Update app.py
Browse files
app.py
CHANGED
|
@@ -3,33 +3,70 @@ import numpy as np
|
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
import gc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Device
|
| 8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 10 |
|
|
|
|
|
|
|
| 11 |
# Lazy import (to avoid long startup if unused)
|
| 12 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionPipeline
|
| 13 |
-
from diffusers import StableDiffusionInstructPix2PixPipeline
|
| 14 |
from controlnet_aux import LineartDetector, LineartAnimeDetector
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
# ===== Model & Config =====
|
| 17 |
-
|
|
|
|
| 18 |
LINEART_DETECTOR = None
|
| 19 |
LINEART_ANIME_DETECTOR = None
|
| 20 |
CURRENT_T2I_PIPE = None
|
| 21 |
CURRENT_T2I_MODEL = None
|
| 22 |
-
CURRENT_PIX2PIX_PIPE = None
|
| 23 |
-
CURRENT_PIX2PIX_MODEL = None
|
| 24 |
|
| 25 |
def get_pipeline(model_name: str, anime_model: bool = False):
|
| 26 |
"""Get or create a ControlNet pipeline for the given model and anime flag"""
|
|
|
|
|
|
|
| 27 |
key = (model_name, anime_model)
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
print(f"Loading ControlNet pipeline for model: {model_name}, anime: {anime_model}")
|
| 33 |
|
| 34 |
try:
|
| 35 |
# โหลด ControlNet ที่เหมาะสม
|
|
@@ -50,20 +87,111 @@ def get_pipeline(model_name: str, anime_model: bool = False):
|
|
| 50 |
controlnet=controlnet,
|
| 51 |
torch_dtype=dtype,
|
| 52 |
safety_checker=None,
|
| 53 |
-
requires_safety_checker=False
|
|
|
|
|
|
|
| 54 |
).to(device)
|
| 55 |
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
if device.type == "cuda":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
pipe.enable_model_cpu_offload()
|
| 59 |
|
| 60 |
-
#
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
return pipe
|
| 63 |
|
| 64 |
except Exception as e:
|
| 65 |
print(f"Error loading ControlNet pipeline: {e}")
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
def load_lineart_detectors():
|
| 69 |
"""Load lineart detectors if not already loaded"""
|
|
@@ -83,56 +211,97 @@ def load_t2i_model(model_name: str):
|
|
| 83 |
if CURRENT_T2I_MODEL == model_name and CURRENT_T2I_PIPE is not None:
|
| 84 |
return
|
| 85 |
if CURRENT_T2I_PIPE is not None:
|
|
|
|
| 86 |
del CURRENT_T2I_PIPE
|
| 87 |
CURRENT_T2I_PIPE = None
|
| 88 |
gc.collect()
|
| 89 |
if torch.cuda.is_available():
|
| 90 |
torch.cuda.empty_cache()
|
| 91 |
|
| 92 |
-
print(f"Loading T2I model: {model_name}")
|
| 93 |
CURRENT_T2I_PIPE = StableDiffusionPipeline.from_pretrained(
|
| 94 |
-
model_name,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
).to(device)
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
if device.type == "cuda":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
CURRENT_T2I_PIPE.enable_model_cpu_offload()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
CURRENT_T2I_MODEL = model_name
|
| 100 |
|
| 101 |
except Exception as e:
|
| 102 |
print(f"Error loading T2I model {model_name}: {e}")
|
| 103 |
-
|
| 104 |
-
CURRENT_T2I_PIPE = None
|
| 105 |
-
CURRENT_T2I_MODEL = None
|
| 106 |
-
raise
|
| 107 |
-
|
| 108 |
-
def load_pix2pix_model():
|
| 109 |
-
"""Load Instruct-Pix2Pix model for image editing"""
|
| 110 |
-
global CURRENT_PIX2PIX_PIPE, CURRENT_PIX2PIX_MODEL
|
| 111 |
-
|
| 112 |
-
if CURRENT_PIX2PIX_PIPE is not None:
|
| 113 |
-
return CURRENT_PIX2PIX_PIPE
|
| 114 |
-
|
| 115 |
-
try:
|
| 116 |
-
print("Loading Instruct-Pix2Pix model...")
