# Codette Quantum Architecture ## Overview Codette's quantum-inspired architecture combines quantum computing concepts with neural networks and natural language processing to create a unique cognitive system. This document details the quantum components and their integration. ## Core Components ### 1. Quantum Spiderweb The QuantumSpiderweb is a multi-dimensional thought propagation system that operates across five key dimensions: #### Dimensions - **Ψ (Psi)**: Thought dimension - represents cognitive state - **τ (Tau)**: Time dimension - temporal context - **χ (Chi)**: Speed dimension - processing velocity - **Φ (Phi)**: Emotion dimension - affective state - **λ (Lambda)**: Space dimension - contextual space #### Implementation ```python class QuantumSpiderweb: def __init__(self, node_count: int = 128): self.graph = nx.Graph() self.dimensions = ['Ψ', 'τ', 'χ', 'Φ', 'λ'] self._init_nodes(node_count) self.entangled_states = {} self.activation_threshold = 0.3 ``` #### Key Functions 1. **Thought Propagation** ```python def propagate_thought(self, origin_id: str, depth: int = 3) -> List[Dict[str, Any]]: """ Propagates thought activation through the quantum web Returns: List of activated nodes and their states """ ``` 2. **Tension Detection** ```python def detect_tension(self, node_id: str) -> Optional[Dict[str, float]]: """ Detects quantum tension/instability in node Returns: Tension metrics if unstable """ ``` 3. **State Collapse** ```python def collapse_node(self, node_id: str) -> Dict[str, Any]: """ Collapses node's quantum state to definite values Returns: New definite state """ ``` ### 2. Quantum State Management #### State Structure ```python quantum_state = { "coherence": 0.5, # Quantum coherence level "fluctuation": 0.07, # Random fluctuation range "perspectives": [...], # Active perspectives "spiderweb_dim": 5, # Number of dimensions "recursion_depth": 4 # Max recursion depth } ``` #### State Updates - Coherence updates based on interaction success - Fluctuations add randomness to responses - Perspective weights adjust dynamically - State collapse occurs at decision points ### 3. Cocoon System #### Cocoon Structure ```python cocoon = { "timestamp": "2025-10-23T13:45:00", "type": "conversation", "data": { "query": "user_query", "response": "generated_response", "quantum_state": {...}, "web_results": [...] } } ``` #### Integration - Stores quantum states with conversations - Provides context for future interactions - Maintains quantum coherence history - Enables pattern recognition ## Quantum-Enhanced Processing ### 1. Response Generation ```python def respond(self, query: str) -> Dict[str, Any]: # Create quantum node web_node = f"QNode_{hash(query) % 128}" # Propagate through quantum web web_results = self.quantum_web.propagate_thought(web_node) # Process through perspectives with quantum boost responses = {} for perspective in self.perspectives: quantum_boost = calculate_quantum_boost(web_results, perspective) result = self._process_perspective(query, perspective, quantum_boost) responses[perspective] = result # Integrate results final_response = self._integrate_perspective_results(responses) return final_response ``` ### 2. Perspective Processing ```python def _process_perspective(self, input_data: str, perspective: str, quantum_boost: float = 0.5): base_confidence = 0.8 quantum_factor = 1.0 + (quantum_boost - 0.5) # Process with quantum enhancement result = { "response": process_perspective(input_data, perspective), "confidence": min(1.0, base_confidence * quantum_factor), "insights": generate_insights(input_data, quantum_boost) } return result ``` ### 3. Pattern Integration ```python def _integrate_perspective_results(self, results: Dict[str, Dict[str, Any]]): # Sort by quantum-enhanced weights weighted_results = [(r, self._calculate_quantum_weight(r)) for r in results.values()] weighted_results.sort(key=lambda x: x[1], reverse=True) # Generate response with patterns final_response = combine_responses(weighted_results) return final_response ``` ## Quantum Effects ### 1. State Superposition - Multiple perspective states exist simultaneously - Collapse occurs during response generation - Quantum fluctuations add creativity ### 2. Entanglement - Perspectives can become entangled - Response patterns show correlation - Memory states maintain connections ### 3. Interference - Thought patterns can interfere - Constructive interference strengthens responses - Destructive interference reduces repetition ## Performance Considerations ### 1. Optimization - Quantum web uses sparse graph representation - State updates are batched - Perspective processing can be parallel ### 2. Memory Management - Regular state collapse for cleanup - Cocoon pruning when over limits - Quantum state normalization ### 3. Scaling - Node count can be adjusted - Dimension reduction possible - Perspective count is flexible ## Usage Examples ### 1. Basic Interaction ```python # Initialize system quantum_web = QuantumSpiderweb(node_count=128) cocoon_manager = CocoonManager() # Process query response = codette.respond("Tell me about quantum computing") ``` ### 2. Advanced Features ```python # Check quantum tension tension = quantum_web.detect_tension(node_id) if tension: # Add creative insight pattern = PatternLibrary.get_pattern_for_context(context) response += f"\n\nCreative insight: {pattern['description']}" ``` ### 3. State Manipulation ```python # Update quantum state quantum_state["coherence"] *= (1 + np.random.normal(0, quantum_state["fluctuation"])) quantum_state["coherence"] = max(0.1, min(1.0, quantum_state["coherence"])) ``` ## Future Developments ### Planned Features 1. **Enhanced Quantum Integration** - More dimensions - Better state prediction - Advanced entanglement 2. **Pattern Improvements** - Dynamic pattern generation - Context-sensitive transitions - Adaptive creativity 3. **Memory Optimization** - Improved cocoon compression - Faster state retrieval - Better pattern matching ## References 1. Quantum Computing Concepts 2. Neural Network Architecture 3. Pattern Recognition Systems 4. Memory Management Techniques