File size: 15,313 Bytes
57a9af9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a2de61
57a9af9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154f18f
 
57a9af9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a2de61
57a9af9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd294c7
57a9af9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd294c7
 
 
 
57a9af9
 
 
cd294c7
 
 
 
 
 
 
 
57a9af9
cd294c7
57a9af9
 
 
cd294c7
57a9af9
 
cd294c7
 
57a9af9
 
 
cd294c7
 
 
57a9af9
 
 
 
 
 
9b71991
 
 
 
 
 
 
 
 
 
 
 
 
 
57a9af9
 
9b71991
 
 
 
 
 
57a9af9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import numpy as np
import faiss
from sentence_transformers import SentenceTransformer
from sentence_transformers.cross_encoder import CrossEncoder
from transformers import pipeline
from PIL import Image, ImageChops, ImageEnhance
import torch
from google.cloud import vision
import os
import io
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers import T5Tokenizer, T5ForConditionalGeneration
from dotenv import load_dotenv
import requests
from bs4 import BeautifulSoup
import trafilatura as tra

DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'

class retriver:
    def __init__(self):
        self.retrivermodel = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')

    def build_faiss_idx(self, evidence_corpus):
        embeddings = self.retrivermodel.encode(evidence_corpus)
        index = faiss.IndexFlatIP(embeddings.shape[1])
        index.add(np.array(embeddings, dtype=np.float32))
        faiss.write_index(index, "evidence_index.faiss")
        return index

    def retrieve_evidence(self, claim, index, evidence_corpus, top_k=10):
        claim_embedding = self.retrivermodel.encode([claim])
        distances, indices = index.search(np.array(claim_embedding, dtype=np.float32), top_k)
        retrieved_docs = [evidence_corpus[i] for i in indices[0]]
        return retrieved_docs, indices[0]

class reranker:
    def __init__(self):
        self.reranker_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', device=DEVICE)

    def rerank_evidendce(self, claim, evidence_list):
        sentance_pairs = [[claim, evidence] for evidence in evidence_list]
        score = self.reranker_model.predict(sentance_pairs)
        scored_evidence = sorted(zip(score, evidence_list), reverse=True)
        return scored_evidence

class Classifier:
    def __init__(self):
        self.model_name = "MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli"
        self.label_names = ["entailment", "neutral", "contradiction"]
        self.device = torch.device(DEVICE)
        print(f"Classifier device: {self.device}")
        self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name).to(self.device)
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        self.model.eval()

    def classify(self, claim, top_evidence):
        verdicts = []
        evidences = [e[1] for e in top_evidence]
        if not evidences:
            return "NEUTRAL", []
        
        inputs = self.tokenizer(evidences, [claim] * len(evidences), return_tensors="pt", padding=True, truncation=True, max_length=512)
        with torch.no_grad():
            inputs = {k: v.to(self.device) for k, v in inputs.items()}
            outputs = self.model(**inputs)
        
        probs = torch.softmax(outputs.logits, dim=-1)
        for i, evidence in enumerate(evidences):
            pred = torch.argmax(probs[i]).item()
            verdicts.append({
                "evidence": evidence,
                "verdict": self.label_names[pred],
                "scores": {name: float(probs[i][j]) for j, name in enumerate(self.label_names)}
            })

        top_verdict_info = verdicts[0]
        if top_verdict_info["verdict"] == "entailment" and top_verdict_info["scores"]["entailment"] > 0.8:
            result = "TRUE"
        elif top_verdict_info["verdict"] == "contradiction" and top_verdict_info["scores"]["contradiction"] > 0.8:
            result = "FALSE"
        else:
            for v in verdicts[1:]:
                if v["verdict"] == "contradiction" and v["scores"]["contradiction"] > 0.9:
                    result = "FALSE"
                    break
            else:
                result = "NEUTRAL"
        return result, verdicts

    def __call__(self, claim, evidences):
        return self.classify(claim, evidences)

class summarizer:
    def __init__(self):
        self.model_name = "google/flan-t5-base" # Using a smaller model for server efficiency
        self.model = T5ForConditionalGeneration.from_pretrained(self.model_name)
        self.tokenizer = T5Tokenizer.from_pretrained(self.model_name)
        self.device = torch.device(DEVICE)
        self.model.to(self.device)
        self.model.eval()
        print(f"Summarizer device: {self.device}")

    def forward(self, claim, top_evidence, verdict, max_input_len=1024, max_output_len=150):
        evidence_texts = [e[1] for e in top_evidence]
        if not evidence_texts:
            return verdict, "No evidence was provided to generate a summary."
        
