Add enhanced features: colored GPU tables, cloud costs, more examples
Browse filesFeatures added:
- Color-coded status indicators (🟢🟡🔴) for GPU fit
- Separate sections for Consumer GPUs, Apple Silicon, Cloud GPUs
- Expanded cloud GPU options with hourly/daily/monthly costs
- Best value cloud recommendation
- GPU Reference tab with all hardware specs
- 12 popular model examples (Llama, Mistral, Qwen, Gemma, Phi, DeepSeek)
- Quick comparison sets for model families
- Improved memory breakdown tables
- Quantization options with fit indicators
- Soft theme for better readability
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <[email protected]>
app.py
CHANGED
|
@@ -8,22 +8,39 @@ from functools import lru_cache
|
|
| 8 |
|
| 9 |
api = HfApi()
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
"RTX
|
| 14 |
-
"RTX
|
| 15 |
-
"RTX
|
| 16 |
-
"RTX
|
| 17 |
-
"
|
| 18 |
-
"
|
| 19 |
-
"
|
| 20 |
-
"RTX
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
"L4": (24, 0.70),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
"A100 40GB": (40, 3.00),
|
| 25 |
"A100 80GB": (80, 5.00),
|
| 26 |
"H100 80GB": (80, 8.00),
|
|
|
|
| 27 |
}
|
| 28 |
|
| 29 |
DTYPE_BYTES = {
|
|
@@ -42,6 +59,15 @@ FRAMEWORKS = {
|
|
| 42 |
"Ollama": 1.08,
|
| 43 |
}
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
def bytes_to_gb(b):
|
| 47 |
return b / (1024 ** 3)
|
|
@@ -120,79 +146,135 @@ def calculate(model_id, context, batch, mode, framework, num_gpus, lora_rank):
|
|
| 120 |
opt_gb = bytes_to_gb(params * 8)
|
| 121 |
act_gb = weights_gb * 2 * batch
|
| 122 |
total = weights_gb + grad_gb + opt_gb + act_gb
|
| 123 |
-
out.append("### Training Memory")
|
| 124 |
-
out.append("
|
| 125 |
-
out.append("
|
| 126 |
-
out.append("
|
| 127 |
-
out.append("
|
|
|
|
|
|
|
| 128 |
elif mode == "LoRA":
|
| 129 |
base = weights_gb
|
| 130 |
lora_params = int(params * lora_rank * 0.0001)
|
| 131 |
lora_gb = bytes_to_gb(lora_params * dtype_bytes)
|
| 132 |
act_gb = base * 0.3
|
| 133 |
total = base + lora_gb + act_gb
|
| 134 |
-
out.append("### LoRA Memory")
|
| 135 |
-
out.append("
|
| 136 |
-
out.append("
|
| 137 |
-
out.append("
|
|
|
|
|
|
|
| 138 |
elif mode == "QLoRA":
|
| 139 |
base = bytes_to_gb(params * 0.5)
|
| 140 |
lora_params = int(params * lora_rank * 0.0001)
|
| 141 |
lora_gb = bytes_to_gb(lora_params * dtype_bytes)
|
| 142 |
act_gb = base * 0.3
|
| 143 |
total = base + lora_gb + act_gb
|
| 144 |
-
out.append("### QLoRA Memory")
|
| 145 |
-
out.append("
|
| 146 |
-
out.append("
|
| 147 |
-
out.append("-
|
|
|
|
|
|
|
| 148 |
else:
|
| 149 |
overhead = FRAMEWORKS.get(framework, 1.15)
|
| 150 |
extra = (weights_gb + kv_gb) * (overhead - 1)
|
| 151 |
total = weights_gb + kv_gb + extra
|
| 152 |
-
out.append("### Inference Memory")
|
| 153 |
-
out.append("
|
| 154 |
-
out.append("
|
| 155 |
-
out.append("
|
|
|
|
|
|
|
| 156 |
|
| 157 |