|
| 117 |
-
CURRENT_PIX2PIX_PIPE = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
| 118 |
-
"timbrooks/instruct-pix2pix",
|
| 119 |
-
torch_dtype=dtype,
|
| 120 |
-
safety_checker=None,
|
| 121 |
-
requires_safety_checker=False
|
| 122 |
-
).to(device)
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
# ===== Utils =====
|
| 138 |
def is_lineart(img: Image.Image) -> bool:
|
|
@@ -161,97 +330,82 @@ def resize_image(image, max_size=512):
|
|
| 161 |
# ===== Functions =====
|
| 162 |
def colorize(sketch, base_model, anime_model, prompt, seed, steps, scale, cn_weight):
|
| 163 |
try:
|
| 164 |
-
# โหลด pipeline ที่เหมาะสม
|
| 165 |
pipe = get_pipeline(base_model, anime_model)
|
| 166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
# สกัด lineart
|
| 168 |
lineart = extract_lineart(sketch, anime_model)
|
| 169 |
|
| 170 |
-
# สร้างภาพ
|
| 171 |
gen = torch.Generator(device=device).manual_seed(int(seed))
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
return out, lineart
|
| 182 |
except Exception as e:
|
| 183 |
-
print(f"Error in colorize: {e}")
|
| 184 |
-
# ส่งกลับรูปภาพว่างพร้อมแสดง error
|
| 185 |
error_img = Image.new('RGB', (512, 512), color='red')
|
| 186 |
-
error_text = f"Error: {str(e)[:50]}..."
|
| 187 |
return error_img, Image.new('RGB', (512, 512), color='gray')
|
| 188 |
|
| 189 |
def t2i(prompt, model, seed, steps, scale, w, h):
|
| 190 |
try:
|
| 191 |
load_t2i_model(model)
|
| 192 |
-
|
| 193 |
-
return CURRENT_T2I_PIPE(
|
| 194 |
-
prompt,
|
| 195 |
-
width=int(w),
|
| 196 |
-
height=int(h),
|
| 197 |
-
num_inference_steps=int(steps),
|
| 198 |
-
guidance_scale=float(scale),
|
| 199 |
-
generator=gen
|
| 200 |
-
).images[0]
|
| 201 |
-
except Exception as e:
|
| 202 |
-
print(f"Error in t2i: {e}")
|
| 203 |
-
# ส่งกลับรูปภาพว่างพร้อมแสดง error
|
| 204 |
-
error_img = Image.new('RGB', (int(w), int(h)), color='red')
|
| 205 |
-
return error_img
|
| 206 |
-
|
| 207 |
-
def pix2pix_edit(image, instruction, seed, steps, scale, image_scale):
|
| 208 |
-
"""Edit image using Instruct-Pix2Pix"""
|
| 209 |
-
try:
|
| 210 |
-
# โหลดโมเดล
|
| 211 |
-
pipe = load_pix2pix_model()
|
| 212 |
|
| 213 |
-
# ปรับขนาดภาพ
|
| 214 |
-
image = resize_image(image, max_size=768)
|
| 215 |
-
|
| 216 |
-
# สร้าง generator
|
| 217 |
gen = torch.Generator(device=device).manual_seed(int(seed))
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
|
| 229 |
-
|
|
|
|
| 230 |
|
|
|
|
| 231 |
except Exception as e:
|
| 232 |
-
print(f"Error in
|
| 233 |
-
|
| 234 |
-
if image:
|
| 235 |
-
error_img = Image.new('RGB', image.size, color='red')
|
| 236 |
-
else:
|
| 237 |
-
error_img = Image.new('RGB', (512, 512), color='red')
|
| 238 |
return error_img
|
| 239 |
|
| 240 |
# ===== Function to unload all models =====
|
| 241 |
def unload_all_models():
|
| 242 |
-
global
|
|
|
|
| 243 |
global CURRENT_T2I_PIPE, CURRENT_T2I_MODEL
|
| 244 |
-
global CURRENT_PIX2PIX_PIPE, CURRENT_PIX2PIX_MODEL
|
| 245 |
|
| 246 |
print("Unloading all models from memory...")
