File size: 21,340 Bytes
e480398 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 |
import tempfile
from typing import List, Tuple, Any
import gradio as gr
import torch
import torch.nn.functional as torch_functional
from PIL import Image, ImageDraw
from transformers import (
CLIPModel,
CLIPProcessor,
SamModel,
SamProcessor,
BlipForQuestionAnswering,
BlipProcessor,
pipeline,
)
MODEL_STORE = {}
def _normalize_gallery_images(gallery_value: Any) -> List[Image.Image]:
if not gallery_value:
return []
normalized_images: List[Image.Image] = []
for item in gallery_value:
if isinstance(item, Image.Image):
normalized_images.append(item)
continue
if isinstance(item, str):
try:
image_object = Image.open(item).convert("RGB")
normalized_images.append(image_object)
except Exception:
continue
continue
if isinstance(item, (list, tuple)) and item:
candidate = item[0]
if isinstance(candidate, Image.Image):
normalized_images.append(candidate)
continue
if isinstance(item, dict):
candidate = item.get("image") or item.get("value")
if isinstance(candidate, Image.Image):
normalized_images.append(candidate)
continue
return normalized_images
def get_vision_pipeline(model_key: str):
if model_key in MODEL_STORE:
return MODEL_STORE[model_key]
if model_key == "object_detection_conditional_detr":
vision_pipeline = pipeline(
task="object-detection",
model="microsoft/conditional-detr-resnet-50",
)
elif model_key == "object_detection_yolos_small":
vision_pipeline = pipeline(
task="object-detection",
model="hustvl/yolos-small",
)
elif model_key == "segmentation":
vision_pipeline = pipeline(
task="image-segmentation",
model="nvidia/segformer-b0-finetuned-ade-512-512",
)
elif model_key == "depth_estimation":
vision_pipeline = pipeline(
task="depth-estimation",
model="Intel/dpt-hybrid-midas",
)
elif model_key == "captioning_blip_base":
vision_pipeline = pipeline(
task="image-to-text",
model="Salesforce/blip-image-captioning-base",
)
elif model_key == "captioning_blip_large":
vision_pipeline = pipeline(
task="image-to-text",
model="Salesforce/blip-image-captioning-large",
)
elif model_key == "vqa_blip_base":
vision_pipeline = pipeline(
task="visual-question-answering",
model="Salesforce/blip-vqa-base",
)
elif model_key == "vqa_vilt_b32":
vision_pipeline = pipeline(
task="visual-question-answering",
model="dandelin/vilt-b32-finetuned-vqa",
)
else:
raise ValueError(f"Неизвестный тип модели: {model_key}")
MODEL_STORE[model_key] = vision_pipeline
return vision_pipeline
def get_clip_components(clip_key: str) -> Tuple[CLIPModel, CLIPProcessor]:
model_store_key_model = f"clip_model_{clip_key}"
model_store_key_processor = f"clip_processor_{clip_key}"
if model_store_key_model not in MODEL_STORE or model_store_key_processor not in MODEL_STORE:
if clip_key == "clip_large_patch14":
clip_name = "openai/clip-vit-large-patch14"
elif clip_key == "clip_base_patch32":
clip_name = "openai/clip-vit-base-patch32"
else:
raise ValueError(f"Неизвестный вариант CLIP модели: {clip_key}")
clip_model = CLIPModel.from_pretrained(clip_name)
clip_processor = CLIPProcessor.from_pretrained(clip_name)
MODEL_STORE[model_store_key_model] = clip_model
MODEL_STORE[model_store_key_processor] = clip_processor
clip_model = MODEL_STORE[model_store_key_model]
clip_processor = MODEL_STORE[model_store_key_processor]
return clip_model, clip_processor
def get_blip_vqa_components() -> Tuple[BlipForQuestionAnswering, BlipProcessor]:
if "blip_vqa_model" not in MODEL_STORE or "blip_vqa_processor" not in MODEL_STORE:
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
blip_model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
MODEL_STORE["blip_vqa_model"] = blip_model
MODEL_STORE["blip_vqa_processor"] = blip_processor
blip_model = MODEL_STORE["blip_vqa_model"]
blip_processor = MODEL_STORE["blip_vqa_processor"]
return blip_model, blip_processor
def get_sam_components() -> Tuple[SamModel, SamProcessor]:
