Spaces:
Runtime error
Runtime error
| import os | |
| from typing import Tuple, List | |
| import pycocotools.mask as maskUtils | |
| import mmcv | |
| import numpy as np | |
| from mmdet.registry import DATASETS | |
| from mmdet.datasets.base_video_dataset import BaseVideoDataset | |
| from mmengine import fileio, join_path, scandir, track_parallel_progress, dump, list_from_file, print_log, exists, load | |
| from mmengine.dist import master_only, dist | |
| def mask2bbox(mask): | |
| bbox = np.zeros((4,), dtype=np.float32) | |
| x_any = np.any(mask, axis=0) | |
| y_any = np.any(mask, axis=1) | |
| x = np.where(x_any)[0] | |
| y = np.where(y_any)[0] | |
| if len(x) > 0 and len(y) > 0: | |
| bbox = np.array((x[0], y[0], x[-1], y[-1]), dtype=np.float32) | |
| return bbox | |
| def video_parser(params): | |
| seq_id, vid_folder, ann_folder = params | |
| images = [] | |
| assert os.path.basename(vid_folder) == os.path.basename(ann_folder) | |
| _tmp_img_id = -1 | |
| imgs_cur = sorted(list(map( | |
| lambda x: str(x), scandir(vid_folder, recursive=False, suffix='.jpg') | |
| ))) | |
| pans_cur = sorted(list(map( | |
| lambda x: str(x), scandir(ann_folder, recursive=False, suffix='.png') | |
| ))) | |
| for img_cur, pan_cur in zip(imgs_cur, pans_cur): | |
| assert img_cur.split('.')[0] == pan_cur.split('.')[0] | |
| _tmp_img_id += 1 | |
| img_id = _tmp_img_id | |
| item_full = os.path.join(vid_folder, img_cur) | |
| inst_map = os.path.join(ann_folder, pan_cur) | |
| img_dict = { | |
| 'img_path': item_full, | |
| 'ann_path': inst_map, | |
| } | |
| assert os.path.exists(img_dict['img_path']) | |
| assert os.path.exists(img_dict['ann_path']) | |
| instances = [] | |
| ann_map = mmcv.imread(img_dict['ann_path'], flag='unchanged').astype(np.uint32) | |
| ann_map = ann_map[..., 0] * 1000000 + ann_map[..., 1] * 1000 + ann_map[..., 2] | |
| img_dict['height'], img_dict['width'] = ann_map.shape | |
| for pan_seg_id in np.unique(ann_map): | |
| if pan_seg_id == 0: | |
| continue | |
| instance = {} | |
| mask = (ann_map == pan_seg_id).astype(np.uint8) | |
| instance['instance_id'] = pan_seg_id | |
| instance['bbox'] = mask2bbox(mask) | |
| instance['bbox_label'] = 0 | |
| instance['ignore_flag'] = 0 | |
| instance['mask'] = maskUtils.encode(np.asfortranarray(mask)) | |
| instance['mask']['counts'] = instance['mask']['counts'].decode() | |
| instances.append(instance) | |
| img_dict['instances'] = instances | |
| img_dict['video_id'] = seq_id | |
| img_dict['frame_id'] = img_id | |
| img_dict['img_id'] = seq_id * 10000 + img_id | |
| images.append(img_dict) | |
| return { | |
| 'video_id': seq_id, | |
| 'images': images, | |
| 'video_length': len(images) | |
| } | |
| class DAVIS(BaseVideoDataset): | |
| METAINFO = { | |
| 'classes': {}, | |
| 'palette': {}, | |
| } | |
| def __init__(self, dataset_version: str, *args, **kwargs): | |
| self.__class__.__name__ = f'DVAIS_{dataset_version}' | |
| super().__init__(*args, **kwargs) | |
| def build_cache(self, ann_json_path, video_folders, ann_folders) -> None: | |
| vid_ids = range(len(video_folders)) | |
| data_list = track_parallel_progress( | |
| video_parser, | |
| tasks=list(zip(vid_ids, video_folders, ann_folders)), | |
| nproc=20, | |
| keep_order=False, | |
| ) | |
| data_list = sorted(data_list, key=lambda x: x['video_id']) | |
