File size: 8,155 Bytes
8791d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from typing import Dict, Any, List
from mcp import Tool
import logging
from services import (
    kpa_model_manager,
    stance_model_manager,
    chat_service
)

logger = logging.getLogger(__name__)

async def predict_kpa_tool(arguments: Dict[str, Any]) -> Dict[str, Any]:
    """Tool for keypoint-argument matching prediction"""
    try:
        argument = arguments.get("argument", "")
        key_point = arguments.get("key_point", "")
        
        if not argument or not key_point:
            return {"error": "Both argument and key_point are required"}
        
        result = kpa_model_manager.predict(argument, key_point)
        return {
            "prediction": result["prediction"],
            "label": result["label"],
            "confidence": result["confidence"],
            "probabilities": result["probabilities"]
        }
    except Exception as e:
        logger.error(f"KPA tool error: {str(e)}")
        return {"error": str(e)}

async def predict_stance_tool(arguments: Dict[str, Any]) -> Dict[str, Any]:
    """Tool for stance detection prediction"""
    try:
        topic = arguments.get("topic", "")
        argument = arguments.get("argument", "")
        
        if not topic or not argument:
            return {"error": "Both topic and argument are required"}
        
        result = stance_model_manager.predict(topic, argument)
        return {
            "predicted_stance": result["predicted_stance"],
            "confidence": result["confidence"],
            "probability_con": result["probability_con"],
            "probability_pro": result["probability_pro"]
        }
    except Exception as e:
        logger.error(f"Stance tool error: {str(e)}")
        return {"error": str(e)}

async def batch_stance_tool(arguments: Dict[str, Any]) -> Dict[str, Any]:
    """Tool for batch stance detection"""
    try:
        items = arguments.get("items", [])
        
        if not items:
            return {"error": "Items list is required"}
        
        results = []
        for item in items:
            result = stance_model_manager.predict(item["topic"], item["argument"])
            results.append({
                "topic": item["topic"],
                "argument": item["argument"],
                **result
            })
        
        return {
            "results": results,
            "total_processed": len(results)
        }
    except Exception as e:
        logger.error(f"Batch stance tool error: {str(e)}")
        return {"error": str(e)}

async def generate_argument_tool(arguments: Dict[str, Any]) -> Dict[str, Any]:
    """Tool for argument generation (à compléter avec votre modèle)"""
    try:
        prompt = arguments.get("prompt", "")
        context = arguments.get("context", "")
        
        if not prompt:
            return {"error": "Prompt is required"}
        
        # TODO: Intégrer votre modèle d'argument generation ici
        # Pour l'instant, placeholder
        from services.chat_service import generate_chat_response
        
        response = generate_chat_response(
            user_input=f"Generate argument for: {prompt}. Context: {context}",
            system_prompt="You are an argument generation assistant. Generate persuasive arguments based on the given prompt and context."
        )
        
        return {
            "generated_argument": response,
            "prompt": prompt,
            "context": context
        }
    except Exception as e:
        logger.error(f"Argument generation tool error: {str(e)}")
        return {"error": str(e)}

async def voice_chat_tool(arguments: Dict[str, Any]) -> Dict[str, Any]:
    """Tool for voice chat interaction"""
    try:
        text = arguments.get("text", "")
        conversation_id = arguments.get("conversation_id", "")
        
        if not text:
            return {"error": "Text input is required"}
        
        # Utiliser le service de chat existant
        from services.chat_service import generate_chat_response
        
        response = generate_chat_response(
            user_input=text,
            conversation_id=conversation_id if conversation_id else None
        )
        
        # Optionnel: Ajouter TTS si nécessaire
        tts_required = arguments.get("tts", False)
        audio_url = None
        
        if tts_required:
            from services.tts_service import text_to_speech
            # TODO: Gérer le stockage et l'URL de l'audio
            
        return {
            "response": response,
            "conversation_id": conversation_id,
            "has_audio": tts_required,
            "audio_url": audio_url
        }
    except Exception as e:
        logger.error(f"Voice chat tool error: {str(e)}")
        return {"error": str(e)}

def get_tools() -> List[Tool]:
    """Retourne tous les outils disponibles"""
    return [
        Tool(
            name="predict_kpa",
            description="Predict keypoint-argument matching for a single pair",
            input_schema={
                "type": "object",
                "properties": {
                    "argument": {"type": "string", "description": "The argument text"},
                    "key_point": {"type": "string", "description": "The key point to evaluate"}
                },
                "required": ["argument", "key_point"]
            },
            execute=predict_kpa_tool
        ),
        Tool(
            name="predict_stance",
            description="Predict stance for a topic-argument pair",
            input_schema={
                "type": "object",
                "properties": {
                    "topic": {"type": "string", "description": "The debate topic"},
                    "argument": {"type": "string", "description": "The argument to classify"}
                },
                "required": ["topic", "argument"]
            },
            execute=predict_stance_tool
        ),
        Tool(
            name="batch_predict_stance",
            description="Predict stance for multiple topic-argument pairs",
            input_schema={
                "type": "object",
                "properties": {
                    "items": {
                        "type": "array",
                        "items": {
                            "type": "object",
                            "properties": {
                                "topic": {"type": "string"},
                                "argument": {"type": "string"}
                            },
                            "required": ["topic", "argument"]
                        },
                        "description": "List of topic-argument pairs"
                    }
                },
                "required": ["items"]
            },
            execute=batch_stance_tool
        ),
        Tool(
            name="generate_argument",
            description="Generate persuasive arguments based on prompt and context",
            input_schema={
                "type": "object",
                "properties": {
                    "prompt": {"type": "string", "description": "Main topic or question"},
                    "context": {"type": "string", "description": "Additional context"},
                    "stance": {
                        "type": "string", 
                        "enum": ["pro", "con", "neutral"],
                        "description": "Desired stance"
                    }
                },
                "required": ["prompt"]
            },
            execute=generate_argument_tool
        ),
        Tool(
            name="voice_chat",
            description="Chat with voice assistant capabilities",
            input_schema={
                "type": "object",
                "properties": {
                    "text": {"type": "string", "description": "Text input"},
                    "conversation_id": {"type": "string", "description": "Conversation ID for context"},
                    "tts": {"type": "boolean", "description": "Generate audio response"}
                },
                "required": ["text"]
            },
            execute=voice_chat_tool
        )
    ]