Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -19,11 +19,7 @@ st.set_page_config(
|
|
| 19 |
layout="wide"
|
| 20 |
)
|
| 21 |
|
| 22 |
-
|
| 23 |
-
#tokenizer = open_clip.get_tokenizer('hf-hub:laion/CLIP-ViT-g-14-laion2B-s12B-b42K')
|
| 24 |
-
|
| 25 |
-
#model, preprocess = open_clip.create_model_from_pretrained(clip_model_name)
|
| 26 |
-
#tokenizer = open_clip.get_tokenizer(clip_model_name)
|
| 27 |
|
| 28 |
#st.write("Available models:", open_clip.list_models())
|
| 29 |
|
|
@@ -50,22 +46,22 @@ def process_image(image, preprocess):
|
|
| 50 |
|
| 51 |
def knn_get_score(knn, k, cat, vec):
|
| 52 |
allvecs = knn[f'{cat}_vecs']
|
| 53 |
-
st.write('allvecs.shape', allvecs.shape)
|
| 54 |
scores = knn[f'{cat}_scores']
|
| 55 |
-
st.write('scores.shape', scores.shape)
|
| 56 |
# Compute cosine similiarity of vec against allvecs
|
| 57 |
# (both are already normalized)
|
| 58 |
cos_sim_table = vec @ allvecs.T
|
| 59 |
-
st.write('cos_sim_table.shape', cos_sim_table.shape)
|
| 60 |
# Get sorted array indices by similiarity in descending order
|
| 61 |
sortinds = np.flip(np.argsort(cos_sim_table))
|
| 62 |
-
st.write('sortinds.shape', sortinds.shape)
|
| 63 |
# Get corresponding scores for the sorted vectors
|
| 64 |
kscores = scores[sortinds][:k]
|
| 65 |
-
st.write('kscores.shape', kscores.shape)
|
| 66 |
# Get actual sorted similiarity scores
|
| 67 |
-
ksims = cos_sim_table[sortinds][:k]
|
| 68 |
-
st.write('ksims.shape', ksims.shape)
|
| 69 |
# Apply normalization after exponential formula
|
| 70 |
ksims = softmax(10**ksims)
|
| 71 |
# Weighted sum
|
|
@@ -91,7 +87,7 @@ def main():
|
|
| 91 |
|
| 92 |
with st.spinner('Loading KNN model... This may take a moment.'):
|
| 93 |
knn = load_knn()
|
| 94 |
-
st.write(knn['walkability_vecs'].shape)
|
| 95 |
|
| 96 |
file = st.file_uploader('Upload An Image')
|
| 97 |
|
|
@@ -112,7 +108,7 @@ def main():
|
|
| 112 |
|
| 113 |
# Normalize vector
|
| 114 |
vec /= vec.norm(dim=-1, keepdim=True)
|
| 115 |
-
st.write(vec.shape)
|
| 116 |
vec = vec.numpy()
|
| 117 |
k = 40
|
| 118 |
for cat in ['walkability']:
|
|
|
|
| 19 |
layout="wide"
|
| 20 |
)
|
| 21 |
|
| 22 |
+
debug = True
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
#st.write("Available models:", open_clip.list_models())
|
| 25 |
|
|
|
|
| 46 |
|
| 47 |
def knn_get_score(knn, k, cat, vec):
|
| 48 |
allvecs = knn[f'{cat}_vecs']
|
| 49 |
+
if debug: st.write('allvecs.shape', allvecs.shape)
|
| 50 |
scores = knn[f'{cat}_scores']
|
| 51 |
+
if debug: st.write('scores.shape', scores.shape)
|
| 52 |
# Compute cosine similiarity of vec against allvecs
|
| 53 |
# (both are already normalized)
|
| 54 |
cos_sim_table = vec @ allvecs.T
|
| 55 |
+
if debug: st.write('cos_sim_table.shape', cos_sim_table.shape)
|
| 56 |
# Get sorted array indices by similiarity in descending order
|
| 57 |
sortinds = np.flip(np.argsort(cos_sim_table))
|
| 58 |
+
if debug: st.write('sortinds.shape', sortinds.shape)
|
| 59 |
# Get corresponding scores for the sorted vectors
|
| 60 |
kscores = scores[sortinds][:k]
|
| 61 |
+
if debug: st.write('kscores.shape', kscores.shape)
|
| 62 |
# Get actual sorted similiarity scores
|
| 63 |
+
ksims = cos_sim_table[:, sortinds][:k]
|
| 64 |
+
if debug: st.write('ksims.shape', ksims.shape)
|
| 65 |
# Apply normalization after exponential formula
|
| 66 |
ksims = softmax(10**ksims)
|
| 67 |
# Weighted sum
|
|
|
|
| 87 |
|
| 88 |
with st.spinner('Loading KNN model... This may take a moment.'):
|
| 89 |
knn = load_knn()
|
| 90 |
+
if debug: st.write(knn['walkability_vecs'].shape)
|
| 91 |
|
| 92 |
file = st.file_uploader('Upload An Image')
|
| 93 |
|
|
|
|
| 108 |
|
| 109 |
# Normalize vector
|
| 110 |
vec /= vec.norm(dim=-1, keepdim=True)
|
| 111 |
+
if debug: st.write(vec.shape)
|
| 112 |
vec = vec.numpy()
|
| 113 |
k = 40
|
| 114 |
for cat in ['walkability']:
|