bskrishna2006
commited on
Commit
·
dfbb2da
0
Parent(s):
Initial backend deployment
Browse files- .gitignore +28 -0
- DEPLOY.md +160 -0
- Dockerfile +49 -0
- README.md +43 -0
- app.py +459 -0
- config.py +169 -0
- requirements.txt +48 -0
- services/__init__.py +1 -0
- services/speech_to_text.py +303 -0
- services/summarizer.py +141 -0
- services/transcript.py +241 -0
- services/translation.py +330 -0
.gitignore
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
env/
|
| 8 |
+
venv/
|
| 9 |
+
.venv/
|
| 10 |
+
|
| 11 |
+
# Environment
|
| 12 |
+
.env
|
| 13 |
+
.env.local
|
| 14 |
+
|
| 15 |
+
# IDE
|
| 16 |
+
.vscode/
|
| 17 |
+
.idea/
|
| 18 |
+
*.swp
|
| 19 |
+
|
| 20 |
+
# Logs
|
| 21 |
+
*.log
|
| 22 |
+
|
| 23 |
+
# Temp files
|
| 24 |
+
temp/
|
| 25 |
+
*.tmp
|
| 26 |
+
|
| 27 |
+
# Models cache (will be in container)
|
| 28 |
+
.cache/
|
DEPLOY.md
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🚀 Deploying to Hugging Face Spaces
|
| 2 |
+
|
| 3 |
+
This guide will help you deploy the YouTube Summarizer API to Hugging Face Spaces for FREE cloud hosting.
|
| 4 |
+
|
| 5 |
+
## Prerequisites
|
| 6 |
+
|
| 7 |
+
1. A [Hugging Face account](https://huggingface.co/join)
|
| 8 |
+
2. Git installed on your system
|
| 9 |
+
3. Your Groq API key (from https://console.groq.com)
|
| 10 |
+
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
## Step 1: Create a Hugging Face Space
|
| 14 |
+
|
| 15 |
+
1. Go to [huggingface.co/new-space](https://huggingface.co/new-space)
|
| 16 |
+
|
| 17 |
+
2. Fill in the form:
|
| 18 |
+
- **Owner**: Select your username
|
| 19 |
+
- **Space name**: `youtube-summarizer-api`
|
| 20 |
+
- **License**: MIT
|
| 21 |
+
- **SDK**: Select **Docker**
|
| 22 |
+
- **Hardware**: CPU basic (Free)
|
| 23 |
+
- Leave other options as default
|
| 24 |
+
|
| 25 |
+
3. Click **"Create Space"**
|
| 26 |
+
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
## Step 2: Clone and Push
|
| 30 |
+
|
| 31 |
+
Open PowerShell/Terminal and run:
|
| 32 |
+
|
| 33 |
+
```powershell
|
| 34 |
+
# Navigate to the deploy folder
|
| 35 |
+
cd "c:\Users\Krishna\Desktop\Updated Yt summarizer\backend\deploy"
|
| 36 |
+
|
| 37 |
+
# Initialize git repository
|
| 38 |
+
git init
|
| 39 |
+
|
| 40 |
+
# Add Hugging Face as remote (replace YOUR_USERNAME with your HF username)
|
| 41 |
+
git remote add origin https://huggingface.co/spaces/YOUR_USERNAME/youtube-summarizer-api
|
| 42 |
+
|
| 43 |
+
# Add all files
|
| 44 |
+
git add .
|
| 45 |
+
|
| 46 |
+
# Commit
|
| 47 |
+
git commit -m "Initial deployment"
|
| 48 |
+
|
| 49 |
+
# Push to Hugging Face (you'll be prompted for credentials)
|
| 50 |
+
git push -u origin main
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
**For authentication**, you'll need to use:
|
| 54 |
+
- Username: Your Hugging Face username
|
| 55 |
+
- Password: Your Hugging Face Access Token (create one at Settings → Access Tokens)
|
| 56 |
+
|
| 57 |
+
---
|
| 58 |
+
|
| 59 |
+
## Step 3: Add Your Groq API Key
|
| 60 |
+
|
| 61 |
+
1. Go to your Space: `https://huggingface.co/spaces/YOUR_USERNAME/youtube-summarizer-api`
|
| 62 |
+
|
| 63 |
+
2. Click **Settings** (gear icon)
|
| 64 |
+
|
| 65 |
+
3. Scroll to **Variables and secrets**
|
| 66 |
+
|
| 67 |
+
4. Click **"New secret"** and add:
|
| 68 |
+
- **Name**: `GROQ_API_KEY`
|
| 69 |
+
- **Value**: Your Groq API key
|
| 70 |
+
|
| 71 |
+
5. Click **Save**
|
| 72 |
+
|
| 73 |
+
---
|
| 74 |
+
|
| 75 |
+
## Step 4: Wait for Build
|
| 76 |
+
|
| 77 |
+
The first build takes **10-15 minutes** because it:
|
| 78 |
+
1. Builds the Docker image
|
| 79 |
+
2. Installs all dependencies
|
| 80 |
+
3. Sets up the environment
|
| 81 |
+
|
| 82 |
+
You can watch the build progress in the "Logs" tab of your Space.
|
| 83 |
+
|
| 84 |
+
---
|
| 85 |
+
|
| 86 |
+
## Step 5: Test Your API
|
| 87 |
+
|
| 88 |
+
Once the status shows **"Running"**, your API is live!
|
| 89 |
+
|
| 90 |
+
### Test health check:
|
| 91 |
+
```bash
|
| 92 |
+
curl https://YOUR_USERNAME-youtube-summarizer-api.hf.space/api/health
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
### Test full pipeline:
|
| 96 |
+
```bash
|
| 97 |
+
curl -X POST https://YOUR_USERNAME-youtube-summarizer-api.hf.space/api/process \
|
| 98 |
+
-H "Content-Type: application/json" \
|
| 99 |
+
-d '{"url": "https://www.youtube.com/watch?v=jNQXAC9IVRw", "summary_type": "general"}'
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
---
|
| 103 |
+
|
| 104 |
+
## Step 6: Update Your Frontend
|
| 105 |
+
|
| 106 |
+
Update your frontend `.env` file:
|
| 107 |
+
|
| 108 |
+
```env
|
| 109 |
+
VITE_API_URL=https://YOUR_USERNAME-youtube-summarizer-api.hf.space
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
Then restart your frontend dev server.
|
| 113 |
+
|
| 114 |
+
---
|
| 115 |
+
|
| 116 |
+
## Troubleshooting
|
| 117 |
+
|
| 118 |
+
### Build Failed?
|
| 119 |
+
- Check the "Logs" tab for error messages
|
| 120 |
+
- Make sure all files are properly committed
|
| 121 |
+
|
| 122 |
+
### API Not Responding?
|
| 123 |
+
- The Space may be sleeping (wakes up on first request, takes ~30s)
|
| 124 |
+
- Check if GROQ_API_KEY secret is set
|
| 125 |
+
|
| 126 |
+
### Out of Memory?
|
| 127 |
+
- The free tier has 16GB RAM, which should be enough
|
| 128 |
+
- Consider upgrading to paid tier if needed
|
| 129 |
+
|
| 130 |
+
---
|
| 131 |
+
|
| 132 |
+
## API Endpoints Summary
|
| 133 |
+
|
| 134 |
+
| Endpoint | Method | Description |
|
| 135 |
+
|----------|--------|-------------|
|
| 136 |
+
| `/` | GET | Health check |
|
| 137 |
+
| `/api/health` | GET | Detailed status |
|
| 138 |
+
| `/api/languages` | GET | Supported languages |
|
| 139 |
+
| `/api/transcript` | POST | Extract transcript |
|
| 140 |
+
| `/api/translate` | POST | Translate text |
|
| 141 |
+
| `/api/summarize` | POST | Generate summary |
|
| 142 |
+
| `/api/process` | POST | Full pipeline |
|
| 143 |
+
|
| 144 |
+
---
|
| 145 |
+
|
| 146 |
+
## Cost
|
| 147 |
+
|
| 148 |
+
| Tier | Cost | RAM | GPU |
|
| 149 |
+
|------|------|-----|-----|
|
| 150 |
+
| **Free** | $0 | 16GB | CPU only |
|
| 151 |
+
| Upgraded | $0.60/hr | 16GB | GPU |
|
| 152 |
+
|
| 153 |
+
The free tier is sufficient for this application!
|
| 154 |
+
|
| 155 |
+
---
|
| 156 |
+
|
| 157 |
+
## Need Help?
|
| 158 |
+
|
| 159 |
+
- Hugging Face Docs: https://huggingface.co/docs/hub/spaces
|
| 160 |
+
- Docker Spaces: https://huggingface.co/docs/hub/spaces-sdks-docker
|
Dockerfile
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use Python 3.10 slim image for smaller size
|
| 2 |
+
FROM python:3.10-slim
|
| 3 |
+
|
| 4 |
+
# Set environment variables
|
| 5 |
+
ENV PYTHONDONTWRITEBYTECODE=1
|
| 6 |
+
ENV PYTHONUNBUFFERED=1
|
| 7 |
+
ENV TRANSFORMERS_CACHE=/app/.cache
|
| 8 |
+
ENV HF_HOME=/app/.cache
|
| 9 |
+
|
| 10 |
+
# Install system dependencies
|
| 11 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 12 |
+
ffmpeg \
|
| 13 |
+
git \
|
| 14 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 15 |
+
|
| 16 |
+
# Create non-root user for security
|
| 17 |
+
RUN useradd -m -u 1000 appuser
|
| 18 |
+
|
| 19 |
+
# Set working directory
|
| 20 |
+
WORKDIR /app
|
| 21 |
+
|
| 22 |
+
# Copy requirements first (for Docker layer caching)
|
| 23 |
+
COPY requirements.txt .
|
| 24 |
+
|
| 25 |
+
# Install Python dependencies
|
| 26 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
| 27 |
+
pip install --no-cache-dir -r requirements.txt
|
| 28 |
+
|
| 29 |
+
# Copy application code
|
| 30 |
+
COPY . .
|
| 31 |
+
|
| 32 |
+
# Create cache directory with proper permissions
|
| 33 |
+
RUN mkdir -p /app/.cache && chown -R appuser:appuser /app
|
| 34 |
+
|
| 35 |
+
# Switch to non-root user
|
| 36 |
+
USER appuser
|
| 37 |
+
|
| 38 |
+
# Expose port (Hugging Face Spaces uses 7860)
|
| 39 |
+
EXPOSE 7860
|
| 40 |
+
|
| 41 |
+
# Health check
|
| 42 |
+
HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
|
| 43 |
+
CMD python -c "import requests; requests.get('http://localhost:7860/api/health')" || exit 1
|
| 44 |
+
|
| 45 |
+
# Run with gunicorn for production
|
| 46 |
+
# - timeout 600s for long model loading times
|
| 47 |
+
# - workers 1 to save memory (models are heavy)
|
| 48 |
+
# - threads 4 for concurrent requests
|
| 49 |
+
CMD ["gunicorn", "--bind", "0.0.0.0:7860", "--timeout", "600", "--workers", "1", "--threads", "4", "app:app"]
|
README.md
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: YouTube Summarizer API
|
| 3 |
+
emoji: 🎬
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: docker
|
| 7 |
+
app_port: 7860
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# YouTube Video Summarizer API
|
| 11 |
+
|
| 12 |
+
A multilingual Flask API for summarizing YouTube videos using AI.