if num_gpus > 1:
|
| 158 |
per_gpu = total / num_gpus * 1.05
|
| 159 |
out.append("")
|
| 160 |
-
out.append("**Multi-GPU (" + str(num_gpus) + "x):** " + str(round(per_gpu, 1)) + " GB
|
| 161 |
effective = per_gpu
|
| 162 |
else:
|
| 163 |
effective = total
|
| 164 |
|
| 165 |
out.append("")
|
| 166 |
-
out.append("## Total: " + str(round(total, 1)) + " GB")
|
| 167 |
|
|
|
|
| 168 |
out.append("")
|
| 169 |
-
out.append("###
|
| 170 |
-
out.append("| GPU | VRAM |
|
| 171 |
-
out.append("
|
| 172 |
-
for gpu,
|
| 173 |
-
fits = "Yes" if vram >= effective else "No"
|
| 174 |
hr = vram - effective
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
sign = "+" if hr >= 0 else ""
|
| 176 |
-
out.append("| " + gpu + " | " + str(vram) + "GB | " +
|
| 177 |
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
out.append("")
|
| 180 |
-
out.append("
|
| 181 |
-
out.append("| Method | Size |")
|
| 182 |
-
out.append("|--------|------|")
|
| 183 |
-
for name, mult in [("INT8", 1.0), ("4-bit", 0.5), ("3-bit", 0.375)]:
|
| 184 |
-
size = bytes_to_gb(params * mult) * 1.1
|
| 185 |
-
out.append("| " + name + " | " + str(round(size, 1)) + "GB |")
|
| 186 |
|
| 187 |
-
|
| 188 |
-
if
|
| 189 |
-
costs.sort(key=lambda x: x[1])
|
| 190 |
out.append("")
|
| 191 |
-
out.append("###
|
| 192 |
-
out.append("|
|
| 193 |
-
out.append("
|
| 194 |
-
for
|
| 195 |
-
|
|
|
|
|
|
|
| 196 |
|
| 197 |
return "\n".join(out)
|
| 198 |
except Exception as e:
|
|
@@ -210,17 +292,18 @@ def compare(models_text, context):
|
|
| 210 |
return "Need at least 2 models"
|
| 211 |
|
| 212 |
out = []
|
| 213 |
-
out.append("## Comparison")
|
| 214 |
-
out.append("
|
| 215 |
-
out.append("
|
|
|
|
| 216 |
|
| 217 |
-
for mid in models[:
|
| 218 |
try:
|
| 219 |
info = fetch_model_info(mid)
|
| 220 |
config = fetch_config(mid)
|
| 221 |
params, dtype = get_params(info)
|
| 222 |
if params == 0:
|
| 223 |
-
out.append("| " + mid + " | Error | - | - | - |")
|
| 224 |
continue
|
| 225 |
|
| 226 |
db = DTYPE_BYTES.get(dtype, 2)
|
|
@@ -234,10 +317,14 @@ def compare(models_text, context):
|
|
| 234 |
train = w * 4 + w * 2
|
| 235 |
qlora = bytes_to_gb(params * 0.5) * 1.5
|
| 236 |
|
| 237 |
-
|
| 238 |
-
|
|
|
|
| 239 |
except Exception:
|
| 240 |
-
out.append("| " + mid + " | Error | - | - | - |")
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
return "\n".join(out)
|
| 243 |
except Exception as e:
|
|
@@ -245,16 +332,16 @@ def compare(models_text, context):
|
|
| 245 |
|
| 246 |
|
| 247 |
# Build the interface
|
| 248 |
-
with gr.Blocks(title="VRAM Calculator") as demo:
|
| 249 |
gr.Markdown("# VRAM Calculator for LLMs")
|
| 250 |
-
gr.Markdown("Estimate VRAM requirements for HuggingFace models")
|
| 251 |
|
| 252 |
with gr.Tabs():
|
| 253 |
with gr.TabItem("Calculator"):
|
| 254 |
model_in = gr.Textbox(
|
| 255 |
label="Model ID",
|
| 256 |
placeholder="meta-llama/Llama-3.1-8B",