        evidence_text = "\n---\n".join(evidence_texts)
        input_text = f"""Claim: "{claim}"\nVerdict: {verdict}\nEvidence:\n{evidence_text}\n\nWrite a short, neutral explanation for why the verdict is {verdict}, based only on the evidence provided."""
        inputs = self.tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_input_len).to(self.device)
        
        with torch.no_grad():
            summary_ids = self.model.generate(inputs["input_ids"], max_length=max_output_len, num_beams=4, early_stopping=True)
        
        summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True)
        return verdict, summary

    def __call__(self, claim, top_evidence, verdict):
        return self.forward(claim, top_evidence, verdict)

class FactChecker:
    def __init__(self):
        self.factcheck_api = "https://factchecktools.googleapis.com/v1alpha1/claims:search"
        self.google_search = "https://www.google.com/search"
        load_dotenv()
        self.factcheck_api_key = os.getenv('GOOGLE_FACT_CHECK_API_KEY')
        # Lazy load heavy models
        self.reranker = None
        self.classifier = None
        self.summarizer = None

    def check_google_factcheck(self, claim: str, pages: int = 5):
        if not self.factcheck_api_key:
            print("Google FactCheck API key not found in .env file.")
            return None
        
        params = {'key': self.factcheck_api_key, 'query': claim, 'languageCode': 'en-US', 'pageSize': pages}
        try:
            response = requests.get(self.factcheck_api, params=params, timeout=10)
            response.raise_for_status()
            data = response.json()
            if 'claims' in data and data['claims']:
                claim_data = data['claims'][0]
                review = claim_data.get('claimReview', [{}])[0]
                return {
                    'claim': claim_data.get('text', claim),
                    'verdict': review.get('textualRating', 'Unknown'),
                    'summary': f"Rated by {review.get('publisher', {}).get('name', 'Unknown')}",
                    'source': [review.get('publisher', {}).get('name', 'Unknown')],
                    'method': 'google_factcheck',
                    'URLs': [review.get('url', '')]
                }
        except Exception as e:
            print(f"FactCheck API error: {e}")
        return None

    def google_news_search(self, query: str, num_pages: int = 1):
        print("Searching the Web...")
        headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"}
        articles_gg = []
        for page in range(num_pages):
            params = {"q": query, "tbm": "nws", 'start': page * 10}
            try:
                res = requests.get(self.google_search, params=params, headers=headers, timeout=15)
                soup = BeautifulSoup(res.text, 'html.parser')
                # Note: This selector is fragile and may break if Google changes its HTML.
                for article_link in soup.select("a.WlydOe"):
                    title_div = article_link.find('div', class_="n0jPhd")
                    source_div = article_link.find('div', class_="MgUUmf")
                    
                    if not (title_div and source_div): continue

                    title = title_div.text
                    a_url = article_link['href']
                    source = source_div.text
                    
                    content = tra.extract(tra.fetch_url(a_url)) if a_url else "No content extracted"
                    articles_gg.append({'title': title, 'url': a_url, 'text': content or "", 'source': source})
            except Exception as e:
                print(f"Error during web search: {e}")

        top_evidences = [d.get('text', '') for d in articles_gg]
        urls = [d.get('url', '') for d in articles_gg]
        return top_evidences, urls, articles_gg

    def search_and_analyze_claim(self, claim: str):
        print("Performing web analysis...")
        
        if self.reranker is None:
            print("Loading AI models for web analysis...")
            self.reranker = reranker()
            self.classifier = Classifier()
            self.summarizer = summarizer()
        
        top_evidences, urls, article_list = self.google_news_search(claim)
        
        if not top_evidences:
            return {'claim': claim, 'verdict': 'Unverifiable', 'summary': 'No relevant sources found.', 'source': [], 'method': 'web_search', 'URLs': []}
        
        reranked_articles = self.reranker.rerank_evidendce(claim, top_evidences)
        if not reranked_articles:
            return {'claim': claim, 'verdict': 'Unverifiable', 'summary': 'No relevant sources found after reranking.', 'source': [], 'method': 'web_search', 'URLs': []}

        verdict, _ = self.classifier(claim, reranked_articles)
        _, summary = self.summarizer(claim, reranked_articles[:3], verdict)
        
        return {
            'claim': claim,
            'verdict': verdict,
            'summary': summary,
            'source': [arc.get('source', '') for arc in article_list],
            'method': 'web_analysis',
            'URLs': urls
        }

    def check_claim(self, claim: str):
        """Main function to check a claim using the fallback pipeline."""
        print(f"\n--- Checking claim: '{claim}' ---")
        factcheck_result = self.check_google_factcheck(claim)
        if factcheck_result:
            print("Found result in FactCheck database.")
            return factcheck_result
        