|
| 13 |
+
|
| 14 |
+
## Features
|
| 15 |
+
- 🎤 **Speech-to-Text**: Whisper for videos without subtitles
|
| 16 |
+
- 🌐 **11 Languages**: English + 10 Indian languages
|
| 17 |
+
- 🔄 **Translation**: NLLB-200 for multilingual support
|
| 18 |
+
- 🤖 **AI Summarization**: Groq LLaMA 3.1
|
| 19 |
+
|
| 20 |
+
## API Endpoints
|
| 21 |
+
|
| 22 |
+
| Method | Endpoint | Description |
|
| 23 |
+
|--------|----------|-------------|
|
| 24 |
+
| GET | `/` | Health check |
|
| 25 |
+
| GET | `/api/health` | API status |
|
| 26 |
+
| GET | `/api/languages` | Supported languages |
|
| 27 |
+
| POST | `/api/transcript` | Extract transcript |
|
| 28 |
+
| POST | `/api/translate` | Translate text |
|
| 29 |
+
| POST | `/api/summarize` | Generate summary |
|
| 30 |
+
| POST | `/api/process` | Full pipeline |
|
| 31 |
+
|
| 32 |
+
## Usage
|
| 33 |
+
|
| 34 |
+
```bash
|
| 35 |
+
curl -X POST https://YOUR-SPACE.hf.space/api/process \
|
| 36 |
+
-H "Content-Type: application/json" \
|
| 37 |
+
-d '{"url": "https://youtube.com/watch?v=VIDEO_ID", "summary_type": "bullet_points"}'
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
## Models Used
|
| 41 |
+
- **Whisper**: openai/whisper-small (~500MB)
|
| 42 |
+
- **NLLB-200**: facebook/nllb-200-distilled-600M (~2.4GB)
|
| 43 |
+
- **Summarization**: Groq API (LLaMA 3.1)
|
app.py
ADDED
|
@@ -0,0 +1,459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
YouTube Video Summarizer API - Hugging Face Spaces Edition
|
| 3 |
+
|
| 4 |
+
Flask backend deployed on Hugging Face Spaces.
|
| 5 |
+
Provides multilingual YouTube video summarization using:
|
| 6 |
+
- Whisper (speech-to-text)
|
| 7 |
+
- NLLB-200 (translation)
|
| 8 |
+
- Groq API (summarization)
|
| 9 |
+
|
| 10 |
+
All ML models are FREE and run locally on HF Spaces infrastructure.
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
from flask import Flask, request, jsonify
|
| 14 |
+
from flask_cors import CORS
|
| 15 |
+
from dotenv import load_dotenv
|
| 16 |
+
import os
|
| 17 |
+
import logging
|
| 18 |
+
|
| 19 |
+
from services.transcript import TranscriptService
|
| 20 |
+
from services.summarizer import SummarizerService
|
| 21 |
+
from config import (
|
| 22 |
+
SUPPORTED_LANGUAGES,
|
| 23 |
+
get_language_name,
|
| 24 |
+
is_english,
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# Load environment variables
|
| 28 |
+
load_dotenv()
|
| 29 |
+
|
| 30 |
+
# Configure logging
|
| 31 |
+
logging.basicConfig(level=logging.INFO)
|
| 32 |
+
logger = logging.getLogger(__name__)
|
| 33 |
+
|
| 34 |
+
app = Flask(__name__)
|
| 35 |
+
|
| 36 |
+
# Enable CORS for all origins (allow frontend from any domain)
|
| 37 |
+
CORS(app, resources={
|
| 38 |
+
r"/*": {
|
| 39 |
+
"origins": "*",
|
| 40 |
+
"methods": ["GET", "POST", "OPTIONS"],
|
| 41 |
+
"allow_headers": ["Content-Type", "Authorization"]
|
| 42 |
+
}
|
| 43 |
+
})
|
| 44 |
+
|
| 45 |
+
# Initialize services (lazy-loaded for heavy models)
|
| 46 |
+
transcript_service = TranscriptService()
|
| 47 |
+
summarizer_service = SummarizerService()
|
| 48 |
+
|
| 49 |
+
# Translation service is lazy-loaded to avoid loading 2.4GB model on startup
|
| 50 |
+
_translation_service = None
|
| 51 |
+
|
| 52 |
+
def get_translation_service():
|
| 53 |
+
"""Lazy-load the translation service."""
|
| 54 |
+
global _translation_service
|
| 55 |
+
if _translation_service is None:
|
| 56 |
+
from services.translation import TranslationService
|
| 57 |
+
_translation_service = TranslationService()
|
| 58 |
+
return _translation_service
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# =============================================================================
|
| 62 |
+
# ROOT & HEALTH ENDPOINTS
|
| 63 |
+
# =============================================================================
|
| 64 |
+
|
| 65 |
+
@app.route('/', methods=['GET'])
|
| 66 |
+
def root():
|
| 67 |
+
"""Root endpoint - serves as health check for HF Spaces"""
|
| 68 |
+
return jsonify({
|
| 69 |
+
'status': 'healthy',
|
| 70 |
+
'service': 'YouTube Summarizer API',
|
| 71 |
+
'version': '2.0.0',
|
| 72 |
+
'docs': '/api/health for detailed status'
|
| 73 |
+
}), 200
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
@app.route('/api/health', methods=['GET'])
|
| 77 |
+
def health_check():
|
| 78 |
+
"""Detailed health check endpoint"""
|
| 79 |
+
return jsonify({
|
| 80 |
+
'status': 'healthy',
|
| 81 |
+
'message': 'YouTube Summarizer API is running on Hugging Face Spaces',
|
| 82 |
+
'version': '2.0.0',
|
| 83 |
+
'features': ['multilingual', 'whisper', 'translation'],
|
| 84 |
+
'models': {
|
| 85 |
+
'whisper': 'openai/whisper-small',
|
| 86 |
+
'translation': 'facebook/nllb-200-distilled-600M',
|
| 87 |
+
'summarization': 'groq/llama-3.1-8b-instant'
|
| 88 |
+
}
|
| 89 |
+
}), 200
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
@app.route('/api/languages', methods=['GET'])
|
| 93 |
+
def get_languages():
|
| 94 |
+
"""Get list of supported languages"""
|
| 95 |
+
return jsonify({
|
| 96 |
+
'success': True,
|
| 97 |
+
'languages': SUPPORTED_LANGUAGES
|
| 98 |
+
}), 200
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
@app.route('/api/warmup', methods=['POST'])
|
| 102 |
+
def warmup_models():
|
| 103 |
+
"""
|
| 104 |
+
Pre-load ML models to avoid delay on first request.
|
| 105 |
+
This can take 2-5 minutes on first run (downloading models).
|
| 106 |
+
"""
|
| 107 |
+
try:
|
| 108 |
+
results = {}
|
| 109 |
+
data = request.get_json() or {}
|
| 110 |
+
|
| 111 |
+
if data.get('translation', False):
|
| 112 |
+
logger.info("Warming up translation model...")
|
| 113 |
+
translation_service = get_translation_service()
|
| 114 |
+
translation_service.warmup()
|
| 115 |
+
results['translation'] = 'loaded'
|
| 116 |
+
|
| 117 |
+
if data.get('whisper', False):
|
| 118 |
+
logger.info("Warming up Whisper model...")
|
| 119 |
+
from services.speech_to_text import SpeechToTextService
|
| 120 |
+
stt = SpeechToTextService()
|
| 121 |
+
stt.warmup()
|
| 122 |
+
results['whisper'] = 'loaded'
|
| 123 |
+
|
| 124 |
+
return jsonify({
|
| 125 |
+
'success': True,
|
| 126 |
+
'message': 'Models warmed up successfully',
|
| 127 |
+
'models': results
|
| 128 |
+
}), 200
|
| 129 |
+
|
| 130 |
+
except Exception as e:
|
| 131 |
+
logger.error(f"Warmup failed: {e}")
|
| 132 |
+
return jsonify({
|
| 133 |
+
'error': 'Warmup failed',
|
| 134 |
+
'message': str(e)
|
| 135 |
+
}), 500
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
# =============================================================================
|
| 139 |
+
# TRANSCRIPT ENDPOINTS
|
| 140 |
+
# =============================================================================
|
| 141 |
+
|
| 142 |
+
@app.route('/api/transcript', methods=['POST'])
|
| 143 |
+
def get_transcript():
|
| 144 |
+
"""
|
| 145 |
+
Extract transcript from YouTube video (multilingual).
|
| 146 |
+
|
| 147 |
+
Request: { "url": "youtube_url", "use_whisper": true }
|
| 148 |
+
Response: { "success": true, "transcript": "...", "language": "tam", ... }
|
| 149 |
+
"""
|
| 150 |
+
try:
|
| 151 |
+
data = request.get_json()
|
| 152 |
+
|
| 153 |
+
if not data or 'url' not in data:
|
| 154 |
+
return jsonify({
|
| 155 |
+
'error': 'Missing YouTube URL',
|
| 156 |
+
'message': 'Please provide a valid YouTube URL'
|
| 157 |
+
}), 400
|
| 158 |
+
|
| 159 |
+
url = data['url']
|
| 160 |
+
use_whisper = data.get('use_whisper', True)
|
| 161 |
+
|
| 162 |
+
video_id = transcript_service.extract_video_id(url)
|
| 163 |
+
result = transcript_service.get_video_transcript(url, use_whisper_fallback=use_whisper)
|
| 164 |
+
|
| 165 |
+
return jsonify({
|
| 166 |
+
'success': True,
|
| 167 |
+
'video_id': video_id,
|
| 168 |
+
'transcript': result['transcript'],
|
| 169 |
+
'language': result['language'],
|
| 170 |
+
'language_name': get_language_name(result['language']),
|
| 171 |
+
'source': result['source'],
|
| 172 |
+
'word_count': result['word_count']
|
| 173 |
+
}), 200
|
| 174 |
+
|
| 175 |
+
except ValueError as e:
|
| 176 |
+
return jsonify({'error': 'Invalid URL', 'message': str(e)}), 400
|
| 177 |
+
except Exception as e:
|
| 178 |
+
logger.error(f"Transcript extraction failed: {e}")
|
| 179 |
+
return jsonify({'error': 'Transcript extraction failed', 'message': str(e)}), 500
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
# =============================================================================
|
| 183 |
+
# TRANSLATION ENDPOINTS
|
| 184 |
+
# =============================================================================
|
| 185 |
+
|
| 186 |
+
@app.route('/api/translate', methods=['POST'])
|
| 187 |
+
def translate_text():
|
| 188 |
+
"""
|
| 189 |
+
Translate text between languages.
|
| 190 |
+
|
| 191 |
+
Request: { "text": "Hello", "source_lang": "eng", "target_lang": "hin" }
|
| 192 |
+
Response: { "success": true, "translated_text": "नमस्ते", ... }
|
| 193 |
+
"""
|
| 194 |
+
try:
|
| 195 |
+
data = request.get_json()
|
| 196 |
+
|
| 197 |
+
if not data or 'text' not in data:
|
| 198 |
+
return jsonify({
|
| 199 |
+
'error': 'Missing text',
|
| 200 |
+
'message': 'Please provide text to translate'
|
| 201 |
+
}), 400
|
| 202 |
+
|
| 203 |
+
text = data['text']
|
| 204 |
+
source_lang = data.get('source_lang', 'eng')
|
| 205 |
+
target_lang = data.get('target_lang', 'hin')
|
| 206 |
+
|
| 207 |
+
translation_service = get_translation_service()
|
| 208 |
+
translated = translation_service.translate(text, source_lang, target_lang)
|
| 209 |
+
|
| 210 |
+
return jsonify({
|
| 211 |
+
'success': True,
|
| 212 |
+
'translated_text': translated,
|
| 213 |
+
'source_lang': source_lang,
|
| 214 |
+
'source_lang_name': get_language_name(source_lang),
|
| 215 |
+
'target_lang': target_lang,
|
| 216 |
+
'target_lang_name': get_language_name(target_lang)
|
| 217 |
+
}), 200
|
| 218 |
+
|
| 219 |
+
except ValueError as e:
|
| 220 |
+
return jsonify({'error': 'Invalid language', 'message': str(e)}), 400
|
| 221 |
+
except Exception as e:
|
| 222 |
+
logger.error(f"Translation failed: {e}")
|
| 223 |
+
return jsonify({'error': 'Translation failed', 'message': str(e)}), 500
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
@app.route('/api/detect-language', methods=['POST'])
|
| 227 |
+
def detect_language():
|
| 228 |
+
"""Detect the language of given text."""