|
| 257 |
-
info="Enter a HuggingFace model ID"
|
| 258 |
)
|
| 259 |
|
| 260 |
mode_in = gr.Radio(
|
|
@@ -269,38 +356,42 @@ with gr.Blocks(title="VRAM Calculator") as demo:
|
|
| 269 |
maximum=131072,
|
| 270 |
value=4096,
|
| 271 |
step=512,
|
| 272 |
-
label="Context Length"
|
|
|
|
| 273 |
)
|
| 274 |
batch_in = gr.Slider(
|
| 275 |
minimum=1,
|
| 276 |
maximum=64,
|
| 277 |
value=1,
|
| 278 |
step=1,
|
| 279 |
-
label="Batch Size"
|
|
|
|
| 280 |
)
|
| 281 |
|
| 282 |
with gr.Accordion("Advanced Options", open=False):
|
| 283 |
framework_in = gr.Dropdown(
|
| 284 |
choices=list(FRAMEWORKS.keys()),
|
| 285 |
value="vLLM",
|
| 286 |
-
label="Framework"
|
| 287 |
)
|
| 288 |
gpus_in = gr.Slider(
|
| 289 |
minimum=1,
|
| 290 |
maximum=8,
|
| 291 |
value=1,
|
| 292 |
step=1,
|
| 293 |
-
label="Number of GPUs"
|
|
|
|
| 294 |
)
|
| 295 |
lora_in = gr.Slider(
|
| 296 |
minimum=4,
|
| 297 |
maximum=128,
|
| 298 |
value=16,
|
| 299 |
step=4,
|
| 300 |
-
label="LoRA Rank"
|
|
|
|
| 301 |
)
|
| 302 |
|
| 303 |
-
calc_btn = gr.Button("Calculate", variant="primary")
|
| 304 |
output = gr.Markdown()
|
| 305 |
|
| 306 |
calc_btn.click(
|
|
@@ -309,21 +400,32 @@ with gr.Blocks(title="VRAM Calculator") as demo:
|
|
| 309 |
outputs=output
|
| 310 |
)
|
| 311 |
|
|
|
|
| 312 |
gr.Examples(
|
| 313 |
examples=[
|
| 314 |
["meta-llama/Llama-3.1-8B"],
|
| 315 |
["meta-llama/Llama-3.1-70B"],
|
|
|
|
|
|
|
| 316 |
["mistralai/Mistral-7B-v0.1"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
],
|
| 318 |
inputs=[model_in],
|
| 319 |
-
label="
|
| 320 |
)
|
| 321 |
|
| 322 |
with gr.TabItem("Compare Models"):
|
|
|
|
| 323 |
cmp_in = gr.Textbox(
|
| 324 |
label="Models (one per line)",
|
| 325 |
-
lines=
|
| 326 |
-
placeholder="meta-llama/Llama-3.1-8B\nmistralai/Mistral-7B-v0.1"
|
| 327 |
)
|
| 328 |
cmp_ctx = gr.Slider(
|
| 329 |
minimum=512,
|
|
@@ -332,7 +434,7 @@ with gr.Blocks(title="VRAM Calculator") as demo:
|
|
| 332 |
step=512,
|
| 333 |
label="Context Length"
|
| 334 |
)
|
| 335 |
-
cmp_btn = gr.Button("Compare", variant="primary")
|
| 336 |
cmp_out = gr.Markdown()
|
| 337 |
|
| 338 |
cmp_btn.click(
|
|
@@ -341,8 +443,46 @@ with gr.Blocks(title="VRAM Calculator") as demo:
|
|
| 341 |
outputs=cmp_out
|
| 342 |
)
|
| 343 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
gr.Markdown("---")
|
| 345 |
-
gr.Markdown("*Estimates are approximate. Actual usage
|
| 346 |
|
| 347 |
if __name__ == "__main__":
|
| 348 |
demo.launch()
|
|
|
|
| 8 |
|
| 9 |
api = HfApi()
|
| 10 |
|
| 11 |
+
# Consumer GPUs (no hourly cost)
|
| 12 |
+
CONSUMER_GPUS = {
|
| 13 |
+
"RTX 3080": 10,
|
| 14 |
+
"RTX 3080 Ti": 12,
|
| 15 |
+
"RTX 3090": 24,
|
| 16 |
+
"RTX 3090 Ti": 24,
|
| 17 |
+
"RTX 4080": 16,
|
| 18 |
+
"RTX 4080 Super": 16,
|
| 19 |
+
"RTX 4090": 24,
|
| 20 |
+
"RTX 5090": 32,
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