if "sam_model" not in MODEL_STORE or "sam_processor" not in MODEL_STORE:
sam_model = SamModel.from_pretrained("Zigeng/SlimSAM-uniform-77")
sam_processor = SamProcessor.from_pretrained("Zigeng/SlimSAM-uniform-77")
MODEL_STORE["sam_model"] = sam_model
MODEL_STORE["sam_processor"] = sam_processor
sam_model = MODEL_STORE["sam_model"]
sam_processor = MODEL_STORE["sam_processor"]
return sam_model, sam_processor
def detect_objects_on_image(image_object, model_key: str):
if image_object is None:
return None
try:
detector_pipeline = get_vision_pipeline(model_key)
detection_results = detector_pipeline(image_object)
drawer_object = ImageDraw.Draw(image_object)
for detection_item in detection_results:
box_data = detection_item["box"]
label_value = detection_item["label"]
score_value = detection_item["score"]
drawer_object.rectangle(
[
box_data["xmin"],
box_data["ymin"],
box_data["xmax"],
box_data["ymax"],
],
outline="red",
width=3,
)
drawer_object.text(
(box_data["xmin"], box_data["ymin"]),
f"{label_value}: {score_value:.2f}",
fill="red",
)
return image_object
except Exception as e:
print(f"Ошибка: {str(e)}")
return None
def segment_image(image_object):
if image_object is None:
return None
try:
segmentation_pipeline = get_vision_pipeline("segmentation")
segmentation_results = segmentation_pipeline(image_object)
return segmentation_results[0]["mask"]
except Exception as e:
print(f"Ошибка: {str(e)}")
return None
def estimate_image_depth(image_object):
if image_object is None:
return None
try:
depth_pipeline = get_vision_pipeline("depth_estimation")
depth_output = depth_pipeline(image_object)
predicted_depth_tensor = depth_output["predicted_depth"]
if predicted_depth_tensor.ndim == 3:
predicted_depth_tensor = predicted_depth_tensor.unsqueeze(1)
elif predicted_depth_tensor.ndim == 2:
predicted_depth_tensor = predicted_depth_tensor.unsqueeze(0).unsqueeze(0)
else:
raise ValueError(
f"Неожиданная размерность: {predicted_depth_tensor.shape}"
)
resized_depth_tensor = torch_functional.interpolate(
predicted_depth_tensor,
size=image_object.size[::-1],
mode="bicubic",
align_corners=False,
)
depth_array = resized_depth_tensor.squeeze().cpu().numpy()
max_value = float(depth_array.max())
if max_value <= 0.0:
return Image.new("L", image_object.size, color=0)
normalized_depth_array = (depth_array * 255.0 / max_value).astype("uint8")
depth_image = Image.fromarray(normalized_depth_array, mode="L")
return depth_image
except Exception as e:
print(f"Ошибка: {str(e)}")
return None
def generate_image_caption(image_object, model_key: str) -> str:
if image_object is None:
return "Загрузите изображение"
try:
caption_pipeline = get_vision_pipeline(model_key)
caption_result = caption_pipeline(image_object)
return caption_result[0]["generated_text"]
except Exception as e:
return f"Ошибка: {str(e)}"
def answer_visual_question(image_object, question_text: str, model_key: str) -> str:
if image_object is None:
return "Загрузите изображение"
if not question_text.strip():
return "Введите вопрос"
try:
if model_key == "vqa_blip_base":
blip_model, blip_processor = get_blip_vqa_components()
inputs = blip_processor(
images=image_object,
text=question_text,
return_tensors="pt",
)
with torch.no_grad():
output_ids = blip_model.generate(**inputs)
decoded_answers = blip_processor.batch_decode(
output_ids,
skip_special_tokens=True,
)
answer_text = decoded_answers[0] if decoded_answers else ""
return answer_text or "Модель не смогла ответить"
vqa_pipeline = get_vision_pipeline(model_key)
vqa_result = vqa_pipeline(
image=image_object,
question=question_text,
)
top_item = vqa_result[0]
answer_text = top_item["answer"]
confidence_value = top_item["score"]
return f"{answer_text} (уверенность: {confidence_value:.3f})"
except Exception as e:
return f"Ошибка: {str(e)}"
def perform_zero_shot_classification(
image_object,
class_texts: str,
clip_key: str,
) -> str:
if image_object is None:
return "Загрузите изображение"
try:
clip_model, clip_processor = get_clip_components(clip_key)