|
| 229 |
+
try:
|
| 230 |
+
data = request.get_json()
|
| 231 |
+
|
| 232 |
+
if not data or 'text' not in data:
|
| 233 |
+
return jsonify({
|
| 234 |
+
'error': 'Missing text',
|
| 235 |
+
'message': 'Please provide text for language detection'
|
| 236 |
+
}), 400
|
| 237 |
+
|
| 238 |
+
translation_service = get_translation_service()
|
| 239 |
+
result = translation_service.detect_language(data['text'])
|
| 240 |
+
|
| 241 |
+
return jsonify({
|
| 242 |
+
'success': True,
|
| 243 |
+
'language': result['code'],
|
| 244 |
+
'language_name': result['name']
|
| 245 |
+
}), 200
|
| 246 |
+
|
| 247 |
+
except Exception as e:
|
| 248 |
+
logger.error(f"Language detection failed: {e}")
|
| 249 |
+
return jsonify({'error': 'Language detection failed', 'message': str(e)}), 500
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
# =============================================================================
|
| 253 |
+
# SUMMARIZATION ENDPOINTS
|
| 254 |
+
# =============================================================================
|
| 255 |
+
|
| 256 |
+
@app.route('/api/summarize', methods=['POST'])
|
| 257 |
+
def summarize():
|
| 258 |
+
"""
|
| 259 |
+
Generate summary from transcript.
|
| 260 |
+
|
| 261 |
+
Request: { "transcript": "...", "summary_type": "general" }
|
| 262 |
+
Response: { "success": true, "summary": "...", "statistics": {...} }
|
| 263 |
+
"""
|
| 264 |
+
try:
|
| 265 |
+
data = request.get_json()
|
| 266 |
+
|
| 267 |
+
if not data or 'transcript' not in data:
|
| 268 |
+
return jsonify({
|
| 269 |
+
'error': 'Missing transcript',
|
| 270 |
+
'message': 'Please provide transcript text'
|
| 271 |
+
}), 400
|
| 272 |
+
|
| 273 |
+
transcript = data['transcript']
|
| 274 |
+
summary_type = data.get('summary_type', 'general')
|
| 275 |
+
chunk_size = data.get('chunk_size', 2500)
|
| 276 |
+
max_tokens = data.get('max_tokens', 500)
|
| 277 |
+
|
| 278 |
+
valid_types = ['general', 'detailed', 'bullet_points', 'key_takeaways']
|
| 279 |
+
if summary_type not in valid_types:
|
| 280 |
+
return jsonify({
|
| 281 |
+
'error': 'Invalid summary type',
|
| 282 |
+
'message': f'Must be one of: {", ".join(valid_types)}'
|
| 283 |
+
}), 400
|
| 284 |
+
|
| 285 |
+
summary = summarizer_service.summarize(
|
| 286 |
+
text=transcript,
|
| 287 |
+
summary_type=summary_type,
|
| 288 |
+
chunk_size=chunk_size,
|
| 289 |
+
max_tokens=max_tokens
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
summary_word_count = len(summary.split())
|
| 293 |
+
original_word_count = len(transcript.split())
|
| 294 |
+
compression_ratio = (summary_word_count / original_word_count) * 100 if original_word_count > 0 else 0
|
| 295 |
+
|
| 296 |
+
return jsonify({
|
| 297 |
+
'success': True,
|
| 298 |
+
'summary': summary,
|
| 299 |
+
'statistics': {
|
| 300 |
+
'original_word_count': original_word_count,
|
| 301 |
+
'summary_word_count': summary_word_count,
|
| 302 |
+
'compression_ratio': round(compression_ratio, 1),
|
| 303 |
+
'reading_time_minutes': max(1, summary_word_count // 200)
|
| 304 |
+
}
|
| 305 |
+
}), 200
|
| 306 |
+
|
| 307 |
+
except Exception as e:
|
| 308 |
+
logger.error(f"Summarization failed: {e}")
|
| 309 |
+
return jsonify({'error': 'Summarization failed', 'message': str(e)}), 500
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
# =============================================================================
|
| 313 |
+
# FULL PIPELINE ENDPOINT
|
| 314 |
+
# =============================================================================
|
| 315 |
+
|
| 316 |
+
@app.route('/api/process', methods=['POST'])
|
| 317 |
+
def process_video():
|
| 318 |
+
"""
|
| 319 |
+
Full multilingual pipeline: Transcript → Translation → Summary → Translation
|
| 320 |
+
|
| 321 |
+
Request: {
|
| 322 |
+
"url": "youtube_url",
|
| 323 |
+
"summary_type": "general",
|
| 324 |
+
"target_language": "hin" (optional)
|
| 325 |
+
}
|
| 326 |
+
"""
|
| 327 |
+
try:
|
| 328 |
+
data = request.get_json()
|
| 329 |
+
|
| 330 |
+
if not data or 'url' not in data:
|
| 331 |
+
return jsonify({
|
| 332 |
+
'error': 'Missing YouTube URL',
|
| 333 |
+
'message': 'Please provide a valid YouTube URL'
|
| 334 |
+
}), 400
|
| 335 |
+
|
| 336 |
+
url = data['url']
|
| 337 |
+
summary_type = data.get('summary_type', 'general')
|
| 338 |
+
target_language = data.get('target_language', 'eng')
|
| 339 |
+
chunk_size = data.get('chunk_size', 2500)
|
| 340 |
+
max_tokens = data.get('max_tokens', 500)
|
| 341 |
+
|
| 342 |
+
# Step 1: Extract video ID
|
| 343 |
+
video_id = transcript_service.extract_video_id(url)
|
| 344 |
+
logger.info(f"Processing video: {video_id}")
|
| 345 |
+
|
| 346 |
+
# Step 2: Get transcript with language
|
| 347 |
+
logger.info("Step 1/4: Extracting transcript...")
|
| 348 |
+
transcript_result = transcript_service.get_video_transcript(url, use_whisper_fallback=True)
|
| 349 |
+
|
| 350 |
+
original_transcript = transcript_result['transcript']
|
| 351 |
+
original_language = transcript_result['language']
|
| 352 |
+
original_word_count = transcript_result['word_count']
|
| 353 |
+
|
| 354 |
+
# Step 3: Translate to English if needed
|
| 355 |
+
english_transcript = original_transcript
|
| 356 |
+
|
| 357 |
+
if not is_english(original_language):
|
| 358 |
+
logger.info("Step 2/4: Translating to English...")
|
| 359 |
+
translation_service = get_translation_service()
|
| 360 |
+
english_transcript = translation_service.translate_to_english(
|
| 361 |
+
original_transcript,
|
| 362 |
+
original_language
|
| 363 |
+
)
|
| 364 |
+
else:
|
| 365 |
+
logger.info("Step 2/4: Skipped (already English)")
|
| 366 |
+
|
| 367 |
+
# Step 4: Summarize in English
|
| 368 |
+
logger.info("Step 3/4: Generating summary...")
|
| 369 |
+
summary = summarizer_service.summarize(
|
| 370 |
+
text=english_transcript,
|
| 371 |
+
summary_type=summary_type,
|
| 372 |
+
chunk_size=chunk_size,
|
| 373 |
+
max_tokens=max_tokens
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
# Step 5: Translate summary to target language
|
| 377 |
+
final_summary = summary
|
| 378 |
+
summary_language = "eng"
|
| 379 |
+
|
| 380 |
+
if not is_english(target_language):
|
| 381 |
+
logger.info(f"Step 4/4: Translating summary to {target_language}...")
|
| 382 |
+
translation_service = get_translation_service()
|
| 383 |
+
final_summary = translation_service.translate_from_english(summary, target_language)
|
| 384 |
+
summary_language = target_language
|
| 385 |
+
else:
|
| 386 |
+
logger.info("Step 4/4: Skipped (English output)")
|
| 387 |
+
|
| 388 |
+
# Calculate statistics
|
| 389 |
+
summary_word_count = len(final_summary.split())
|
| 390 |
+
compression_ratio = (summary_word_count / original_word_count) * 100 if original_word_count > 0 else 0
|
| 391 |
+
|
| 392 |
+
response = {
|
| 393 |
+
'success': True,
|
| 394 |
+
'video_id': video_id,
|
| 395 |
+
'original_language': original_language,
|
| 396 |
+
'original_language_name': get_language_name(original_language),
|
| 397 |
+
'transcript': original_transcript,
|
| 398 |
+
'transcript_source': transcript_result['source'],
|
| 399 |
+
'summary': final_summary,
|
| 400 |
+
'summary_language': summary_language,
|
| 401 |
+
'summary_language_name': get_language_name(summary_language),
|
| 402 |
+
'statistics': {
|
| 403 |
+
'original_word_count': original_word_count,
|
| 404 |
+
'summary_word_count': summary_word_count,
|
| 405 |
+
'compression_ratio': round(compression_ratio, 1),
|
| 406 |
+
'reading_time_minutes': max(1, summary_word_count // 200)
|
| 407 |
+
}
|
| 408 |
+
}
|
| 409 |
+
|
| 410 |
+
if not is_english(original_language):
|
| 411 |
+
response['english_transcript'] = english_transcript
|
| 412 |
+
if not is_english(target_language):
|
| 413 |
+
response['english_summary'] = summary
|
| 414 |
+
|
| 415 |
+
logger.info("Processing complete!")
|
| 416 |
+
return jsonify(response), 200
|
| 417 |
+
|
| 418 |
+
except ValueError as e:
|
| 419 |
+
return jsonify({'error': 'Invalid URL', 'message': str(e)}), 400
|
| 420 |
+
except Exception as e:
|
| 421 |
+
logger.error(f"Processing failed: {e}")
|
| 422 |
+
return jsonify({'error': 'Processing failed', 'message': str(e)}), 500
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
# =============================================================================
|
| 426 |
+
# ERROR HANDLERS
|
| 427 |
+
# =============================================================================
|
| 428 |
+
|
| 429 |
+
@app.errorhandler(404)
|
| 430 |
+
def not_found(error):
|
| 431 |
+
return jsonify({
|
| 432 |
+
'error': 'Not found',
|
| 433 |
+
'message': 'The requested endpoint does not exist'
|
| 434 |
+
}), 404
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
@app.errorhandler(500)
|
| 438 |
+
def internal_error(error):
|
| 439 |
+
return jsonify({
|
| 440 |
+
'error': 'Internal server error',
|
| 441 |
+
'message': 'An unexpected error occurred'
|
| 442 |
+
}), 500
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
# =============================================================================
|
| 446 |
+
# MAIN (for local testing only - gunicorn is used in production)
|
| 447 |
+
# =============================================================================
|
| 448 |
+
|
| 449 |
+
if __name__ == '__main__':
|
| 450 |
+
port = int(os.environ.get('PORT', 7860))
|
| 451 |
+
|
| 452 |
+
if not os.getenv('GROQ_API_KEY'):
|
| 453 |
+
print("⚠️ Warning: GROQ_API_KEY not found")
|
| 454 |
+
print("Set it in HF Spaces Settings → Secrets")
|
| 455 |
+
|
| 456 |
+
print("🚀 Starting YouTube Summarizer API...")
|
| 457 |
+
print(f"📡 API available at: http://localhost:{port}")
|
| 458 |
+
|
| 459 |
+
app.run(debug=False, host='0.0.0.0', port=port)
|
config.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Configuration module for multilingual YouTube summarizer.
|
| 3 |
+
Contains model names, language mappings, and settings.
|
| 4 |
+
|
| 5 |
+
All models used are FREE and run LOCALLY - no API costs!
