|
| 19 |
+
|
| 20 |
+
pipe.load_lora_weights("artificialguybr/ps1redmond-ps1-game-graphics-lora-for-sdxl", weight_name="PS1Redmond-PS1Game-Playstation1Graphics.safetensors")
|
| 21 |
+
lora_activation_words = "playstation 1 graphics, PS1 Game, "
|
| 22 |
|
| 23 |
MAX_SEED = np.iinfo(np.int32).max
|
| 24 |
MAX_IMAGE_SIZE = 1024
|
| 25 |
|
| 26 |
+
def infer(conditioning, pooled, neg_conditioning, neg_pooled, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight):
|
| 27 |
+
if randomize_seed:
|
| 28 |
+
seed = random.randint(0, MAX_SEED)
|
| 29 |
|
| 30 |
+
generator = torch.Generator().manual_seed(seed)
|
| 31 |
|
| 32 |
+
image = pipe(
|
| 33 |
+
prompt_embeds=conditioning,
|
| 34 |
+
pooled_prompt_embeds=pooled,
|
| 35 |
+
negative_prompt_embeds=neg_conditioning,
|
| 36 |
+
negative_pooled_prompt_embeds=neg_pooled,
|
| 37 |
+
height=height,
|
| 38 |
+
width=width,
|
| 39 |
+
num_inference_steps=num_inference_steps,
|
| 40 |
+
guidance_scale=guidance_scale,
|
| 41 |
+
generator=generator,
|
| 42 |
+
cross_attention_kwargs={"scale": lora_weight}
|
| 43 |
+
).images[0]
|
| 44 |
|
| 45 |
+
return image
|
| 46 |
+
|
| 47 |
+
def get_embeds(prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight):
|
| 48 |
+
|
| 49 |
+
compel = Compel(
|
| 50 |
+
tokenizer=[pipe.tokenizer, pipe.tokenizer_2] ,
|
| 51 |
+
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
| 52 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 53 |
+
requires_pooled=[False, True]
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
prompt = lora_activation_words + prompt
|
| 57 |
|
| 58 |
+
conditioning, pooled = compel(prompt)
|
| 59 |
+
neg_conditioning, neg_pooled = compel(negative_prompt)
|
| 60 |
+
|
| 61 |
+
image = infer(conditioning, pooled, neg_conditioning, neg_pooled, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight)
|
| 62 |
+
|
| 63 |
+
return image
|
| 64 |
|
| 65 |
css="""
|
| 66 |
#col-container {
|
|
|
|
| 69 |
}
|
| 70 |
"""
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
with gr.Blocks(css=css) as demo:
|
| 73 |
|
| 74 |
with gr.Column(elem_id="col-container"):
|
| 75 |
gr.Markdown(f"""
|
| 76 |
# Text-to-Image Gradio Template
|
| 77 |
+
Currently running on {device.upper()}.
|
| 78 |
""")
|
| 79 |
|
| 80 |
with gr.Row():
|
|
|
|
| 97 |
label="Negative prompt",
|
| 98 |
max_lines=1,
|
| 99 |
placeholder="Enter a negative prompt",
|
| 100 |
+
visible=True,
|
| 101 |
)
|
| 102 |
|
| 103 |
seed = gr.Slider(
|
|
|
|
| 117 |
minimum=256,
|
| 118 |
maximum=MAX_IMAGE_SIZE,
|
| 119 |
step=32,
|
| 120 |
+
value=1024,
|
| 121 |
)
|
| 122 |
|
| 123 |
height = gr.Slider(
|
|
|
|
| 125 |
minimum=256,
|
| 126 |
maximum=MAX_IMAGE_SIZE,
|
| 127 |
step=32,
|
| 128 |
+
value=1024,
|
| 129 |
)
|
| 130 |
|
| 131 |
with gr.Row():
|
|
|
|
| 135 |
minimum=0.0,
|
| 136 |
maximum=10.0,
|
| 137 |
step=0.1,
|
| 138 |
+
value=7.5,
|
| 139 |
)
|
| 140 |
|
| 141 |
num_inference_steps = gr.Slider(
|
| 142 |
label="Number of inference steps",
|
| 143 |
minimum=1,
|
| 144 |
+
maximum=100,
|
| 145 |
step=1,
|
| 146 |
+
value=30,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
with gr.Row():
|
| 150 |
+
|
| 151 |
+
lora_weight = gr.Slider(
|
| 152 |
+
label="LoRA weight",
|
| 153 |
+
minimum=0.0,
|
| 154 |
+
maximum=5.0,
|
| 155 |
+
step=0.01,
|
| 156 |
+
value=1,
|
| 157 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
run_button.click(
|
| 160 |
+
fn = get_embeds,
|
| 161 |
+
inputs = [prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight],
|
| 162 |
outputs = [result]
|
| 163 |
)
|
| 164 |
|
| 165 |
+
demo.launch(debug=True)
|