class_list = [
class_name.strip()
for class_name in class_texts.split(",")
if class_name.strip()
]
if not class_list:
return "Укажите классы для классификации"
input_batch = clip_processor(
text=class_list,
images=image_object,
return_tensors="pt",
padding=True,
)
with torch.no_grad():
clip_outputs = clip_model(**input_batch)
logits_per_image = clip_outputs.logits_per_image
probability_tensor = logits_per_image.softmax(dim=1)
result_lines = ["Результаты:"]
for class_index, class_name in enumerate(class_list):
probability_value = probability_tensor[0][class_index].item()
result_lines.append(f"{class_name}: {probability_value:.4f}")
return "\n".join(result_lines)
except Exception as e:
return f"Ошибка: {str(e)}"
def retrieve_best_image(
gallery_value: Any,
query_text: str,
clip_key: str,
) -> Tuple[str, Image.Image | None]:
image_list = _normalize_gallery_images(gallery_value)
if not image_list or not query_text.strip():
return "Загрузите изображения и введите запрос", None
try:
clip_model, clip_processor = get_clip_components(clip_key)
image_inputs = clip_processor(
images=image_list,
return_tensors="pt",
padding=True,
)
with torch.no_grad():
image_features = clip_model.get_image_features(**image_inputs)
image_features = image_features / image_features.norm(
dim=-1,
keepdim=True,
)
text_inputs = clip_processor(
text=[query_text],
return_tensors="pt",
padding=True,
)
with torch.no_grad():
text_features = clip_model.get_text_features(**text_inputs)
text_features = text_features / text_features.norm(
dim=-1,
keepdim=True,
)
similarity_tensor = image_features @ text_features.T
best_index_tensor = similarity_tensor.argmax()
best_index_value = best_index_tensor.item()
best_score_value = similarity_tensor[best_index_value].item()
description_text = (
f"Изображение #{best_index_value + 1} "
f"(схожесть: {best_score_value:.4f})"
)
return description_text, image_list[best_index_value]
except Exception as e:
return f"Ошибка: {str(e)}", None
def segment_image_with_sam_points(
image_object,
point_coordinates_list: List[List[int]],
) -> Image.Image:
if image_object is None:
raise ValueError("Изображение не передано")
if not point_coordinates_list:
return Image.new("L", image_object.size, color=0)
try:
sam_model, sam_processor = get_sam_components()
batched_points: List[List[List[int]]] = [point_coordinates_list]
batched_labels: List[List[int]] = [[1 for _ in point_coordinates_list]]
sam_inputs = sam_processor(
image=image_object,
input_points=batched_points,
input_labels=batched_labels,
return_tensors="pt",
)
with torch.no_grad():
sam_outputs = sam_model(**sam_inputs, multimask_output=True)
processed_masks_list = sam_processor.image_processor.post_process_masks(
sam_outputs.pred_masks.squeeze(1).cpu(),
sam_inputs["original_sizes"].cpu(),
sam_inputs["reshaped_input_sizes"].cpu(),
)
batch_masks_tensor = processed_masks_list[0]
if batch_masks_tensor.ndim != 3 or batch_masks_tensor.shape[0] == 0:
return Image.new("L", image_object.size, color=0)
first_mask_tensor = batch_masks_tensor[0]
mask_array = first_mask_tensor.numpy()
binary_mask_array = (mask_array > 0.5).astype("uint8") * 255
mask_image = Image.fromarray(binary_mask_array, mode="L")
return mask_image
except Exception as e:
print(f"Ошибка: {str(e)}")
return Image.new("L", image_object.size, color=0)
def segment_image_with_sam_points_ui(image_object, coordinates_text: str) -> Image.Image:
if image_object is None:
return None
coordinates_text_clean = coordinates_text.strip()
if not coordinates_text_clean:
return Image.new("L", image_object.size, color=0)
point_coordinates_list: List[List[int]] = []
for raw_pair in coordinates_text_clean.replace("\n", ";").split(";"):
raw_pair_clean = raw_pair.strip()
if not raw_pair_clean:
continue
parts = raw_pair_clean.split(",")
if len(parts) != 2:
continue
try:
x_value = int(parts[0].strip())
y_value = int(parts[1].strip())
except ValueError:
continue