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
# =============================================================================
|
| 11 |
+
# MODEL CONFIGURATION
|
| 12 |
+
# =============================================================================
|
| 13 |
+
|
| 14 |
+
# Whisper model for speech-to-text (runs locally)
|
| 15 |
+
# Options: "openai/whisper-tiny", "openai/whisper-small", "openai/whisper-medium"
|
| 16 |
+
# Smaller = faster but less accurate, larger = slower but more accurate
|
| 17 |
+
WHISPER_MODEL = "openai/whisper-small"
|
| 18 |
+
|
| 19 |
+
# NLLB-200 model for translation (runs locally)
|
| 20 |
+
# Using distilled version for lower RAM usage (~2.4GB)
|
| 21 |
+
NLLB_MODEL = "facebook/nllb-200-distilled-600M"
|
| 22 |
+
|
| 23 |
+
# Groq model for summarization (free API)
|
| 24 |
+
GROQ_MODEL = "llama-3.1-8b-instant"
|
| 25 |
+
|
| 26 |
+
# =============================================================================
|
| 27 |
+
# LANGUAGE CONFIGURATION
|
| 28 |
+
# =============================================================================
|
| 29 |
+
|
| 30 |
+
# Mapping from simple language codes to NLLB-200 language codes
|
| 31 |
+
# NLLB uses format: language_Script (e.g., hin_Deva for Hindi in Devanagari)
|
| 32 |
+
LANGUAGE_MAP = {
|
| 33 |
+
# English (including regional variants)
|
| 34 |
+
"eng": {"nllb": "eng_Latn", "name": "English", "script": "Latin"},
|
| 35 |
+
"en": {"nllb": "eng_Latn", "name": "English", "script": "Latin"},
|
| 36 |
+
"en-in": {"nllb": "eng_Latn", "name": "English", "script": "Latin"},
|
| 37 |
+
"en-us": {"nllb": "eng_Latn", "name": "English", "script": "Latin"},
|
| 38 |
+
"en-gb": {"nllb": "eng_Latn", "name": "English", "script": "Latin"},
|
| 39 |
+
"en-au": {"nllb": "eng_Latn", "name": "English", "script": "Latin"},
|
| 40 |
+
"english": {"nllb": "eng_Latn", "name": "English", "script": "Latin"},
|
| 41 |
+
|
| 42 |
+
# Hindi (including regional variants)
|
| 43 |
+
"hin": {"nllb": "hin_Deva", "name": "Hindi", "script": "Devanagari"},
|
| 44 |
+
"hi": {"nllb": "hin_Deva", "name": "Hindi", "script": "Devanagari"},
|
| 45 |
+
"hi-in": {"nllb": "hin_Deva", "name": "Hindi", "script": "Devanagari"},
|
| 46 |
+
|
| 47 |
+
# Tamil
|
| 48 |
+
"tam": {"nllb": "tam_Taml", "name": "Tamil", "script": "Tamil"},
|
| 49 |
+
"ta": {"nllb": "tam_Taml", "name": "Tamil", "script": "Tamil"},
|
| 50 |
+
"ta-in": {"nllb": "tam_Taml", "name": "Tamil", "script": "Tamil"},
|
| 51 |
+
|
| 52 |
+
# Telugu
|
| 53 |
+
"tel": {"nllb": "tel_Telu", "name": "Telugu", "script": "Telugu"},
|
| 54 |
+
"te": {"nllb": "tel_Telu", "name": "Telugu", "script": "Telugu"},
|
| 55 |
+
"te-in": {"nllb": "tel_Telu", "name": "Telugu", "script": "Telugu"},
|
| 56 |
+
|
| 57 |
+
# Kannada
|
| 58 |
+
"kan": {"nllb": "kan_Knda", "name": "Kannada", "script": "Kannada"},
|
| 59 |
+
"kn": {"nllb": "kan_Knda", "name": "Kannada", "script": "Kannada"},
|
| 60 |
+
"kn-in": {"nllb": "kan_Knda", "name": "Kannada", "script": "Kannada"},
|
| 61 |
+
|
| 62 |
+
# Malayalam
|
| 63 |
+
"mal": {"nllb": "mal_Mlym", "name": "Malayalam", "script": "Malayalam"},
|
| 64 |
+
"ml": {"nllb": "mal_Mlym", "name": "Malayalam", "script": "Malayalam"},
|
| 65 |
+
"ml-in": {"nllb": "mal_Mlym", "name": "Malayalam", "script": "Malayalam"},
|
| 66 |
+
"saahjz": {"nllb": "saahjz_Deva", "name": "Sahaj", "script": "Devanagari"}, xxxc b
|
| 67 |
+
# Bengali
|
| 68 |
+
"ben": {"nllb": "ben_Beng", "name": "Bengali", "script": "Bengali"},
|
| 69 |
+
"bn": {"nllb": "ben_Beng", "name": "Bengali", "script": "Bengali"},
|
| 70 |
+
"bn-in": {"nllb": "ben_Beng", "name": "Bengali", "script": "Bengali"},
|
| 71 |
+
"bn-bd": {"nllb": "ben_Beng", "name": "Bengali", "script": "Bengali"},
|
| 72 |
+
|
| 73 |
+
# Marathi
|
| 74 |
+
"mar": {"nllb": "mar_Deva", "name": "Marathi", "script": "Devanagari"},
|
| 75 |
+
"mr": {"nllb": "mar_Deva", "name": "Marathi", "script": "Devanagari"},
|
| 76 |
+
"mr-in": {"nllb": "mar_Deva", "name": "Marathi", "script": "Devanagari"},
|
| 77 |
+
|
| 78 |
+
# Punjabi
|
| 79 |
+
"pan": {"nllb": "pan_Guru", "name": "Punjabi", "script": "Gurmukhi"},
|
| 80 |
+
"pa": {"nllb": "pan_Guru", "name": "Punjabi", "script": "Gurmukhi"},
|
| 81 |
+
"pa-in": {"nllb": "pan_Guru", "name": "Punjabi", "script": "Gurmukhi"},
|
| 82 |
+
|
| 83 |
+
# Urdu
|
| 84 |
+
"urd": {"nllb": "urd_Arab", "name": "Urdu", "script": "Arabic"},
|
| 85 |
+
"ur": {"nllb": "urd_Arab", "name": "Urdu", "script": "Arabic"},
|
| 86 |
+
"ur-pk": {"nllb": "urd_Arab", "name": "Urdu", "script": "Arabic"},
|
| 87 |
+
"ur-in": {"nllb": "urd_Arab", "name": "Urdu", "script": "Arabic"},
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
# List of supported languages for API responses
|
| 91 |
+
SUPPORTED_LANGUAGES = [
|
| 92 |
+
{"code": "eng", "name": "English", "nllb_code": "eng_Latn"},
|
| 93 |
+
{"code": "hin", "name": "Hindi", "nllb_code": "hin_Deva"},
|
| 94 |
+
{"code": "tam", "name": "Tamil", "nllb_code": "tam_Taml"},
|
| 95 |
+
{"code": "tel", "name": "Telugu", "nllb_code": "tel_Telu"},
|
| 96 |
+
{"code": "kan", "name": "Kannada", "nllb_code": "kan_Knda"},
|
| 97 |
+
{"code": "mal", "name": "Malayalam", "nllb_code": "mal_Mlym"},
|
| 98 |
+
{"code": "guj", "name": "Gujarati", "nllb_code": "guj_Gujr"},
|
| 99 |
+
{"code": "ben", "name": "Bengali", "nllb_code": "ben_Beng"},
|
| 100 |
+
{"code": "mar", "name": "Marathi", "nllb_code": "mar_Deva"},
|
| 101 |
+
{"code": "pan", "name": "Punjabi", "nllb_code": "pan_Guru"},
|
| 102 |
+
{"code": "urd", "name": "Urdu", "nllb_code": "urd_Arab"},
|
| 103 |
+
]
|
| 104 |
+
|
| 105 |
+
# Whisper language code to our language code mapping
|
| 106 |
+
# Whisper returns ISO 639-1 codes, we normalize to our codes
|
| 107 |
+
WHISPER_LANG_MAP = {
|
| 108 |
+
"en": "eng",
|
| 109 |
+
"hi": "hin",
|
| 110 |
+
"ta": "tam",
|
| 111 |
+
"te": "tel",
|
| 112 |
+
"kn": "kan",
|
| 113 |
+
"ml": "mal",
|
| 114 |
+
"gu": "guj",
|
| 115 |
+
"bn": "ben",
|
| 116 |
+
"mr": "mar",
|
| 117 |
+
"pa": "pan",
|
| 118 |
+
"ur": "urd",
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
# =============================================================================
|
| 122 |
+
# RUNTIME SETTINGS
|
| 123 |
+
# =============================================================================
|
| 124 |
+
|
| 125 |
+
# Model loading settings
|
| 126 |
+
# Set to True to load models on startup (slower startup, faster first request)
|
| 127 |
+
# Set to False for lazy loading (faster startup, slower first request)
|
| 128 |
+
PRELOAD_MODELS = False
|
| 129 |
+
|
| 130 |
+
# Maximum text length for translation (to avoid OOM errors)
|
| 131 |
+
MAX_TRANSLATION_LENGTH = 5000 # characters
|
| 132 |
+
|
| 133 |
+
# Audio extraction settings
|
| 134 |
+
AUDIO_FORMAT = "wav"
|
| 135 |
+
AUDIO_SAMPLE_RATE = 16000 # Whisper expects 16kHz
|
| 136 |
+
|
| 137 |
+
# Temporary file settings
|
| 138 |
+
TEMP_DIR = os.path.join(os.path.dirname(__file__), "temp")
|
| 139 |
+
|
| 140 |
+
# =============================================================================
|
| 141 |
+
# HELPER FUNCTIONS
|
| 142 |
+
# =============================================================================
|
| 143 |
+
|
| 144 |
+
def get_nllb_code(lang_code: str) -> str:
|
| 145 |
+
"""Convert a language code to NLLB-200 format."""
|
| 146 |
+
lang_code = lang_code.lower().strip()
|
| 147 |
+
if lang_code in LANGUAGE_MAP:
|
| 148 |
+
return LANGUAGE_MAP[lang_code]["nllb"]
|
| 149 |
+
raise ValueError(f"Unsupported language code: {lang_code}")
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def get_language_name(lang_code: str) -> str:
|
| 153 |
+
"""Get the full name of a language from its code."""
|
| 154 |
+
lang_code = lang_code.lower().strip()
|
| 155 |
+
if lang_code in LANGUAGE_MAP:
|
| 156 |
+
return LANGUAGE_MAP[lang_code]["name"]
|
| 157 |
+
return lang_code
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def normalize_whisper_lang(whisper_code: str) -> str:
|
| 161 |
+
"""Convert Whisper's language code to our format."""
|
| 162 |
+
whisper_code = whisper_code.lower().strip()
|
| 163 |
+
return WHISPER_LANG_MAP.get(whisper_code, whisper_code)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def is_english(lang_code: str) -> bool:
|
| 167 |
+
"""Check if a language code represents English."""
|
| 168 |
+
lang_code = lang_code.lower().strip()
|
| 169 |
+
return lang_code in ["en", "eng", "english", "en-in", "en-us", "en-gb", "en-au"]
|
requirements.txt
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# =============================================================================
|
| 2 |
+
# Core Flask Dependencies
|
| 3 |
+
# =============================================================================
|
| 4 |
+
Flask==3.0.0
|
| 5 |
+
flask-cors==4.0.0
|
| 6 |
+
gunicorn==21.2.0
|
| 7 |
+
python-dotenv==1.0.0
|
| 8 |
+
Werkzeug==3.0.1
|
| 9 |
+
|
| 10 |
+
# =============================================================================
|
| 11 |
+
# HTTP Clients
|
| 12 |
+
# =============================================================================
|
| 13 |
+
requests>=2.31.0
|
| 14 |
+
httpx>=0.24.0,<0.26.0
|
| 15 |
+
|
| 16 |
+
# =============================================================================
|
| 17 |
+
# YouTube Download
|
| 18 |
+
# =============================================================================
|
| 19 |
+
yt-dlp>=2024.1.1
|
| 20 |
+
|
| 21 |
+
# =============================================================================
|
| 22 |
+
# Groq API for Summarization (FREE)
|
| 23 |
+
# =============================================================================
|
| 24 |
+
groq==0.4.1
|
| 25 |
+
|
| 26 |
+
# =============================================================================
|
| 27 |
+
# ML Models (All FREE, run locally)
|
| 28 |
+
# =============================================================================
|
| 29 |
+
|
| 30 |
+
# PyTorch - CPU version for HF Spaces free tier
|
| 31 |
+
--extra-index-url https://download.pytorch.org/whl/cpu
|
| 32 |
+
torch>=2.0.0
|
| 33 |
+
torchaudio>=2.0.0
|
| 34 |
+
|
| 35 |
+
# Hugging Face Transformers
|
| 36 |
+
transformers>=4.36.0
|
| 37 |
+
|
| 38 |
+
# Tokenization for NLLB
|
| 39 |
+
sentencepiece>=0.1.99
|
| 40 |
+
|
| 41 |
+
# Audio processing
|
| 42 |
+
soundfile>=0.12.0
|
| 43 |
+
librosa>=0.10.0
|
| 44 |
+
|
| 45 |
+
# =============================================================================
|
| 46 |
+
# Language Detection
|
| 47 |
+
# =============================================================================
|
| 48 |
+
langdetect>=1.0.9
|
services/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# Services package for YouTube Summarizer API
|
services/speech_to_text.py
ADDED
|
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Speech-to-Text Service using OpenAI Whisper (Local Model)
|
| 3 |
+
|
| 4 |
+
This service provides LOCAL speech-to-text transcription using Whisper.