# Apple Silicon (no hourly cost)
|
| 24 |
+
APPLE_GPUS = {
|
| 25 |
+
"M1 Max": 64,
|
| 26 |
+
"M2 Max": 96,
|
| 27 |
+
"M2 Ultra": 192,
|
| 28 |
+
"M3 Max": 128,
|
| 29 |
+
"M4 Max": 128,
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
# Cloud/Datacenter GPUs (with hourly costs from major providers)
|
| 33 |
+
CLOUD_GPUS = {
|
| 34 |
+
"T4": (16, 0.35),
|
| 35 |
"L4": (24, 0.70),
|
| 36 |
+
"A10G": (24, 1.00),
|
| 37 |
+
"RTX A5000": (24, 0.80),
|
| 38 |
+
"RTX A6000": (48, 1.50),
|
| 39 |
+
"L40S": (48, 1.20),
|
| 40 |
"A100 40GB": (40, 3.00),
|
| 41 |
"A100 80GB": (80, 5.00),
|
| 42 |
"H100 80GB": (80, 8.00),
|
| 43 |
+
"H100 NVL": (94, 10.00),
|
| 44 |
}
|
| 45 |
|
| 46 |
DTYPE_BYTES = {
|
|
|
|
| 59 |
"Ollama": 1.08,
|
| 60 |
}
|
| 61 |
|
| 62 |
+
CONTEXT_PRESETS = {
|
| 63 |
+
"2K (fast chat)": 2048,
|
| 64 |
+
"4K (standard)": 4096,
|
| 65 |
+
"8K (extended)": 8192,
|
| 66 |
+
"16K (long docs)": 16384,
|
| 67 |
+
"32K (very long)": 32768,
|
| 68 |
+
"128K (full context)": 131072,
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
|
| 72 |
def bytes_to_gb(b):
|
| 73 |
return b / (1024 ** 3)
|
|
|
|
| 146 |
opt_gb = bytes_to_gb(params * 8)
|
| 147 |
act_gb = weights_gb * 2 * batch
|
| 148 |
total = weights_gb + grad_gb + opt_gb + act_gb
|
| 149 |
+
out.append("### Training Memory Breakdown")
|
| 150 |
+
out.append("| Component | Size |")
|
| 151 |
+
out.append("|-----------|------|")
|
| 152 |
+
out.append("| Weights | " + str(round(weights_gb, 1)) + " GB |")
|
| 153 |
+
out.append("| Gradients | " + str(round(grad_gb, 1)) + " GB |")
|
| 154 |
+
out.append("| Optimizer (AdamW) | " + str(round(opt_gb, 1)) + " GB |")
|
| 155 |
+
out.append("| Activations | " + str(round(act_gb, 1)) + " GB |")
|
| 156 |
elif mode == "LoRA":
|
| 157 |
base = weights_gb
|
| 158 |
lora_params = int(params * lora_rank * 0.0001)
|
| 159 |
lora_gb = bytes_to_gb(lora_params * dtype_bytes)
|
| 160 |
act_gb = base * 0.3
|
| 161 |
total = base + lora_gb + act_gb
|
| 162 |
+
out.append("### LoRA Memory Breakdown")
|
| 163 |
+
out.append("| Component | Size |")
|
| 164 |
+
out.append("|-----------|------|")
|
| 165 |
+
out.append("| Base model (frozen) | " + str(round(base, 1)) + " GB |")
|
| 166 |
+
out.append("| LoRA adapters (rank " + str(lora_rank) + ") | " + str(round(lora_gb, 2)) + " GB |")
|
| 167 |
+
out.append("| Activations | " + str(round(act_gb, 1)) + " GB |")
|
| 168 |
elif mode == "QLoRA":
|
| 169 |
base = bytes_to_gb(params * 0.5)
|
| 170 |
lora_params = int(params * lora_rank * 0.0001)
|
| 171 |
lora_gb = bytes_to_gb(lora_params * dtype_bytes)
|
| 172 |
act_gb = base * 0.3
|
| 173 |
total = base + lora_gb + act_gb
|
| 174 |
+
out.append("### QLoRA Memory Breakdown")
|
| 175 |
+
out.append("| Component | Size |")
|
| 176 |
+
out.append("|-----------|------|")
|
| 177 |
+
out.append("| Base model (4-bit) | " + str(round(base, 1)) + " GB |")