| dump(data_list, ann_json_path) | |
| def load_data_list(self) -> List[dict]: | |
| """Load annotations from an annotation file named as ``self.ann_file``. | |
| Returns: | |
| tuple(list[dict], list): A list of annotation and a list of | |
| valid data indices. | |
| """ | |
| with fileio.get_local_path(self.ann_file) as local_path: | |
| video_folders = list_from_file(local_path, prefix=self.data_prefix['img']) | |
| ann_folders = list_from_file(local_path, prefix=self.data_prefix['ann']) | |
| assert len(video_folders) == len(ann_folders) | |
| print_log(f"#videos : {len(video_folders)} ", logger='current') | |
| split = os.path.basename(self.ann_file).split('.')[0] | |
| ann_json_path = f"{split}_annotations.json" | |
| ann_json_path = join_path(self.data_root, ann_json_path) | |
| if not exists(ann_json_path): | |
| self.build_cache(ann_json_path, video_folders, ann_folders) | |
| dist.barrier() | |
| raw_data_list = load(ann_json_path) | |
| data_list = [] | |
| for raw_data_info in raw_data_list: | |
| data_info = self.parse_data_info(raw_data_info) | |
| data_list.append(data_info) | |
| vid_len_list = [itm['video_length'] for itm in data_list] | |
| max_vid_len = max(vid_len_list) | |
| min_vid_len = min(vid_len_list) | |
| print_log( | |
| f"Max video len : {max_vid_len}; " | |
| f"Min video len : {min_vid_len}." | |
| , | |
| logger='current', | |
| ) | |
| return data_list | |
| def parse_data_info(self, raw_data_info: dict) -> dict: | |
| data_info = { | |
| 'video_id': raw_data_info['video_id'], | |
| 'video_length': raw_data_info['video_length'] | |
| } | |
| images = [] | |
| for raw_img_data_info in raw_data_info['images']: | |
| img_data_info = { | |
| 'img_path': raw_img_data_info['img_path'], | |
| 'height': raw_img_data_info['height'], | |
| 'width': raw_img_data_info['width'], | |
| 'video_id': raw_img_data_info['video_id'], | |
| 'frame_id': raw_img_data_info['frame_id'], | |
| 'img_id': raw_img_data_info['img_id'] | |
| } | |
| instances = [] | |
| segments_info = [] | |
| for ann in raw_img_data_info['instances']: | |
| instance = {} | |
| category_id = ann['bbox_label'] | |
| bbox = ann['bbox'] | |
| is_thing = 1 | |
| if is_thing: | |
| instance['bbox'] = bbox | |
| instance['bbox_label'] = category_id | |
| instance['ignore_flag'] = ann['ignore_flag'] | |
| instance['instance_id'] = ann['instance_id'] | |
| segment_info = { | |
| 'mask': ann['mask'], | |
| 'category': category_id, | |
| 'is_thing': is_thing | |
| } | |
| segments_info.append(segment_info) | |
| if len(instance) > 0 and is_thing: | |
| instances.append(instance) | |
| img_data_info['instances'] = instances | |
| img_data_info['segments_info'] = segments_info | |
| images.append(img_data_info) | |
| data_info['images'] = images | |
| return data_info | |
| def filter_data(self) -> List[dict]: | |
| """Filter image annotations according to filter_cfg. | |
| Returns: | |
| list[int]: Filtered results. | |
| """ | |
| if self.test_mode: | |
| return self.data_list | |
| num_imgs_before_filter = sum([len(info['images']) for info in self.data_list]) | |
| num_imgs_after_filter = num_imgs_before_filter | |
| new_data_list = self.data_list | |
| print_log( | |
| 'The number of samples before and after filtering: ' | |
| f'{num_imgs_before_filter} / {num_imgs_after_filter}', 'current') | |
| return new_data_list | |