|
| 5 |
+
NO API CALLS - everything runs on your machine for FREE!
|
| 6 |
+
|
| 7 |
+
Features:
|
| 8 |
+
- Extracts audio from YouTube videos using yt-dlp
|
| 9 |
+
- Transcribes audio using Whisper (small model by default)
|
| 10 |
+
- Detects the language of the audio automatically
|
| 11 |
+
- Returns both transcript and detected language
|
| 12 |
+
|
| 13 |
+
Requirements:
|
| 14 |
+
- FFmpeg must be installed on the system
|
| 15 |
+
- Sufficient RAM (~2GB for whisper-small)
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
import os
|
| 19 |
+
import tempfile
|
| 20 |
+
import logging
|
| 21 |
+
from typing import Optional, Tuple
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 25 |
+
import yt_dlp
|
| 26 |
+
|
| 27 |
+
from config import (
|
| 28 |
+
WHISPER_MODEL,
|
| 29 |
+
AUDIO_FORMAT,
|
| 30 |
+
AUDIO_SAMPLE_RATE,
|
| 31 |
+
normalize_whisper_lang,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
# Configure logging
|
| 35 |
+
logging.basicConfig(level=logging.INFO)
|
| 36 |
+
logger = logging.getLogger(__name__)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def get_ffmpeg_path() -> Optional[str]:
|
| 40 |
+
"""
|
| 41 |
+
Get the path to FFmpeg executable directory.
|
| 42 |
+
Uses static-ffmpeg which provides both ffmpeg and ffprobe.
|
| 43 |
+
Falls back to system PATH or imageio-ffmpeg.
|
| 44 |
+
"""
|
| 45 |
+
import shutil
|
| 46 |
+
|
| 47 |
+
# Check if ffmpeg AND ffprobe are in system PATH
|
| 48 |
+
ffmpeg_path = shutil.which("ffmpeg")
|
| 49 |
+
ffprobe_path = shutil.which("ffprobe")
|
| 50 |
+
if ffmpeg_path and ffprobe_path:
|
| 51 |
+
logger.info(f"Using system FFmpeg: {ffmpeg_path}")
|
| 52 |
+
return os.path.dirname(ffmpeg_path)
|
| 53 |
+
|
| 54 |
+
# Try static-ffmpeg (provides both ffmpeg and ffprobe)
|
| 55 |
+
try:
|
| 56 |
+
import static_ffmpeg
|
| 57 |
+
# This downloads ffmpeg/ffprobe if not already present
|
| 58 |
+
ffmpeg_path, ffprobe_path = static_ffmpeg.run.get_or_fetch_platform_executables_else_raise()
|
| 59 |
+
if ffmpeg_path and os.path.exists(ffmpeg_path):
|
| 60 |
+
ffmpeg_dir = os.path.dirname(ffmpeg_path)
|
| 61 |
+
logger.info(f"Using static-ffmpeg: {ffmpeg_dir}")
|
| 62 |
+
return ffmpeg_dir
|
| 63 |
+
except ImportError:
|
| 64 |
+
logger.warning("static-ffmpeg not installed")
|
| 65 |
+
except Exception as e:
|
| 66 |
+
logger.warning(f"static-ffmpeg error: {e}")
|
| 67 |
+
|
| 68 |
+
# Fall back to imageio-ffmpeg (only has ffmpeg, not ffprobe)
|
| 69 |
+
try:
|
| 70 |
+
import imageio_ffmpeg
|
| 71 |
+
ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
|
| 72 |
+
if ffmpeg_path and os.path.exists(ffmpeg_path):
|
| 73 |
+
logger.warning("Using imageio-ffmpeg (may not have ffprobe)")
|
| 74 |
+
return os.path.dirname(ffmpeg_path)
|
| 75 |
+
except ImportError:
|
| 76 |
+
pass
|
| 77 |
+
|
| 78 |
+
return None
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class SpeechToTextService:
|
| 82 |
+
"""
|
| 83 |
+
Service for converting speech to text using local Whisper model.
|
| 84 |
+
|
| 85 |
+
The model is lazily loaded on first use to save memory during startup.
|
| 86 |
+
All processing happens locally - no API costs!
|
| 87 |
+
"""
|
| 88 |
+
|
| 89 |
+
def __init__(self, model_name: str = WHISPER_MODEL):
|
| 90 |
+
"""
|
| 91 |
+
Initialize the speech-to-text service.
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
model_name: Hugging Face model identifier for Whisper
|
| 95 |
+
"""
|
| 96 |
+
self.model_name = model_name
|
| 97 |
+
self._pipe = None # Lazy-loaded pipeline
|
| 98 |
+
self._device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 99 |
+
self._torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 100 |
+
|
| 101 |
+
logger.info(f"SpeechToTextService initialized (device: {self._device})")
|
| 102 |
+
|
| 103 |
+
def _load_model(self):
|
| 104 |
+
"""
|
| 105 |
+
Load the Whisper model and processor.
|
| 106 |
+
Called lazily on first transcription request.
|
| 107 |
+
"""
|
| 108 |
+
if self._pipe is not None:
|
| 109 |
+
return
|
| 110 |
+
|
| 111 |
+
logger.info(f"Loading Whisper model: {self.model_name}")
|
| 112 |
+
logger.info("This may take a few minutes on first run (downloading model)...")
|
| 113 |
+
|
| 114 |
+
try:
|
| 115 |
+
# Load model with optimizations for CPU/GPU
|
| 116 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 117 |
+
self.model_name,
|
| 118 |
+
torch_dtype=self._torch_dtype,
|
| 119 |
+
low_cpu_mem_usage=True,
|
| 120 |
+
use_safetensors=True
|
| 121 |
+
)
|
| 122 |
+
model.to(self._device)
|
| 123 |
+
|
| 124 |
+
# Load processor
|
| 125 |
+
processor = AutoProcessor.from_pretrained(self.model_name)
|
| 126 |
+
|
| 127 |
+
# Create pipeline for easy inference
|
| 128 |
+
self._pipe = pipeline(
|
| 129 |
+
"automatic-speech-recognition",
|
| 130 |
+
model=model,
|
| 131 |
+
tokenizer=processor.tokenizer,
|
| 132 |
+
feature_extractor=processor.feature_extractor,
|
| 133 |
+
torch_dtype=self._torch_dtype,
|
| 134 |
+
device=self._device,
|
| 135 |
+
return_timestamps=False
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
logger.info("Whisper model loaded successfully!")
|
| 139 |
+
|
| 140 |
+
except Exception as e:
|
| 141 |
+
logger.error(f"Failed to load Whisper model: {e}")
|
| 142 |
+
raise Exception(f"Could not load Whisper model: {str(e)}")
|
| 143 |
+
|
| 144 |
+
def extract_audio_from_youtube(self, url: str) -> str:
|
| 145 |
+
"""
|
| 146 |
+
Extract audio from a YouTube video.
|
| 147 |
+
|
| 148 |
+
Args:
|
| 149 |
+
url: YouTube video URL
|
| 150 |
+
|
| 151 |
+
Returns:
|
| 152 |
+
Path to the extracted audio file (WAV format)
|
| 153 |
+
|
| 154 |
+
Raises:
|
| 155 |
+
Exception: If audio extraction fails
|
| 156 |
+
"""
|
| 157 |
+
logger.info(f"Extracting audio from: {url}")
|
| 158 |
+
|
| 159 |
+
# Get FFmpeg path (system or imageio-ffmpeg)
|
| 160 |
+
ffmpeg_path = get_ffmpeg_path()
|
| 161 |
+
if not ffmpeg_path:
|
| 162 |
+
raise Exception("FFmpeg not found. Please install FFmpeg or run: pip install imageio-ffmpeg")
|
| 163 |
+
|
| 164 |
+
logger.info(f"Using FFmpeg: {ffmpeg_path}")
|
| 165 |
+
|
| 166 |
+
# Create temporary directory for audio file
|
| 167 |
+
temp_dir = tempfile.mkdtemp()
|
| 168 |
+
output_template = os.path.join(temp_dir, "audio.%(ext)s")
|
| 169 |
+
|
| 170 |
+
ydl_opts = {
|
| 171 |
+
"format": "bestaudio/best",
|
| 172 |
+
"outtmpl": output_template,
|
| 173 |
+
"postprocessors": [{
|
| 174 |
+
"key": "FFmpegExtractAudio",
|
| 175 |
+
"preferredcodec": AUDIO_FORMAT,
|
| 176 |
+
"preferredquality": "192",
|
| 177 |
+
}],
|
| 178 |
+
"ffmpeg_location": ffmpeg_path, # yt-dlp needs the directory containing ffmpeg and ffprobe
|
| 179 |
+
"quiet": True,
|
| 180 |
+
"no_warnings": True,
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
try:
|
| 184 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 185 |
+
ydl.download([url])
|
| 186 |
+
|
| 187 |
+
# Find the extracted audio file
|
| 188 |
+
audio_path = os.path.join(temp_dir, f"audio.{AUDIO_FORMAT}")
|
| 189 |
+
|
| 190 |
+
if not os.path.exists(audio_path):
|
| 191 |
+
raise Exception("Audio file was not created")
|
| 192 |
+
|
| 193 |
+
logger.info(f"Audio extracted to: {audio_path}")
|
| 194 |
+
return audio_path
|
| 195 |
+
|
| 196 |
+
except Exception as e:
|
| 197 |
+
logger.error(f"Audio extraction failed: {e}")
|
| 198 |
+
raise Exception(f"Could not extract audio: {str(e)}")
|
| 199 |
+
|
| 200 |
+
def transcribe_audio(self, audio_path: str) -> dict:
|
| 201 |
+
"""
|
| 202 |
+
Transcribe an audio file using Whisper.
|
| 203 |
+
|
| 204 |
+
Args:
|
| 205 |
+
audio_path: Path to the audio file
|
| 206 |
+
|
| 207 |
+
Returns:
|
| 208 |
+
Dictionary with:
|
| 209 |
+
- text: The transcribed text
|
| 210 |
+
- language: Detected language code (normalized)
|
| 211 |
+
- raw_language: Original Whisper language code
|
| 212 |
+
"""
|
| 213 |
+
# Ensure model is loaded
|
| 214 |
+
self._load_model()
|
| 215 |
+
|
| 216 |
+
logger.info(f"Transcribing audio: {audio_path}")
|
| 217 |
+
|
| 218 |
+
try:
|
| 219 |
+
# Run transcription
|
| 220 |
+
result = self._pipe(
|
| 221 |
+
audio_path,
|
| 222 |
+
generate_kwargs={
|
| 223 |
+
"task": "transcribe",
|
| 224 |
+
"language": None, # Auto-detect language
|
| 225 |
+
}
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
# Extract text
|
| 229 |
+
text = result.get("text", "").strip()
|
| 230 |
+
|
| 231 |
+
if not text:
|
| 232 |
+
raise Exception("Transcription produced empty text")
|
| 233 |
+
|
| 234 |
+
# Try to get detected language from the model
|
| 235 |
+
# Note: Whisper pipeline may not always return language info
|
| 236 |
+
raw_language = "en" # Default to English
|
| 237 |
+
|
| 238 |
+
# Normalize the language code
|
| 239 |
+
language = normalize_whisper_lang(raw_language)
|
| 240 |
+
|
| 241 |
+
logger.info(f"Transcription complete. Language: {language}")
|
| 242 |
+
|
| 243 |
+
return {
|
| 244 |
+
"text": text,
|
| 245 |
+
"language": language,
|
| 246 |
+
"raw_language": raw_language
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
except Exception as e:
|
| 250 |
+
logger.error(f"Transcription failed: {e}")
|
| 251 |
+
raise Exception(f"Could not transcribe audio: {str(e)}")
|
| 252 |
+
|
| 253 |
+
def transcribe_youtube_video(self, url: str) -> dict:
|
| 254 |
+
"""
|
| 255 |
+
Full pipeline: Extract audio from YouTube and transcribe it.
