Upload FinetuneModelTrainerForRunningInSpaces.py
Browse files
FinetuneModelTrainerForRunningInSpaces.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import transformers
|
| 3 |
+
import random
|
| 4 |
+
|
| 5 |
+
# Define the model configuration and tokenizer
|
| 6 |
+
config = transformers.AutoConfig.from_pretrained("bert-base-uncased")
|
| 7 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 8 |
+
|
| 9 |
+
# Load the pretrained model
|
| 10 |
+
model = transformers.AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", config=config)
|
| 11 |
+
|
| 12 |
+
# Set the hyperparameters for fine-tuning
|
| 13 |
+
num_epochs = 3
|
| 14 |
+
batch_size = 32
|
| 15 |
+
learning_rate = 2e-5
|
| 16 |
+
|
| 17 |
+
# Create the model optimizer
|
| 18 |
+
optimizer = transformers.AdamW(model.parameters(), lr=learning_rate)
|
| 19 |
+
|
| 20 |
+
# Define the data collator
|
| 21 |
+
def collate_fn(data):
|
| 22 |
+
input_ids = torch.tensor([tokenizer(text, padding="max_length", truncation=True)["input_ids"] for text in data["text"]])
|
| 23 |
+
attention_mask = torch.tensor([tokenizer(text, padding="max_length", truncation=True)["attention_mask"] for text in data["text"]])
|
| 24 |
+
labels = torch.tensor(data["label"])
|
| 25 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
|
| 26 |
+
|
| 27 |
+
# Split the training data into training and validation sets
|
| 28 |
+
def split_data(data, validation_size=0.2):
|
| 29 |
+
validation_indices = random.sample(range(len(data)), int(len(data) * validation_size))
|
| 30 |
+
train_data = []
|
| 31 |
+
val_data = []
|
| 32 |
+
for i, item in enumerate(data):
|
| 33 |
+
if i in validation_indices:
|
| 34 |
+
val_data.append(item)
|
| 35 |
+
else:
|
| 36 |
+
train_data.append(item)
|
| 37 |
+
return train_data, val_data
|
| 38 |
+
|
| 39 |
+
# Split the training data
|
| 40 |
+
train_data, val_data = split_data(train_data, validation_size=0.2)
|
| 41 |
+
|
| 42 |
+
# Finetune the model
|
| 43 |
+
for epoch in range(num_epochs):
|
| 44 |
+
# Create the training data loader
|
| 45 |
+
train_loader = transformers.DataLoader(train_data, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
|
| 46 |
+
|
| 47 |
+
# Train the model for one epoch
|
| 48 |
+
model.train()
|
| 49 |
+
for batch in train_loader:
|
| 50 |
+
optimizer.zero_grad()
|
| 51 |
+
outputs = model(**batch)
|
| 52 |
+
loss = outputs.loss
|
| 53 |
+
loss.backward()
|
| 54 |
+
optimizer.step()
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# Evaluate the model on the validation dataset
|
| 58 |
+
model.eval()
|
| 59 |
+
with torch.no_grad():
|
| 60 |
+
val_loss = 0.0
|
| 61 |
+
for batch in val_loader:
|
| 62 |
+
outputs = model(**batch)
|
| 63 |
+
val_loss += outputs.loss.item()
|
| 64 |
+
|
| 65 |
+
print("Epoch {}: Train Loss: {:.4f} Val Loss: {:.4f}".format(epoch + 1, train_loss / len(train_loader), val_loss / len(val_loader)))
|
| 66 |
+
|
| 67 |
+
# Save the fine-tuned model
|
| 68 |
+
model.save_pretrained("finetuned_model")
|