|
| 178 |
+
out.append("| LoRA adapters (rank " + str(lora_rank) + ") | " + str(round(lora_gb, 2)) + " GB |")
|
| 179 |
+
out.append("| Activations | " + str(round(act_gb, 1)) + " GB |")
|
| 180 |
else:
|
| 181 |
overhead = FRAMEWORKS.get(framework, 1.15)
|
| 182 |
extra = (weights_gb + kv_gb) * (overhead - 1)
|
| 183 |
total = weights_gb + kv_gb + extra
|
| 184 |
+
out.append("### Inference Memory Breakdown")
|
| 185 |
+
out.append("| Component | Size |")
|
| 186 |
+
out.append("|-----------|------|")
|
| 187 |
+
out.append("| Model weights | " + str(round(weights_gb, 1)) + " GB |")
|
| 188 |
+
out.append("| KV Cache (" + str(context) + " ctx) | " + str(round(kv_gb, 1)) + " GB |")
|
| 189 |
+
out.append("| Framework overhead (" + framework + ") | " + str(round(extra, 1)) + " GB |")
|
| 190 |
|
| 191 |
if num_gpus > 1:
|
| 192 |
per_gpu = total / num_gpus * 1.05
|
| 193 |
out.append("")
|
| 194 |
+
out.append("**Multi-GPU (" + str(num_gpus) + "x):** " + str(round(per_gpu, 1)) + " GB per GPU (includes 5% communication overhead)")
|
| 195 |
effective = per_gpu
|
| 196 |
else:
|
| 197 |
effective = total
|
| 198 |
|
| 199 |
out.append("")
|
| 200 |
+
out.append("## Total Required: " + str(round(total, 1)) + " GB")
|
| 201 |
|
| 202 |
+
# Consumer GPUs section with colors
|
| 203 |
out.append("")
|
| 204 |
+
out.append("### Consumer GPUs")
|
| 205 |
+
out.append("| GPU | VRAM | Status | Headroom |")
|
| 206 |
+
out.append("|-----|------|--------|----------|")
|
| 207 |
+
for gpu, vram in CONSUMER_GPUS.items():
|
|
|
|
| 208 |
hr = vram - effective
|
| 209 |
+
if hr >= 2:
|
| 210 |
+
status = "🟢 Good fit"
|
| 211 |
+
elif hr >= 0:
|
| 212 |
+
status = "🟡 Tight fit"
|
| 213 |
+
else:
|
| 214 |
+
status = "🔴 Too small"
|
| 215 |
sign = "+" if hr >= 0 else ""
|
| 216 |
+
out.append("| " + gpu + " | " + str(vram) + "GB | " + status + " | " + sign + str(round(hr, 1)) + "GB |")
|
| 217 |
|
| 218 |
+
# Apple Silicon section
|
| 219 |
+
out.append("")
|
| 220 |
+
out.append("### Apple Silicon (Unified Memory)")
|
| 221 |
+
out.append("| Chip | Memory | Status | Headroom |")
|
| 222 |
+
out.append("|------|--------|--------|----------|")
|
| 223 |
+
for gpu, vram in APPLE_GPUS.items():
|
| 224 |
+
hr = vram - effective
|
| 225 |
+
if hr >= 10:
|
| 226 |
+
status = "🟢 Excellent"
|
| 227 |
+
elif hr >= 0:
|
| 228 |
+
status = "🟡 Usable"
|
| 229 |
+
else:
|
| 230 |
+
status = "🔴 Too small"
|
| 231 |
+
sign = "+" if hr >= 0 else ""
|
| 232 |
+
out.append("| " + gpu + " | " + str(vram) + "GB | " + status + " | " + sign + str(round(hr, 1)) + "GB |")
|
| 233 |
+
|
| 234 |
+
# Cloud GPUs section with costs
|
| 235 |
+
out.append("")
|
| 236 |
+
out.append("### Cloud GPU Options")
|
| 237 |
+
out.append("| GPU | VRAM | Status | $/hour | $/day (8hr) | $/month |")
|
| 238 |
+
out.append("|-----|------|--------|--------|-------------|---------|")