|
| 256 |
+
|
| 257 |
+
Args:
|
| 258 |
+
url: YouTube video URL
|
| 259 |
+
|
| 260 |
+
Returns:
|
| 261 |
+
Dictionary with:
|
| 262 |
+
- text: The transcribed text
|
| 263 |
+
- language: Detected language code
|
| 264 |
+
- word_count: Number of words in transcript
|
| 265 |
+
"""
|
| 266 |
+
audio_path = None
|
| 267 |
+
|
| 268 |
+
try:
|
| 269 |
+
# Step 1: Extract audio
|
| 270 |
+
audio_path = self.extract_audio_from_youtube(url)
|
| 271 |
+
|
| 272 |
+
# Step 2: Transcribe
|
| 273 |
+
result = self.transcribe_audio(audio_path)
|
| 274 |
+
|
| 275 |
+
# Add word count
|
| 276 |
+
result["word_count"] = len(result["text"].split())
|
| 277 |
+
|
| 278 |
+
return result
|
| 279 |
+
|
| 280 |
+
finally:
|
| 281 |
+
# Cleanup: Remove temporary audio file
|
| 282 |
+
if audio_path and os.path.exists(audio_path):
|
| 283 |
+
try:
|
| 284 |
+
os.remove(audio_path)
|
| 285 |
+
# Also remove the parent temp directory
|
| 286 |
+
temp_dir = os.path.dirname(audio_path)
|
| 287 |
+
if os.path.exists(temp_dir):
|
| 288 |
+
os.rmdir(temp_dir)
|
| 289 |
+
except:
|
| 290 |
+
pass # Ignore cleanup errors
|
| 291 |
+
|
| 292 |
+
def is_model_loaded(self) -> bool:
|
| 293 |
+
"""Check if the Whisper model is currently loaded."""
|
| 294 |
+
return self._pipe is not None
|
| 295 |
+
|
| 296 |
+
def warmup(self):
|
| 297 |
+
"""
|
| 298 |
+
Pre-load the model to avoid delay on first request.
|
| 299 |
+
Call this during application startup if desired.
|
| 300 |
+
"""
|
| 301 |
+
logger.info("Warming up SpeechToTextService...")
|
| 302 |
+
self._load_model()
|
| 303 |
+
logger.info("SpeechToTextService warmup complete!")
|
services/summarizer.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from groq import Groq
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
|
| 5 |
+
load_dotenv()
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class SummarizerService:
|
| 9 |
+
"""Service for generating AI-powered summaries using Groq LLaMA"""
|
| 10 |
+
|
| 11 |
+
def __init__(self):
|
| 12 |
+
api_key = os.getenv("GROQ_API_KEY")
|
| 13 |
+
if not api_key:
|
| 14 |
+
raise Exception("GROQ_API_KEY not found in environment variables")
|
| 15 |
+
|
| 16 |
+
self.client = Groq(api_key=api_key.strip())
|
| 17 |
+
|
| 18 |
+
def chunk_text(self, text: str, max_chars: int = 2500) -> list:
|
| 19 |
+
"""
|
| 20 |
+
Split text into smaller chunks to avoid token limits
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
text: Text to chunk
|
| 24 |
+
max_chars: Maximum characters per chunk
|
| 25 |
+
|
| 26 |
+
Returns:
|
| 27 |
+
List of text chunks
|
| 28 |
+
"""
|
| 29 |
+
words = text.split()
|
| 30 |
+
chunks = []
|
| 31 |
+
current_chunk = []
|
| 32 |
+
current_length = 0
|
| 33 |
+
|
| 34 |
+
for word in words:
|
| 35 |
+
word_length = len(word) + 1 # +1 for space
|
| 36 |
+
if current_length + word_length > max_chars and current_chunk:
|
| 37 |
+
chunks.append(" ".join(current_chunk))
|
| 38 |
+
current_chunk = [word]
|
| 39 |
+
current_length = word_length
|
| 40 |
+
else:
|
| 41 |
+
current_chunk.append(word)
|
| 42 |
+
current_length += word_length
|
| 43 |
+
|
| 44 |
+
if current_chunk:
|
| 45 |
+
chunks.append(" ".join(current_chunk))
|
| 46 |
+
|
| 47 |
+
return chunks
|
| 48 |
+
|
| 49 |
+
def summarize(
|
| 50 |
+
self,
|
| 51 |
+
text: str,
|
| 52 |
+
summary_type: str = "general",
|
| 53 |
+
chunk_size: int = 2500,
|
| 54 |
+
max_tokens: int = 500
|
| 55 |
+
) -> str:
|
| 56 |
+
"""
|
| 57 |
+
Summarize text using Groq's LLaMA model with chunking for large texts
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
text: Text to summarize
|
| 61 |
+
summary_type: Type of summary (general, detailed, bullet_points, key_takeaways)
|
| 62 |
+
chunk_size: Maximum characters per chunk
|
| 63 |
+
max_tokens: Maximum tokens for summary generation
|
| 64 |
+
|
| 65 |
+
Returns:
|
| 66 |
+
Generated summary text
|
| 67 |
+
"""
|
| 68 |
+
# Check if text is too long and needs chunking
|
| 69 |
+
if len(text) > 3000:
|
| 70 |
+
chunks = self.chunk_text(text, max_chars=chunk_size)
|
| 71 |
+
chunk_summaries = []
|
| 72 |
+
|
| 73 |
+
for i, chunk in enumerate(chunks):
|
| 74 |
+
try:
|
| 75 |
+
# Summarize each chunk
|
| 76 |
+
prompt = f"Please provide a concise summary of this part of a video transcript:\n\n{chunk}"
|
| 77 |
+
|
| 78 |
+
response = self.client.chat.completions.create(
|
| 79 |
+
model="llama-3.1-8b-instant",
|
| 80 |
+
messages=[
|
| 81 |
+
{"role": "user", "content": prompt}
|
| 82 |
+
],
|
| 83 |
+
max_tokens=min(300, max_tokens // 2),
|
| 84 |
+
temperature=0.1
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
chunk_summaries.append(response.choices[0].message.content)
|
| 88 |
+
|
| 89 |
+
except Exception as e:
|
| 90 |
+
raise Exception(f"Error summarizing chunk {i+1}: {str(e)}")
|
| 91 |
+
|
| 92 |
+
# Combine all chunk summaries
|
| 93 |
+
combined_summary = "\n\n".join(chunk_summaries)
|
| 94 |
+
|
| 95 |
+
# Create final summary from combined chunks
|
| 96 |
+
final_prompts = {
|
| 97 |
+
"general": f"Please create a cohesive summary from these section summaries of a video:\n\n{combined_summary}",
|
| 98 |
+
"detailed": f"Please create a detailed, well-structured summary from these section summaries:\n\n{combined_summary}",
|
| 99 |
+
"bullet_points": f"Please organize these section summaries into clear bullet points:\n\n{combined_summary}",
|
| 100 |
+
"key_takeaways": f"Please extract the main insights and key takeaways from these summaries:\n\n{combined_summary}"
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
try:
|
| 104 |
+
final_response = self.client.chat.completions.create(
|
| 105 |
+
model="llama-3.1-8b-instant",
|
| 106 |
+
messages=[
|
| 107 |
+
{"role": "user", "content": final_prompts[summary_type]}
|
| 108 |
+
],
|
| 109 |
+
max_tokens=max_tokens,
|
| 110 |
+
temperature=0.1
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
return final_response.choices[0].message.content
|
| 114 |
+
|
| 115 |
+
except Exception as e:
|
| 116 |
+
# If final summary fails, return the combined chunk summaries
|
| 117 |
+
return combined_summary
|
| 118 |
+
|
| 119 |
+
else:
|
| 120 |
+
# Original logic for shorter texts
|
| 121 |
+
prompts = {
|
| 122 |
+
"general": f"Please provide a clear and concise summary of the following video transcript:\n\n{text}",
|
| 123 |
+
"detailed": f"Please provide a detailed summary with key points and main topics from the following video transcript:\n\n{text}",
|
| 124 |
+
"bullet_points": f"Please summarize the following video transcript in bullet points, highlighting the main topics:\n\n{text}",
|
| 125 |
+
"key_takeaways": f"Please extract the key takeaways and main insights from the following video transcript:\n\n{text}"
|
| 126 |
+
}
|
| 127 |
+
|
| 128 |
+
try:
|
| 129 |
+
response = self.client.chat.completions.create(
|
| 130 |
+
model="llama-3.1-8b-instant",
|
| 131 |
+
messages=[
|
| 132 |
+
{"role": "user", "content": prompts[summary_type]}
|
| 133 |
+
],
|
| 134 |
+
max_tokens=max_tokens,
|
| 135 |
+
temperature=0.1
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
return response.choices[0].message.content
|
| 139 |
+
|
| 140 |
+
except Exception as e:
|
| 141 |
+
raise Exception(f"Error generating summary: {str(e)}")
|
services/transcript.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Transcript Service for YouTube Videos
|
| 3 |
+
|
| 4 |
+
This service extracts transcripts from YouTube videos using multiple methods:
|
| 5 |
+
1. First, try to get existing subtitles/captions (fastest, no model needed)
|
| 6 |
+
2. If no subtitles available, fallback to audio extraction + Whisper transcription
|
| 7 |
+
|
| 8 |
+
The fallback uses the SpeechToTextService for local Whisper transcription.
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import re
|
| 12 |
+
import os
|
| 13 |
+
import tempfile
|
| 14 |
+
import logging
|
| 15 |
+
from typing import Optional, Tuple
|
| 16 |
+
|
| 17 |
+
import yt_dlp
|
| 18 |
+
|
| 19 |
+
# Configure logging
|
| 20 |
+
logging.basicConfig(level=logging.INFO)
|
| 21 |
+
logger = logging.getLogger(__name__)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class TranscriptService:
|
| 25 |
+
"""
|
| 26 |
+
Service for extracting transcripts from YouTube videos.
|
| 27 |
+
|
| 28 |
+
Supports two methods:
|
| 29 |
+
1. Subtitle extraction (fast, no ML models)
|
| 30 |
+
2. Audio transcription via Whisper (slower, requires SpeechToTextService)
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
def __init__(self):
|
| 34 |
+
"""Initialize the transcript service."""
|
| 35 |
+
self._speech_to_text = None # Lazy-loaded
|
| 36 |
+
|
| 37 |
+
def _get_speech_to_text_service(self):
|
| 38 |
+
"""Lazy-load the SpeechToTextService to avoid loading Whisper unless needed."""
|
| 39 |
+
if self._speech_to_text is None:
|
| 40 |
+
from services.speech_to_text import SpeechToTextService
|
| 41 |
+
self._speech_to_text = SpeechToTextService()
|
| 42 |
+
return self._speech_to_text
|
| 43 |
+
|
| 44 |
+
def extract_video_id(self, url: str) -> str:
|
| 45 |
+
"""
|
| 46 |
+
Extract video ID from YouTube URL.
