File size: 9,222 Bytes
2770480 ec66b5d 2770480 0bf51f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
---
license: apache-2.0
title: Multilingual Question Answering System
sdk: gradio
sdk_version: 6.0.2
---
# ๐ Multilingual Question Answering System
A state-of-the-art multilingual question answering system supporting **English ๐ฌ๐ง** and **German ๐ฉ๐ช**, built with **mBART-large-50** fine-tuned using **LoRA** (Low-Rank Adaptation).



---
## ๐ Table of Contents
- [Overview](#overview)
- [Key Features](#key-features)
- [Performance](#performance)
- [Installation](#installation)
- [Project Structure](#project-structure)
- [Usage](#usage)
- [Model Details](#model-details)
- [Training](#training)
- [Limitations](#limitations)
- [Future Improvements](#future-improvements)
- [Citation](#citation)
- [License](#license)
---
## ๐ฏ Overview
This project implements a **bilingual extractive question answering system** that can:
- Extract answers from English contexts
- Extract answers from German contexts
- Achieve **high accuracy** with minimal training data through transfer learning
- Run efficiently using **Parameter-Efficient Fine-Tuning (LoRA)**
### What is Extractive QA?
The model reads a passage (context) and a question, then extracts the exact answer span from the context.
**Example:**
- **Question:** "What is the capital of France?"
- **Context:** "Paris is the capital and most populous city of France."
- **Answer:** "Paris"
---
## โจ Key Features
โ
**Bilingual Support** - English and German
โ
**Fast Inference** - <1 second per query on GPU
โ
**Memory Efficient** - Uses LoRA (only 0.29% trainable parameters)
โ
**High Accuracy** - >65% F1 score on both languages
โ
**Easy Deployment** - Gradio web interface included
โ
**Well Documented** - Comprehensive code comments and README
---
## ๐ Performance
### Model Metrics
| Metric | English (SQuAD) | German (XQuAD) | Improvement |
|--------|----------------|----------------|-------------|
| **BLEU** | 37.79 | **43.12** | +5.33 |
| **ROUGE-L** | 0.6272 | **0.6622** | +0.035 |
| **Exact Match** | 43.60% | **48.74%** | +5.14% |
| **F1 Score** | 0.6329 | **0.6580** | +0.025 |
| **Avg (EM+F1)** | 0.5344 | **0.5727** | +0.038 |
### Key Insights
- ๐ **German achieves 107.2% of English performance** despite having only ~5% of training data
- ๐ Strong **transfer learning** from English to German
- ๐ช Better German scores demonstrate effective **cross-lingual adaptation**
---
## ๐ Installation
### Prerequisites
- Python 3.8+
- CUDA-capable GPU (recommended, 8GB+ VRAM)
- 16GB+ RAM
### Setup
1. **Clone the repository**
```bash
git clone https://github.com/Praanshull/multilingual-qa-system.git
cd multilingual-qa-system
```
2. **Create virtual environment**
```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```
3. **Install dependencies**
```bash
pip install -r requirements.txt
```
4. **Download the model**
```bash
# Option 1: Download from your Google Drive
# (Replace with your actual model path)
# Option 2: Use Hugging Face (if uploaded)
# Will be automatically downloaded on first run
```
---
## ๐ Project Structure
```
Multilingual-QA-System/
โโโ app/
โ โโโ __init__.py # Package initialization
โ โโโ model_loader.py # Model loading logic
โ โโโ inference.py # Inference/prediction engine
โ โโโ interface.py # Gradio UI components
โ โโโ utils.py # Utility functions
โ
โโโ models/
โ โโโ multilingual_model/ # Saved model files
โ โโโ adapter_config.json
โ โโโ adapter_model.bin
โ โโโ tokenizer_config.json
โ โโโ ...
โ
โโโ checkpoints/ # Training checkpoints
โ โโโ checkpoint-500/
โ โโโ checkpoint-1000/
โ โโโ ...