|
| 239 |
+
|
| 240 |
+
cloud_options = []
|
| 241 |
+
for gpu, (vram, cost) in CLOUD_GPUS.items():
|
| 242 |
+
hr = vram - effective
|
| 243 |
+
if hr >= 2:
|
| 244 |
+
status = "🟢 Good"
|
| 245 |
+
elif hr >= 0:
|
| 246 |
+
status = "🟡 Tight"
|
| 247 |
+
else:
|
| 248 |
+
status = "🔴 No"
|
| 249 |
+
daily = cost * 8
|
| 250 |
+
monthly = cost * 176 # 22 days * 8 hours
|
| 251 |
+
cloud_options.append((gpu, vram, hr, status, cost, daily, monthly))
|
| 252 |
+
|
| 253 |
+
# Sort by cost for those that fit
|
| 254 |
+
cloud_options.sort(key=lambda x: (x[2] < 0, x[4]))
|
| 255 |
+
|
| 256 |
+
for gpu, vram, hr, status, cost, daily, monthly in cloud_options:
|
| 257 |
+
sign = "+" if hr >= 0 else ""
|
| 258 |
+
out.append("| " + gpu + " | " + str(vram) + "GB | " + status + " | $" + str(round(cost, 2)) + " | $" + str(round(daily, 2)) + " | $" + str(int(monthly)) + " |")
|
| 259 |
+
|
| 260 |
+
# Best value recommendation
|
| 261 |
+
fitting_gpus = [(gpu, cost) for gpu, (vram, cost) in CLOUD_GPUS.items() if vram >= effective]
|
| 262 |
+
if fitting_gpus:
|
| 263 |
+
fitting_gpus.sort(key=lambda x: x[1])
|
| 264 |
+
best = fitting_gpus[0]
|
| 265 |
out.append("")
|
| 266 |
+
out.append("**Best value cloud option:** " + best[0] + " at $" + str(round(best[1], 2)) + "/hour")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
+
# Quantization suggestions if model is large
|
| 269 |
+
if effective > 24:
|
|
|
|
| 270 |
out.append("")
|
| 271 |
+
out.append("### Quantization Options (to fit consumer GPUs)")
|
| 272 |
+
out.append("| Method | Estimated Size | Fits 24GB |")
|
| 273 |
+
out.append("|--------|----------------|-----------|")
|
| 274 |
+
for name, mult in [("INT8", 1.0), ("4-bit (GPTQ/AWQ)", 0.5), ("3-bit", 0.375), ("2-bit (extreme)", 0.25)]:
|
| 275 |
+
size = bytes_to_gb(params * mult) * 1.1
|
| 276 |
+
fits = "🟢 Yes" if size <= 24 else "🔴 No"
|
| 277 |
+
out.append("| " + name + " | " + str(round(size, 1)) + "GB | " + fits + " |")
|
| 278 |
|
| 279 |
return "\n".join(out)
|
| 280 |
except Exception as e:
|
|
|
|
| 292 |
return "Need at least 2 models"
|
| 293 |
|
| 294 |
out = []
|
| 295 |
+
out.append("## Model Comparison")
|
| 296 |
+
out.append("")
|
| 297 |
+
out.append("| Model | Params | Inference | Training | QLoRA | Fits 24GB |")
|
| 298 |
+
out.append("|-------|--------|-----------|----------|-------|-----------|")
|
| 299 |
|
| 300 |
+
for mid in models[:8]:
|
| 301 |
try:
|
| 302 |
info = fetch_model_info(mid)
|
| 303 |
config = fetch_config(mid)
|
| 304 |
params, dtype = get_params(info)
|
| 305 |
if params == 0:
|
| 306 |
+
out.append("| " + mid + " | Error | - | - | - | - |")
|
| 307 |
continue
|
| 308 |
|
| 309 |
db = DTYPE_BYTES.get(dtype, 2)
|
|
|
|
| 317 |
train = w * 4 + w * 2
|
| 318 |
qlora = bytes_to_gb(params * 0.5) * 1.5
|
| 319 |
|
| 320 |
+
fits = "🟢 Yes" if inf <= 24 else "🔴 No"