        print("No FactCheck result, falling back to live web analysis...")
        return self.search_and_analyze_claim(claim)
        
class img_manipulation:
    def __init__(self):
        self.GEN_AI_IMAGE = pipeline("image-classification", model="umm-maybe/AI-image-detector", device=DEVICE)

    def Gen_AI_IMG(self, img_pth):
        try:
            with Image.open(img_pth) as img:
                img = img.convert('RGB')
                result = self.GEN_AI_IMAGE(img)
            proba = next((item['score'] for item in result if item['label'] == 'artificial'), 0.0)
            return proba * 100
        except Exception as e:
            print(f'AI image detection error: {e}')
            return 0.0

    def generated_image(self, img_pth, quality=90):
        """
        Calculates the ELA score entirely in memory without saving any files.
        """
        try:
            with Image.open(img_pth) as orig_img:
                orig_img = orig_img.convert('RGB')

                # Create an in-memory buffer to hold the re-saved image
                buffer = io.BytesIO()
                orig_img.save(buffer, 'JPEG', quality=quality)
                buffer.seek(0) # Rewind buffer to the beginning

                with Image.open(buffer) as resaved_img:
                    # Calculate the difference between the original and re-saved image
                    ela_image = ImageChops.difference(orig_img, resaved_img)

            ela_data = np.array(ela_image)
            mean_intensity = ela_data.mean()
            scaled_score = min(100, (mean_intensity / 25.0) * 100)
            return scaled_score
            
        except Exception as e:
            print(f'ELA calculation error: {e}')
            return 0.0

    def run_image_forensics(self, image_path):
        ai_score = self.Gen_AI_IMG(image_path)
        classic_score = self.generated_image(image_path)
        
        # The return dictionary no longer includes 'ela_image_path'
        return {
            "ai_generated_score_percent": ai_score,
            "classic_edit_score_percent": classic_score,
        }

class OCR:
    def __init__(self, key_path=None):
        # If no key_path is provided, try to get from environment variable
        if key_path is None:
            key_json = os.environ.get('GOOGE_VISION_API')
            if key_json:
                # Write the JSON to a temporary file
                import tempfile
                with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f:
                    f.write(key_json)
                    key_path = f.name
            else:
                # Fallback to default path if environment variable not set
                key_path = 'GOOGLE_VISION_API.json'
        
        os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = key_path
        self.client = vision.ImageAnnotatorClient()
        self.temp_key_path = key_path if key_json else None
    
    def __del__(self):
        # Clean up temporary file if we created one
        if self.temp_key_path and os.path.exists(self.temp_key_path):
            os.unlink(self.temp_key_path)

    def _get_full_vision_analysis(self, img_pth):
        try:
            with open(img_pth, 'rb') as image_file:
                content = image_file.read()
            image = vision.Image(content=content)
            features = [{'type_': vision.Feature.Type.DOCUMENT_TEXT_DETECTION}, {'type_': vision.Feature.Type.SAFE_SEARCH_DETECTION}, {'type_': vision.Feature.Type.LANDMARK_DETECTION}, {'type_': vision.Feature.Type.LOGO_DETECTION}, {'type_': vision.Feature.Type.WEB_DETECTION}]
            response = self.client.annotate_image({'image': image, 'features': features})
            return response, None
        except Exception as e:
            return None, str(e)

    def get_in_image_anal(self, img_pth):
        response, error = self._get_full_vision_analysis(img_pth)
        if error: return {'error': error}
        report = {}
        if response.full_text_annotation: report['Extracted Text'] = response.full_text_annotation.text
        if response.safe_search_annotation:
            safe = response.safe_search_annotation
            report['Safe Search'] = {'adult': vision.Likelihood(safe.adult).name, 'violence': vision.Likelihood(safe.violence).name}
        entities = []
        if response.landmark_annotations: entities.extend([f'Landmark: {l.description}' for l in response.landmark_annotations])
        if response.logo_annotations: entities.extend([f'Logo: {l.description}' for l in response.logo_annotations])
        if entities: report['Identified Entities'] = entities
        return report

    def rev_img_search(self, img_pth):
        response, error = self._get_full_vision_analysis(img_pth)
        if error: return {'error': error}
        report = {}
        if response.web_detection and response.web_detection.pages_with_matching_images:
            matches = [{'title': p.page_title, 'url': p.url} for p in response.web_detection.pages_with_matching_images[:5]]
            report['Reverse Image Matches'] = matches
        return report