Spaces:
Runtime error
Runtime error
test11
Browse files- Dockerfile +0 -2
- main.py +3 -25
- model.py +20 -0
Dockerfile
CHANGED
|
@@ -9,8 +9,6 @@ COPY ./requirements.txt /code/requirements.txt
|
|
| 9 |
|
| 10 |
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 11 |
|
| 12 |
-
COPY ~/.cache/torch/sentence_transformers /root/.cache/torch/sentence_transformers
|
| 13 |
-
|
| 14 |
COPY . .
|
| 15 |
|
| 16 |
CMD ["gunicorn", "-b", "0.0.0.0:7860", "main:app"]
|
|
|
|
| 9 |
|
| 10 |
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 11 |
|
|
|
|
|
|
|
| 12 |
COPY . .
|
| 13 |
|
| 14 |
CMD ["gunicorn", "-b", "0.0.0.0:7860", "main:app"]
|
main.py
CHANGED
|
@@ -1,29 +1,7 @@
|
|
| 1 |
from flask import Flask, request
|
| 2 |
import torch
|
| 3 |
-
import
|
| 4 |
import numpy as np
|
| 5 |
-
from sentence_transformers import SentenceTransformer
|
| 6 |
-
|
| 7 |
-
class LSTM(nn.Module):
|
| 8 |
-
def __init__(self, embedding_dim, hidden_dim, num_layers, output_dim):
|
| 9 |
-
super(LSTM, self).__init__()
|
| 10 |
-
self.lstm1 = nn.LSTM(embedding_dim, hidden_dim, num_layers, batch_first=True)
|
| 11 |
-
self.lstm2 = nn.LSTM(hidden_dim, hidden_dim, num_layers, batch_first=True)
|
| 12 |
-
self.lstm3 = nn.LSTM(hidden_dim, hidden_dim, num_layers, batch_first=True)
|
| 13 |
-
self.lstm4 = nn.LSTM(hidden_dim, hidden_dim, num_layers, batch_first=True)
|
| 14 |
-
self.lstm5 = nn.LSTM(hidden_dim, hidden_dim, num_layers, batch_first=True)
|
| 15 |
-
self.o = nn.Linear(hidden_dim, output_dim)
|
| 16 |
-
|
| 17 |
-
def forward(self, embedding):
|
| 18 |
-
o_n1, (h_n1, c_n1) = self.lstm1(embedding)
|
| 19 |
-
o_n2, (h_n2, c_n2) = self.lstm2(o_n1, (h_n1, c_n1))
|
| 20 |
-
o_n3, (h_n3, c_n3) = self.lstm3(o_n2, (h_n2, c_n2))
|
| 21 |
-
o_n4, (h_n4, c_n4) = self.lstm4(o_n3, (h_n3, c_n3))
|
| 22 |
-
o_n5, (h_n5, c_n5) = self.lstm5(o_n4, (h_n4, c_n4))
|
| 23 |
-
output = self.o(o_n5)
|
| 24 |
-
return output
|
| 25 |
-
|
| 26 |
-
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 27 |
|
| 28 |
embedding_dim = 384
|
| 29 |
hidden_dim = 512
|
|
@@ -32,14 +10,14 @@ output_dim = 180
|
|
| 32 |
num_epochs = 100
|
| 33 |
learning_rate = 0.001
|
| 34 |
|
| 35 |
-
lstm_model = LSTM(embedding_dim, hidden_dim, num_layers, output_dim)
|
| 36 |
lstm_model.load_state_dict(torch.load('lstm.pt'))
|
| 37 |
|
| 38 |
app = Flask(__name__)
|
| 39 |
|
| 40 |
def GeneratePosesJSON(input):
|
| 41 |
with torch.no_grad():
|
| 42 |
-
processed_text = torch.tensor(
|
| 43 |
output_poses = lstm_model(processed_text.unsqueeze(0))
|
| 44 |
|
| 45 |
people = output_poses.cpu().detach().numpy().reshape(5, 18, 2).tolist()
|
|
|
|
| 1 |
from flask import Flask, request
|
| 2 |
import torch
|
| 3 |
+
import model
|
| 4 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
embedding_dim = 384
|
| 7 |
hidden_dim = 512
|
|
|
|
| 10 |
num_epochs = 100
|
| 11 |
learning_rate = 0.001
|
| 12 |
|
| 13 |
+
lstm_model = model.LSTM(embedding_dim, hidden_dim, num_layers, output_dim)
|
| 14 |
lstm_model.load_state_dict(torch.load('lstm.pt'))
|
| 15 |
|
| 16 |
app = Flask(__name__)
|
| 17 |
|
| 18 |
def GeneratePosesJSON(input):
|
| 19 |
with torch.no_grad():
|
| 20 |
+
processed_text = torch.tensor(input, dtype=torch.float)
|
| 21 |
output_poses = lstm_model(processed_text.unsqueeze(0))
|
| 22 |
|
| 23 |
people = output_poses.cpu().detach().numpy().reshape(5, 18, 2).tolist()
|
model.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
|
| 3 |
+
class LSTM(nn.Module):
|
| 4 |
+
def __init__(self, embedding_dim, hidden_dim, num_layers, output_dim):
|
| 5 |
+
super(LSTM, self).__init__()
|
| 6 |
+
self.lstm1 = nn.LSTM(embedding_dim, hidden_dim, num_layers, batch_first=True)
|
| 7 |
+
self.lstm2 = nn.LSTM(hidden_dim, hidden_dim, num_layers, batch_first=True)
|
| 8 |
+
self.lstm3 = nn.LSTM(hidden_dim, hidden_dim, num_layers, batch_first=True)
|
| 9 |
+
self.lstm4 = nn.LSTM(hidden_dim, hidden_dim, num_layers, batch_first=True)
|
| 10 |
+
self.lstm5 = nn.LSTM(hidden_dim, hidden_dim, num_layers, batch_first=True)
|
| 11 |
+
self.o = nn.Linear(hidden_dim, output_dim)
|
| 12 |
+
|
| 13 |
+
def forward(self, embedding):
|
| 14 |
+
o_n1, (h_n1, c_n1) = self.lstm1(embedding)
|
| 15 |
+
o_n2, (h_n2, c_n2) = self.lstm2(o_n1, (h_n1, c_n1))
|
| 16 |
+
o_n3, (h_n3, c_n3) = self.lstm3(o_n2, (h_n2, c_n2))
|
| 17 |
+
o_n4, (h_n4, c_n4) = self.lstm4(o_n3, (h_n3, c_n3))
|
| 18 |
+
o_n5, (h_n5, c_n5) = self.lstm5(o_n4, (h_n4, c_n4))
|
| 19 |
+
output = self.o(o_n5)
|
| 20 |
+
return output
|