|
| 321 |
+
name = mid.split("/")[-1][:25]
|
| 322 |
+
out.append("| " + name + " | " + str(round(params / 1e9, 1)) + "B | " + str(round(inf, 1)) + "GB | " + str(round(train, 1)) + "GB | " + str(round(qlora, 1)) + "GB | " + fits + " |")
|
| 323 |
except Exception:
|
| 324 |
+
out.append("| " + mid + " | Error | - | - | - | - |")
|
| 325 |
+
|
| 326 |
+
out.append("")
|
| 327 |
+
out.append("*Context length: " + str(context) + " tokens*")
|
| 328 |
|
| 329 |
return "\n".join(out)
|
| 330 |
except Exception as e:
|
|
|
|
| 332 |
|
| 333 |
|
| 334 |
# Build the interface
|
| 335 |
+
with gr.Blocks(title="VRAM Calculator", theme=gr.themes.Soft()) as demo:
|
| 336 |
gr.Markdown("# VRAM Calculator for LLMs")
|
| 337 |
+
gr.Markdown("Estimate VRAM requirements for HuggingFace models - inference, training, LoRA, and QLoRA")
|
| 338 |
|
| 339 |
with gr.Tabs():
|
| 340 |
with gr.TabItem("Calculator"):
|
| 341 |
model_in = gr.Textbox(
|
| 342 |
label="Model ID",
|
| 343 |
placeholder="meta-llama/Llama-3.1-8B",
|
| 344 |
+
info="Enter a HuggingFace model ID (e.g., organization/model-name)"
|
| 345 |
)
|
| 346 |
|
| 347 |
mode_in = gr.Radio(
|
|
|
|
| 356 |
maximum=131072,
|
| 357 |
value=4096,
|
| 358 |
step=512,
|
| 359 |
+
label="Context Length",
|
| 360 |
+
info="Max tokens for KV cache"
|
| 361 |
)
|
| 362 |
batch_in = gr.Slider(
|
| 363 |
minimum=1,
|
| 364 |
maximum=64,
|
| 365 |
value=1,
|
| 366 |
step=1,
|
| 367 |
+
label="Batch Size",
|
| 368 |
+
info="Concurrent sequences"
|
| 369 |
)
|
| 370 |
|
| 371 |
with gr.Accordion("Advanced Options", open=False):
|
| 372 |
framework_in = gr.Dropdown(
|
| 373 |
choices=list(FRAMEWORKS.keys()),
|
| 374 |
value="vLLM",
|
| 375 |
+
label="Inference Framework"
|
| 376 |
)
|
| 377 |
gpus_in = gr.Slider(
|
| 378 |
minimum=1,
|
| 379 |
maximum=8,
|
| 380 |
value=1,
|
| 381 |
step=1,
|
| 382 |
+
label="Number of GPUs",
|
| 383 |
+
info="For tensor parallelism"
|
| 384 |
)
|
| 385 |
lora_in = gr.Slider(
|
| 386 |
minimum=4,
|
| 387 |
maximum=128,
|
| 388 |
value=16,
|
| 389 |
step=4,
|
| 390 |
+
label="LoRA Rank",
|
| 391 |
+
info="Higher = more parameters"
|
| 392 |
)
|
| 393 |
|
| 394 |
+
calc_btn = gr.Button("Calculate VRAM", variant="primary")
|
| 395 |
output = gr.Markdown()
|
| 396 |
|
| 397 |
calc_btn.click(
|
|
|
|
| 400 |
outputs=output
|
| 401 |
)
|
| 402 |
|
| 403 |
+
gr.Markdown("### Popular Models")
|
| 404 |
gr.Examples(
|
| 405 |
examples=[
|
| 406 |
["meta-llama/Llama-3.1-8B"],
|
| 407 |
["meta-llama/Llama-3.1-70B"],
|
| 408 |
+
["meta-llama/Llama-3.2-1B"],
|
| 409 |
+
["meta-llama/Llama-3.2-3B"],
|
| 410 |
["mistralai/Mistral-7B-v0.1"],
|
| 411 |
+
["mistralai/Mixtral-8x7B-v0.1"],
|
| 412 |
+
["Qwen/Qwen2.5-7B"],
|
| 413 |
+
["Qwen/Qwen2.5-72B"],
|
| 414 |
+
["google/gemma-2-9b"],
|
| 415 |
+
["google/gemma-2-27b"],
|
| 416 |
+
["microsoft/phi-3-mini-4k-instruct"],
|