point_coordinates_list.append([x_value, y_value])
if not point_coordinates_list:
return Image.new("L", image_object.size, color=0)
return segment_image_with_sam_points(image_object, point_coordinates_list)
def build_interface():
with gr.Blocks(title="Vision Processing Demo") as demo:
gr.Markdown("# Система обработки изображений")
with gr.Tab("Детекция объектов"):
object_input_image = gr.Image(label="Загрузите изображение", type="pil")
object_model_selector = gr.Dropdown(
choices=[
"object_detection_conditional_detr",
"object_detection_yolos_small",
],
label="Модель",
value="object_detection_conditional_detr",
)
object_detect_button = gr.Button("Выполнить детекцию")
object_output_image = gr.Image(label="Результат")
object_detect_button.click(
fn=detect_objects_on_image,
inputs=[object_input_image, object_model_selector],
outputs=object_output_image,
)
with gr.Tab("Сегментация"):
segmentation_input_image = gr.Image(label="Загрузите изображение", type="pil")
segmentation_button = gr.Button("Запустить сегментацию")
segmentation_output_image = gr.Image(label="Маска")
segmentation_button.click(
fn=segment_image,
inputs=segmentation_input_image,
outputs=segmentation_output_image,
)
with gr.Tab("Оценка глубины"):
depth_input_image = gr.Image(label="Загрузите изображение", type="pil")
depth_button = gr.Button("Оценить глубину")
depth_output_image = gr.Image(label="Карта глубины")
depth_button.click(
fn=estimate_image_depth,
inputs=depth_input_image,
outputs=depth_output_image,
)
with gr.Tab("Описание"):
caption_input_image = gr.Image(label="Загрузите изображение", type="pil")
caption_model_selector = gr.Dropdown(
choices=[
"captioning_blip_base",
"captioning_blip_large",
],
label="Модель",
value="captioning_blip_base",
)
caption_button = gr.Button("Создать описание")
caption_output_text = gr.Textbox(label="Описание", lines=3)
caption_button.click(
fn=generate_image_caption,
inputs=[caption_input_image, caption_model_selector],
outputs=caption_output_text,
)
with gr.Tab("VQA"):
vqa_input_image = gr.Image(label="Загрузите изображение", type="pil")
vqa_question_text = gr.Textbox(label="Вопрос", lines=2)
vqa_model_selector = gr.Dropdown(
choices=[
"vqa_blip_base",
"vqa_vilt_b32",
],
label="Модель",
value="vqa_blip_base",
)
vqa_button = gr.Button("Задать вопрос")
vqa_output_text = gr.Textbox(label="Ответ", lines=3)
vqa_button.click(
fn=answer_visual_question,
inputs=[vqa_input_image, vqa_question_text, vqa_model_selector],
outputs=vqa_output_text,
)
with gr.Tab("Zero-Shot"):
zero_shot_input_image = gr.Image(label="Загрузите изображение", type="pil")
zero_shot_classes_text = gr.Textbox(
label="Классы",
placeholder="Введите классы через запятую",
lines=2,
)
clip_model_selector = gr.Dropdown(
choices=[
"clip_large_patch14",
"clip_base_patch32",
],
label="Модель",
value="clip_large_patch14",
)
zero_shot_button = gr.Button("Классифицировать")
zero_shot_output_text = gr.Textbox(label="Результаты", lines=8)
zero_shot_button.click(
fn=perform_zero_shot_classification,
inputs=[zero_shot_input_image, zero_shot_classes_text, clip_model_selector],
outputs=zero_shot_output_text,
)
with gr.Tab("Поиск"):
retrieval_dir = gr.File(
label="Загрузите папку",
file_count="directory",
file_types=["image"],
type="filepath",
)
retrieval_query_text = gr.Textbox(label="Текстовый запрос", lines=2)
retrieval_clip_selector = gr.Dropdown(
choices=[
"clip_large_patch14",
"clip_base_patch32",
],
label="Модель",
value="clip_large_patch14",
)
retrieval_button = gr.Button("Найти изображение")
retrieval_output_text = gr.Textbox(label="Результат")
retrieval_output_image = gr.Image(label="Найденное изображение")
retrieval_button.click(
fn=retrieve_best_image,
inputs=[retrieval_dir, retrieval_query_text, retrieval_clip_selector],
outputs=[retrieval_output_text, retrieval_output_image],
)
return demo
if __name__ == "__main__":
interface = build_interface()
interface.launch(share=True, server_name="0.0.0.0") |