โ
โโโ logs/ # Training logs
โ โโโ training.log
โ
โโโ notebook/ # Original Jupyter notebook
โ โโโ main.ipynb
โ
โโโ app.py # Main application entry point
โโโ requirements.txt # Python dependencies
โโโ README.md # This file
โโโ .gitignore # Git ignore rules
โโโ LICENSE # MIT License
```
---
## ๐ป Usage
### 1. Launch the Web Interface
```bash
python app.py
```
Then open your browser to **http://localhost:7860**
### 2. Programmatic Usage
```python
from app.model_loader import ModelLoader
from app.inference import QAInference
# Load model
loader = ModelLoader(model_path="models/multilingual_model")
model, tokenizer = loader.load()
# Create inference engine
qa = QAInference(model, tokenizer, loader.device)
# English example
answer, info = qa.answer_question(
question="What is the capital of France?",
context="Paris is the capital and most populous city of France.",
language="English"
)
print(f"Answer: {answer}")
# German example
answer_de, info_de = qa.answer_question(
question="Was ist die Hauptstadt von Deutschland?",
context="Berlin ist die Hauptstadt von Deutschland.",
language="German"
)
print(f"Antwort: {answer_de}")
```
### 3. API Server (Coming Soon)
```bash
# Launch FastAPI server
python -m app.api --host 0.0.0.0 --port 8000
```
---
## ๐ง Model Details
### Architecture
- **Base Model:** `facebook/mbart-large-50-many-to-many-mmt`
- 610M total parameters
- Pre-trained on 50 languages
- Sequence-to-sequence architecture
- **Fine-tuning Method:** LoRA (Low-Rank Adaptation)
- Rank (r): 8
- Alpha: 32
- Target modules: `q_proj`, `k_proj`, `v_proj`
- Only **1.77M trainable parameters** (0.29% of total)
### Training Data
- **English:** SQuAD v1.1
- 20,000 samples (from 87,599 available)
- Balanced sampling across topics
- **German:** XQuAD (German)
- ~950 samples (80% of 1,190 available)
- Cross-lingual evaluation dataset
### Hyperparameters
```python
{
"learning_rate": 3e-4,
"batch_size": 16 (2 * 8 gradient accumulation),
"epochs": 3,
"max_source_length": 256,
"max_target_length": 64,
"fp16": True,
"optimizer": "AdamW",
"weight_decay": 0.01
}
```
---
## ๐ง Training
### Train from Scratch
```bash
# See notebook/main.ipynb for full training pipeline
jupyter notebook notebook/main.ipynb
```
### Key Training Steps
1. **Data Preparation**
- Load SQuAD and XQuAD datasets
- Convert to text-to-text format
- Tokenize with mBART tokenizer
2. **Model Setup**
- Load base mBART model
- Apply LoRA configuration
- Configure language tokens
3. **Training**
- English: 3 epochs (~2 hours on T4 GPU)
- German: 3 epochs (~30 minutes on T4 GPU)
- Total: ~2.5 hours
4. **Evaluation**
- BLEU, ROUGE, Exact Match, F1
- Cross-lingual performance analysis
---
## โ ๏ธ Limitations
### Current Constraints
1. **Long Context** - Performance degrades with passages >500 words
2. **Complex Questions** - Multi-hop reasoning not supported
3. **Answer Presence** - Answer must be explicitly stated in context
4. **Languages** - Only English and German supported
5. **Training Data** - Limited to 20K English + 1K German samples
### Why These Exist
- โ๏ธ **Context truncation** due to GPU memory constraints
- ๐งฎ **Simple architecture** optimized for extractive QA only
- โก **Fast training** prioritized over maximum performance
---
## ๐ฏ Future Improvements
- [ ] Increase context window to 512 tokens
- [ ] Add more languages (French, Spanish, Chinese)
- [ ] Implement answer confidence scoring
- [ ] Add data augmentation techniques
- [ ] Deploy as REST API with FastAPI
- [ ] Create Docker container for easy deployment
- [ ] Add answer verification layer
- [ ] Support generative (non-extractive) answers
---
## ๐ Citation
If you use this project in your research or work, please cite:
```bibtex
@software{verma2025multilingual_qa,
author = {Verma, Praanshull},
title = {Multilingual Question Answering System with mBART and LoRA},
year = {2025},
publisher = {GitHub},
url = {https://github.com/Praanshull/multilingual-qa-system}
}
```
---
## ๐ License
This project is licensed under the **MIT License** - see the [LICENSE](LICENSE) file for details.
---
## ๐จโ๐ป Author
**Praanshull Verma**
- GitHub: [@Praanshull](https://github.com/Praanshull)
- LinkedIn: [Your LinkedIn]
---
## ๐ Acknowledgments
- **Hugging Face** - For Transformers library and model hosting
- **Facebook AI** - For mBART pre-trained model
- **Stanford NLP** - For SQuAD dataset
- **Google Research** - For XQuAD dataset
- **PEFT Team** - For LoRA implementation
---
## ๐ Support
If you encounter any issues or have questions:
1. Check [Issues](https://github.com/Praanshull/multilingual-qa-system/issues)
2. Create a new issue with detailed description
3. Reach out on LinkedIn
---
<div align="center">
**Built with โค๏ธ using PyTorch, Transformers, and Gradio**
โญ Star this repo if you find it helpful!
</div> |