| 417 |
+
["deepseek-ai/DeepSeek-V2-Lite"],
|
| 418 |
],
|
| 419 |
inputs=[model_in],
|
| 420 |
+
label="Click to load"
|
| 421 |
)
|
| 422 |
|
| 423 |
with gr.TabItem("Compare Models"):
|
| 424 |
+
gr.Markdown("Compare VRAM requirements across multiple models")
|
| 425 |
cmp_in = gr.Textbox(
|
| 426 |
label="Models (one per line)",
|
| 427 |
+
lines=6,
|
| 428 |
+
placeholder="meta-llama/Llama-3.1-8B\nmeta-llama/Llama-3.1-70B\nmistralai/Mistral-7B-v0.1\nQwen/Qwen2.5-7B"
|
| 429 |
)
|
| 430 |
cmp_ctx = gr.Slider(
|
| 431 |
minimum=512,
|
|
|
|
| 434 |
step=512,
|
| 435 |
label="Context Length"
|
| 436 |
)
|
| 437 |
+
cmp_btn = gr.Button("Compare Models", variant="primary")
|
| 438 |
cmp_out = gr.Markdown()
|
| 439 |
|
| 440 |
cmp_btn.click(
|
|
|
|
| 443 |
outputs=cmp_out
|
| 444 |
)
|
| 445 |
|
| 446 |
+
gr.Markdown("### Quick Comparison Sets")
|
| 447 |
+
gr.Examples(
|
| 448 |
+
examples=[
|
| 449 |
+
["meta-llama/Llama-3.1-8B\nmeta-llama/Llama-3.1-70B\nmeta-llama/Llama-3.2-3B"],
|
| 450 |
+
["mistralai/Mistral-7B-v0.1\nmistralai/Mixtral-8x7B-v0.1"],
|
| 451 |
+
["Qwen/Qwen2.5-7B\nQwen/Qwen2.5-14B\nQwen/Qwen2.5-72B"],
|
| 452 |
+
["google/gemma-2-2b\ngoogle/gemma-2-9b\ngoogle/gemma-2-27b"],
|
| 453 |
+
],
|
| 454 |
+
inputs=[cmp_in],
|
| 455 |
+
label="Click to load comparison"
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
with gr.TabItem("GPU Reference"):
|
| 459 |
+
gr.Markdown("## GPU VRAM Reference")
|
| 460 |
+
gr.Markdown("### Consumer GPUs (NVIDIA GeForce)")
|
| 461 |
+
consumer_md = "| GPU | VRAM | Notes |\n|-----|------|-------|\n"
|
| 462 |
+
for gpu, vram in CONSUMER_GPUS.items():
|
| 463 |
+
consumer_md += "| " + gpu + " | " + str(vram) + "GB | Consumer |\n"
|
| 464 |
+
gr.Markdown(consumer_md)
|
| 465 |
+
|
| 466 |
+
gr.Markdown("### Apple Silicon")
|
| 467 |
+
apple_md = "| Chip | Unified Memory | Notes |\n|------|----------------|-------|\n"
|
| 468 |
+
for gpu, vram in APPLE_GPUS.items():
|
| 469 |
+
apple_md += "| " + gpu + " | " + str(vram) + "GB | Shared CPU/GPU |\n"
|
| 470 |
+
gr.Markdown(apple_md)
|
| 471 |
+
|
| 472 |
+
gr.Markdown("### Cloud/Datacenter GPUs")
|
| 473 |
+
cloud_md = "| GPU | VRAM | Typical $/hr | Best For |\n|-----|------|--------------|----------|\n"
|
| 474 |
+
for gpu, (vram, cost) in CLOUD_GPUS.items():
|
| 475 |
+
if vram <= 24:
|
| 476 |
+
use = "7B models, fine-tuning"
|
| 477 |
+
elif vram <= 48:
|
| 478 |
+
use = "13B-30B models"
|
| 479 |
+
else:
|
| 480 |
+
use = "70B+ models, training"
|
| 481 |
+
cloud_md += "| " + gpu + " | " + str(vram) + "GB | $" + str(round(cost, 2)) + " | " + use + " |\n"
|
| 482 |
+
gr.Markdown(cloud_md)
|
| 483 |
+
|
| 484 |
gr.Markdown("---")
|
| 485 |
+
gr.Markdown("*Estimates are approximate. Actual usage varies by implementation, batch size, and optimizations.*")
|
| 486 |
|
| 487 |
if __name__ == "__main__":
|
| 488 |
demo.launch()
|