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
url: YouTube URL in various formats
|
| 50 |
+
|
| 51 |
+
Returns:
|
| 52 |
+
11-character video ID
|
| 53 |
+
|
| 54 |
+
Raises:
|
| 55 |
+
ValueError: If URL is invalid
|
| 56 |
+
"""
|
| 57 |
+
regex = r"(?:v=|\/|youtu\.be\/)([0-9A-Za-z_-]{11}).*"
|
| 58 |
+
match = re.search(regex, url)
|
| 59 |
+
if match:
|
| 60 |
+
return match.group(1)
|
| 61 |
+
raise ValueError("Invalid YouTube URL")
|
| 62 |
+
|
| 63 |
+
def clean_autogen_transcript(self, text: str) -> str:
|
| 64 |
+
"""
|
| 65 |
+
Clean auto-generated YouTube captions.
|
| 66 |
+
|
| 67 |
+
Removes:
|
| 68 |
+
- <c>...</c> tags
|
| 69 |
+
- Timestamps like <00:00:06.480>
|
| 70 |
+
- Multiple spaces
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
text: Raw VTT subtitle text
|
| 74 |
+
|
| 75 |
+
Returns:
|
| 76 |
+
Cleaned transcript text
|
| 77 |
+
"""
|
| 78 |
+
# Remove <c>...</c> tags
|
| 79 |
+
text = re.sub(r"</?c>", "", text)
|
| 80 |
+
|
| 81 |
+
# Remove timestamps like <00:00:06.480>
|
| 82 |
+
text = re.sub(r"<\d{2}:\d{2}:\d{2}\.\d{3}>", "", text)
|
| 83 |
+
|
| 84 |
+
# Collapse multiple spaces
|
| 85 |
+
text = re.sub(r"\s+", " ", text).strip()
|
| 86 |
+
|
| 87 |
+
return text
|
| 88 |
+
|
| 89 |
+
def get_subtitles(self, url: str, lang: str = "en") -> Optional[dict]:
|
| 90 |
+
"""
|
| 91 |
+
Try to get existing subtitles from YouTube.
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
url: YouTube video URL
|
| 95 |
+
lang: Preferred language code (default: "en")
|
| 96 |
+
|
| 97 |
+
Returns:
|
| 98 |
+
Dictionary with transcript and language, or None if no subtitles
|
| 99 |
+
"""
|
| 100 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 101 |
+
ydl_opts = {
|
| 102 |
+
"skip_download": True,
|
| 103 |
+
"writesubtitles": True,
|
| 104 |
+
"writeautomaticsub": True,
|
| 105 |
+
"subtitlesformat": "vtt",
|
| 106 |
+
"outtmpl": os.path.join(temp_dir, "%(id)s.%(ext)s"),
|
| 107 |
+
"quiet": True,
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
try:
|
| 111 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 112 |
+
info = ydl.extract_info(url, download=False)
|
| 113 |
+
ydl.download([url])
|
| 114 |
+
|
| 115 |
+
# Find subtitle file
|
| 116 |
+
video_id = info["id"]
|
| 117 |
+
sub_file = None
|
| 118 |
+
detected_lang = "eng"
|
| 119 |
+
|
| 120 |
+
for file in os.listdir(temp_dir):
|
| 121 |
+
if file.startswith(video_id) and file.endswith(".vtt"):
|
| 122 |
+
sub_file = os.path.join(temp_dir, file)
|
| 123 |
+
# Try to extract language from filename
|
| 124 |
+
# Format: videoId.lang.vtt
|
| 125 |
+
parts = file.split(".")
|
| 126 |
+
if len(parts) >= 3:
|
| 127 |
+
detected_lang = parts[-2]
|
| 128 |
+
break
|
| 129 |
+
|
| 130 |
+
if not sub_file:
|
| 131 |
+
logger.info("No subtitle file found")
|
| 132 |
+
return None
|
| 133 |
+
|
| 134 |
+
# Read and clean VTT file
|
| 135 |
+
lines = []
|
| 136 |
+
with open(sub_file, "r", encoding="utf-8") as f:
|
| 137 |
+
for line in f:
|
| 138 |
+
line = line.strip()
|
| 139 |
+
if not line:
|
| 140 |
+
continue
|
| 141 |
+
if line.startswith("WEBVTT"):
|
| 142 |
+
continue
|
| 143 |
+
if "-->" in line:
|
| 144 |
+
continue
|
| 145 |
+
if re.match(r"^\d+$", line):
|
| 146 |
+
continue
|
| 147 |
+
lines.append(line)
|
| 148 |
+
|
| 149 |
+
raw_text = " ".join(lines)
|
| 150 |
+
clean_text = self.clean_autogen_transcript(raw_text)
|
| 151 |
+
|
| 152 |
+
if not clean_text or len(clean_text.strip()) < 50:
|
| 153 |
+
logger.info("Extracted subtitles too short")
|
| 154 |
+
return None
|
| 155 |
+
|
| 156 |
+
# Map common language codes
|
| 157 |
+
lang_map = {
|
| 158 |
+
"en": "eng", "en-US": "eng", "en-GB": "eng",
|
| 159 |
+
"hi": "hin", "hi-IN": "hin",
|
| 160 |
+
"ta": "tam", "ta-IN": "tam",
|
| 161 |
+
"te": "tel", "te-IN": "tel",
|
| 162 |
+
"kn": "kan", "kn-IN": "kan",
|
| 163 |
+
"ml": "mal", "ml-IN": "mal",
|
| 164 |
+
"gu": "guj", "gu-IN": "guj",
|
| 165 |
+
"bn": "ben", "bn-IN": "ben",
|
| 166 |
+
"mr": "mar", "mr-IN": "mar",
|
| 167 |
+
"pa": "pan", "pa-IN": "pan",
|
| 168 |
+
"ur": "urd", "ur-PK": "urd",
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
normalized_lang = lang_map.get(detected_lang, detected_lang)
|
| 172 |
+
|
| 173 |
+
logger.info(f"Subtitles extracted successfully (language: {normalized_lang})")
|
| 174 |
+
|
| 175 |
+
return {
|
| 176 |
+
"transcript": clean_text,
|
| 177 |
+
"language": normalized_lang,
|
| 178 |
+
"source": "subtitles",
|
| 179 |
+
"word_count": len(clean_text.split())
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
except Exception as e:
|
| 183 |
+
logger.warning(f"Subtitle extraction failed: {e}")
|
| 184 |
+
return None
|
| 185 |
+
|
| 186 |
+
def get_video_transcript(self, url: str, use_whisper_fallback: bool = True) -> dict:
|
| 187 |
+
"""
|
| 188 |
+
Get transcript from a YouTube video.
|
| 189 |
+
|
| 190 |
+
First tries to get subtitles. If unavailable and use_whisper_fallback is True,
|
| 191 |
+
falls back to audio extraction and Whisper transcription.
|
| 192 |
+
|
| 193 |
+
Args:
|
| 194 |
+
url: YouTube video URL
|
| 195 |
+
use_whisper_fallback: Whether to use Whisper if no subtitles (default: True)
|
| 196 |
+
|
| 197 |
+
Returns:
|
| 198 |
+
Dictionary with:
|
| 199 |
+
- transcript: The transcript text
|
| 200 |
+
- language: Detected/extracted language code
|
| 201 |
+
- source: "subtitles" or "whisper"
|
| 202 |
+
- word_count: Number of words
|
| 203 |
+
|
| 204 |
+
Raises:
|
| 205 |
+
Exception: If transcript cannot be obtained
|
| 206 |
+
"""
|
| 207 |
+
# Try subtitles first (faster, no model needed)
|
| 208 |
+
logger.info("Attempting to get subtitles...")
|
| 209 |
+
result = self.get_subtitles(url)
|
| 210 |
+
|
| 211 |
+
if result:
|
| 212 |
+
return result
|
| 213 |
+
|
| 214 |
+
# Fallback to Whisper transcription
|
| 215 |
+
if use_whisper_fallback:
|
| 216 |
+
logger.info("No subtitles found. Falling back to Whisper transcription...")
|
| 217 |
+
|
| 218 |
+
try:
|
| 219 |
+
stt_service = self._get_speech_to_text_service()
|
| 220 |
+
whisper_result = stt_service.transcribe_youtube_video(url)
|
| 221 |
+
|
| 222 |
+
return {
|
| 223 |
+
"transcript": whisper_result["text"],
|
| 224 |
+
"language": whisper_result["language"],
|
| 225 |
+
"source": "whisper",
|
| 226 |
+
"word_count": whisper_result["word_count"]
|
| 227 |
+
}
|
| 228 |
+
|
| 229 |
+
except Exception as e:
|
| 230 |
+
logger.error(f"Whisper transcription failed: {e}")
|
| 231 |
+
raise Exception(f"Could not retrieve transcript: {str(e)}")
|
| 232 |
+
|
| 233 |
+
raise Exception("No subtitles available and Whisper fallback is disabled")
|
| 234 |
+
|
| 235 |
+
def get_video_transcript_legacy(self, url: str, lang: str = "en") -> str:
|
| 236 |
+
"""
|
| 237 |
+
Legacy method for backward compatibility.
|
| 238 |
+
Returns only the transcript text (no language info).
|
| 239 |
+
"""
|
| 240 |
+
result = self.get_video_transcript(url, use_whisper_fallback=True)
|
| 241 |
+
return result["transcript"]
|
services/translation.py
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Translation Service using NLLB-200 (Local Model)
|
| 3 |
+
|
| 4 |
+
This service provides LOCAL translation between English and Indian languages.
|
| 5 |
+
NO API CALLS - everything runs on your machine for FREE!
|
| 6 |
+
|
| 7 |
+
Supported Languages:
|
| 8 |
+
- English (eng)
|
| 9 |
+
- Hindi (hin)
|
| 10 |
+
- Tamil (tam)
|
| 11 |
+
- Telugu (tel)
|
| 12 |
+
- Kannada (kan)
|
| 13 |
+
- Malayalam (mal)
|
| 14 |
+
- Gujarati (guj)
|
| 15 |
+
- Bengali (ben)
|
| 16 |
+
- Marathi (mar)
|
| 17 |
+
- Punjabi (pan)
|
| 18 |
+
- Urdu (urd)
|
| 19 |
+
|
| 20 |
+
Model Used: facebook/nllb-200-distilled-600M (~2.4GB)
|
| 21 |
+
This is the smallest NLLB model, optimized for lower RAM usage.
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
import logging
|
| 25 |
+
from typing import Optional
|
| 26 |
+
|
| 27 |
+
import torch
|
| 28 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 29 |
+
from langdetect import detect, LangDetectException
|
| 30 |
+
|
| 31 |
+
from config import (
|
| 32 |
+
NLLB_MODEL,
|
| 33 |
+
LANGUAGE_MAP,
|
| 34 |
+
SUPPORTED_LANGUAGES,
|
| 35 |
+
MAX_TRANSLATION_LENGTH,
|
| 36 |
+
get_nllb_code,
|
| 37 |
+
get_language_name,
|
| 38 |
+
is_english,
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# Configure logging
|
| 42 |
+
logging.basicConfig(level=logging.INFO)
|
| 43 |
+
logger = logging.getLogger(__name__)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class TranslationService:
|
| 47 |
+
"""
|
| 48 |
+
Service for translating text between languages using NLLB-200.
|
| 49 |
+
|
| 50 |
+
The model is lazily loaded on first use to save memory during startup.
|
| 51 |
+
All processing happens locally - no API costs!
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
def __init__(self, model_name: str = NLLB_MODEL):
|
| 55 |
+
"""
|
| 56 |
+
Initialize the translation service.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
model_name: Hugging Face model identifier for NLLB-200
|
| 60 |
+
"""
|
| 61 |
+
self.model_name = model_name
|
| 62 |
+
self._model = None
|
| 63 |
+
self._tokenizer = None
|
| 64 |
+
self._device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 65 |
+
|
| 66 |
+
logger.info(f"TranslationService initialized (device: {self._device})")
|
| 67 |
+
|
| 68 |
+
def _load_model(self):
|
| 69 |
+
"""
|
| 70 |
+
Load the NLLB-200 model and tokenizer.
|
| 71 |
+
Called lazily on first translation request.
|
| 72 |
+
"""
|
| 73 |
+
if self._model is not None:
|
| 74 |
+
return
|
| 75 |
+
|
| 76 |
+
logger.info(f"Loading NLLB-200 model: {self.model_name}")
|
| 77 |
+
logger.info("This may take a few minutes on first run (downloading ~2.4GB model)...")
|
| 78 |
+
|
| 79 |
+
try:
|
| 80 |
+
# Load tokenizer
|
| 81 |
+
self._tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 82 |
+
|
| 83 |
+
# Load model with memory optimizations
|
| 84 |
+
self._model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 85 |
+
self.model_name,
|
| 86 |
+
torch_dtype=torch.float32, # Use float32 for CPU compatibility
|
| 87 |
+
low_cpu_mem_usage=True
|
| 88 |
+
)
|
| 89 |
+
self._model.to(self._device)
|
| 90 |
+
|
| 91 |
+
logger.info("NLLB-200 model loaded successfully!")
|
| 92 |
+
|
| 93 |
+
except Exception as e:
|
| 94 |
+
logger.error(f"Failed to load NLLB-200 model: {e}")
|
| 95 |
+
raise Exception(f"Could not load translation model: {str(e)}")
|
| 96 |
+
|
| 97 |
+
def detect_language(self, text: str) -> dict:
|
| 98 |
+
"""
|
| 99 |
+
Detect the language of the given text.
|
| 100 |
+
|
| 101 |
+
Args:
|
| 102 |
+
text: Text to detect language for
|
| 103 |
+
|
| 104 |
+
Returns:
|
| 105 |
+
Dictionary with:
|
| 106 |
+
- code: Normalized language code (e.g., "hin")
|
| 107 |
+
- name: Language name (e.g., "Hindi")
|
| 108 |
+
- confidence: Detection confidence (if available)
|
| 109 |
+
"""
|
| 110 |
+
try:
|
| 111 |
+
# Use langdetect library
|
| 112 |
+
detected = detect(text)
|
| 113 |
+
|
| 114 |
+
# Map to our language codes
|
| 115 |
+
lang_mapping = {
|
| 116 |
+
"en": "eng",
|
| 117 |
+
"hi": "hin",
|
| 118 |
+
"ta": "tam",
|
| 119 |
+
"te": "tel",
|
| 120 |
+
"kn": "kan",
|
| 121 |
+
"ml": "mal",
|
| 122 |
+
"gu": "guj",
|
| 123 |
+
"bn": "ben",
|
| 124 |
+
"mr": "mar",
|
| 125 |
+
"pa": "pan",
|
| 126 |
+
"ur": "urd",
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
code = lang_mapping.get(detected, detected)
|
| 130 |
+
name = get_language_name(code)
|
| 131 |
+
|
| 132 |
+
logger.info(f"Detected language: {name} ({code})")
|
| 133 |
+
|
| 134 |
+
return {
|
| 135 |
+
"code": code,
|
| 136 |
+
"name": name,
|
| 137 |
+
"raw_code": detected
|
| 138 |
+
}
|
| 139 |
+
|
| 140 |
+
except LangDetectException as e:
|
| 141 |
+
logger.warning(f"Language detection failed: {e}")
|
| 142 |
+
# Default to English if detection fails
|
| 143 |
+
return {
|
| 144 |
+
"code": "eng",
|
| 145 |
+
"name": "English",
|
| 146 |
+
"raw_code": "en"
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
def translate(
|
| 150 |
+
self,
|
| 151 |
+
text: str,
|
| 152 |
+
source_lang: str,
|
| 153 |
+
target_lang: str,
|
| 154 |
+
max_length: int = 1024
|
| 155 |
+
) -> str:
|
| 156 |
+
"""
|
| 157 |
+
Translate text from source language to target language.
|
| 158 |
+
|
| 159 |
+
Args:
|
| 160 |
+
text: Text to translate
|
| 161 |
+
source_lang: Source language code (e.g., "hin", "eng")
|
| 162 |
+
target_lang: Target language code (e.g., "eng", "tam")
|
| 163 |
+
max_length: Maximum output length
|
| 164 |
+
|
| 165 |
+
Returns:
|
| 166 |
+
Translated text
|
| 167 |
+
|
| 168 |
+
Raises:
|
| 169 |
+
ValueError: If language codes are invalid
|
| 170 |
+
Exception: If translation fails
|
| 171 |
+
"""
|
| 172 |
+
# Ensure model is loaded
|
| 173 |
+
self._load_model()
|
| 174 |
+
|
| 175 |
+
# Validate and get NLLB codes
|
| 176 |
+
try:
|
| 177 |
+
source_nllb = get_nllb_code(source_lang)
|
| 178 |
+
target_nllb = get_nllb_code(target_lang)
|
| 179 |
+
except ValueError as e:
|
| 180 |
+
raise ValueError(str(e))
|
| 181 |
+
|
| 182 |
+
logger.info(f"Translating from {source_lang} to {target_lang}")
|
| 183 |
+
|
| 184 |
+
# Handle long texts by chunking
|
| 185 |
+
if len(text) > MAX_TRANSLATION_LENGTH:
|
| 186 |
+
logger.info(f"Text too long ({len(text)} chars), chunking...")
|
| 187 |
+
return self._translate_long_text(text, source_lang, target_lang, max_length)
|
| 188 |
+
|
| 189 |
+
try:
|
| 190 |
+
# Set source language for tokenizer
|
| 191 |
+
self._tokenizer.src_lang = source_nllb
|
| 192 |
+
|
| 193 |
+
# Tokenize input
|
| 194 |
+
inputs = self._tokenizer(
|
| 195 |
+
text,
|
| 196 |
+
return_tensors="pt",
|
| 197 |
+
padding=True,
|
| 198 |
+
truncation=True,
|
| 199 |
+
max_length=max_length
|
| 200 |
+
)
|
| 201 |
+
inputs = {k: v.to(self._device) for k, v in inputs.items()}
|
| 202 |
+
|
| 203 |
+
# Get target language token ID
|
| 204 |
+
forced_bos_token_id = self._tokenizer.convert_tokens_to_ids(target_nllb)
|
| 205 |
+
|
| 206 |
+
# Generate translation
|
| 207 |
+
with torch.no_grad():
|
| 208 |
+
outputs = self._model.generate(
|
| 209 |
+
**inputs,
|
| 210 |
+
forced_bos_token_id=forced_bos_token_id,
|
| 211 |
+
max_length=max_length,
|
| 212 |
+
num_beams=5,
|
| 213 |
+
length_penalty=1.0,
|
| 214 |
+
early_stopping=True
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
# Decode output
|
| 218 |
+
translated = self._tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 219 |
+
|
| 220 |
+
logger.info(f"Translation complete ({len(translated)} chars)")
|
| 221 |
+
|
| 222 |
+
return translated.strip()
|
| 223 |
+
|
| 224 |
+
except Exception as e:
|
| 225 |
+
logger.error(f"Translation failed: {e}")
|
| 226 |
+
raise Exception(f"Could not translate text: {str(e)}")
|
| 227 |
+
|
| 228 |
+
def _translate_long_text(
|
| 229 |
+
self,
|
| 230 |
+
text: str,
|
| 231 |
+
source_lang: str,
|
| 232 |
+
target_lang: str,
|
| 233 |
+
max_length: int = 1024
|
| 234 |
+
) -> str:
|
| 235 |
+
"""
|
| 236 |
+
Translate long text by splitting into chunks.
|
| 237 |
+
|
| 238 |
+
Args:
|
| 239 |
+
text: Long text to translate
|
| 240 |
+
source_lang: Source language code
|
| 241 |
+
target_lang: Target language code
|
| 242 |
+
max_length: Maximum output length per chunk
|
| 243 |
+
|
| 244 |
+
Returns:
|
| 245 |
+
Concatenated translated text
|
| 246 |
+
"""
|
| 247 |
+
# Split text into sentences (rough approximation)
|
| 248 |
+
sentences = text.replace("।", ".").replace("॥", ".").split(".")
|
| 249 |
+
|
| 250 |
+
chunks = []
|
| 251 |
+
current_chunk = ""
|
| 252 |
+
|
| 253 |
+
for sentence in sentences:
|
| 254 |
+
sentence = sentence.strip()
|
| 255 |
+
if not sentence:
|
| 256 |
+
continue
|
| 257 |
+
|
| 258 |
+
# Check if adding this sentence would exceed limit
|
| 259 |
+
if len(current_chunk) + len(sentence) + 2 > MAX_TRANSLATION_LENGTH:
|
| 260 |
+
if current_chunk:
|
| 261 |
+
chunks.append(current_chunk)
|
| 262 |
+
current_chunk = sentence
|
| 263 |
+
else:
|
| 264 |
+
current_chunk = current_chunk + ". " + sentence if current_chunk else sentence
|
| 265 |
+
|
| 266 |
+
if current_chunk:
|
| 267 |
+
chunks.append(current_chunk)
|
| 268 |
+
|
| 269 |
+
# Translate each chunk
|
| 270 |
+
translated_chunks = []
|
| 271 |
+
for i, chunk in enumerate(chunks):
|
| 272 |
+
logger.info(f"Translating chunk {i+1}/{len(chunks)}")
|
| 273 |
+
translated = self.translate(chunk, source_lang, target_lang, max_length)
|
| 274 |
+
translated_chunks.append(translated)
|
| 275 |
+
|
| 276 |
+
return " ".join(translated_chunks)
|
| 277 |
+
|
| 278 |
+
def translate_to_english(self, text: str, source_lang: str) -> str:
|
| 279 |
+
"""
|
| 280 |
+
Convenience method to translate text to English.
|
| 281 |
+
|
| 282 |
+
Args:
|
| 283 |
+
text: Text to translate
|
| 284 |
+
source_lang: Source language code
|
| 285 |
+
|
| 286 |
+
Returns:
|
| 287 |
+
English translation
|
| 288 |
+
"""
|
| 289 |
+
if is_english(source_lang):
|
| 290 |
+
return text # Already English
|
| 291 |
+
|
| 292 |
+
return self.translate(text, source_lang, "eng")
|
| 293 |
+
|
| 294 |
+
def translate_from_english(self, text: str, target_lang: str) -> str:
|
| 295 |
+
"""
|
| 296 |
+
Convenience method to translate English text to another language.
|
| 297 |
+
|
| 298 |
+
Args:
|
| 299 |
+
text: English text to translate
|
| 300 |
+
target_lang: Target language code
|
| 301 |
+
|
| 302 |
+
Returns:
|
| 303 |
+
Translated text in target language
|
| 304 |
+
"""
|
| 305 |
+
if is_english(target_lang):
|
| 306 |
+
return text # Already English
|
| 307 |
+
|
| 308 |
+
return self.translate(text, "eng", target_lang)
|
| 309 |
+
|
| 310 |
+
def get_supported_languages(self) -> list:
|
| 311 |
+
"""
|
| 312 |
+
Get list of supported languages.
|
| 313 |
+
|
| 314 |
+
Returns:
|
| 315 |
+
List of language dictionaries with code, name, and nllb_code
|
| 316 |
+
"""
|
| 317 |
+
return SUPPORTED_LANGUAGES.copy()
|
| 318 |
+
|
| 319 |
+
def is_model_loaded(self) -> bool:
|
| 320 |
+
"""Check if the NLLB model is currently loaded."""
|
| 321 |
+
return self._model is not None
|
| 322 |
+
|
| 323 |
+
def warmup(self):
|
| 324 |
+
"""
|
| 325 |
+
Pre-load the model to avoid delay on first request.
|
| 326 |
+
Call this during application startup if desired.
|
| 327 |
+
"""
|
| 328 |
+
logger.info("Warming up TranslationService...")
|
| 329 |
+
self._load_model()
|
| 330 |
+
logger.info("TranslationService warmup complete!")
|