|
| 247 |
|
| 248 |
-
# Unload ControlNet
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
del
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
|
|
|
| 255 |
|
| 256 |
# Unload lineart detectors
|
| 257 |
try:
|
|
@@ -275,39 +429,43 @@ def unload_all_models():
|
|
| 275 |
CURRENT_T2I_PIPE = None
|
| 276 |
except:
|
| 277 |
pass
|
| 278 |
-
|
| 279 |
CURRENT_T2I_MODEL = None
|
| 280 |
|
| 281 |
-
# Unload Pix2Pix model
|
| 282 |
-
try:
|
| 283 |
-
if CURRENT_PIX2PIX_PIPE is not None:
|
| 284 |
-
del CURRENT_PIX2PIX_PIPE
|
| 285 |
-
CURRENT_PIX2PIX_PIPE = None
|
| 286 |
-
except:
|
| 287 |
-
pass
|
| 288 |
-
|
| 289 |
-
CURRENT_PIX2PIX_MODEL = None
|
| 290 |
-
|
| 291 |
# Force garbage collection
|
| 292 |
gc.collect()
|
| 293 |
if torch.cuda.is_available():
|
| 294 |
torch.cuda.empty_cache()
|
| 295 |
allocated = torch.cuda.memory_allocated() / 1024**3
|
| 296 |
-
|
|
|
|
| 297 |
|
| 298 |
return "✅ All models unloaded from memory!"
|
| 299 |
|
| 300 |
# ===== Gradio UI =====
|
| 301 |
-
with gr.Blocks() as demo:
|
| 302 |
gr.Markdown("# 🎨 Advanced Image Generation & Editing Suite")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
|
| 304 |
# Add unload button at the top
|
| 305 |
with gr.Row():
|
| 306 |
-
unload_btn = gr.Button("🗑️ Unload All Models", variant="stop")
|
| 307 |
-
status_text = gr.Textbox(label="Status", interactive=False)
|
| 308 |
unload_btn.click(unload_all_models, outputs=status_text)
|
| 309 |
|
| 310 |
with gr.Tab("🎨 Colorize Sketch"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
with gr.Row():
|
| 312 |
inp = gr.Image(label="Input Sketch/Image", type="pil")
|
| 313 |
out = gr.Image(label="Colored Output")
|
|
@@ -316,15 +474,14 @@ with gr.Blocks() as demo:
|
|
| 316 |
sketch_out = gr.Image(label="Detected Lineart", type="pil")
|
| 317 |
|
| 318 |
with gr.Row():
|
| 319 |
-
# เอาโมเดล stabilityai/stable-diffusion-2-1 และ runwayml/stable-diffusion-v1-5 ออกแล้ว
|
| 320 |
base_model = gr.Dropdown(
|
| 321 |
choices=[
|
| 322 |
-
"admruul/anything-v3.0",
|
| 323 |
"digiplay/ChikMix_V3",
|
| 324 |
"digiplay/chilloutmix_NiPrunedFp16Fix",
|
| 325 |
-
"gsdf/Counterfeit-V2.5"
|
|
|
|
| 326 |
],
|
| 327 |
-
value="
|
| 328 |
label="Base Model"
|
| 329 |
)
|
| 330 |
anime_chk = gr.Checkbox(label="Use Anime ControlNet", value=True)
|
|
@@ -350,20 +507,28 @@ with gr.Blocks() as demo:
|
|
| 350 |
)
|
| 351 |
|
| 352 |
with gr.Tab("🖼️ Text-to-Image"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
with gr.Row():
|
| 354 |
t2i_out = gr.Image(label="Output", type="pil")
|
| 355 |
|
| 356 |
with gr.Row():
|
| 357 |
-
t2i_prompt = gr.Textbox(
|
| 358 |
-
|
|
|
|
|
|
|
|
|
|
| 359 |
t2i_model = gr.Dropdown(
|
| 360 |
choices=[
|
| 361 |
-
"admruul/anything-v3.0",
|
| 362 |
"digiplay/ChikMix_V3",
|
| 363 |
"digiplay/chilloutmix_NiPrunedFp16Fix",
|
| 364 |
-
"gsdf/Counterfeit-V2.5"
|
|
|
|
| 365 |
],
|
| 366 |
-
value="
|
| 367 |
label="Model"
|
| 368 |
)
|
| 369 |
|
|
@@ -382,56 +547,14 @@ with gr.Blocks() as demo:
|
|
| 382 |
[t2i_prompt, t2i_model, t2i_seed, t2i_steps, t2i_scale, w, h],
|
| 383 |
t2i_out
|
| 384 |
)
|
| 385 |
-
|
| 386 |
-
with gr.Tab("🔄 Instruct-Pix2Pix"):
|
| 387 |
-
gr.Markdown("### Edit Images with Text Instructions")
|
| 388 |
-
gr.Markdown("ตัวอย่างคำสั่ง: 'make it winter', 'turn day into night', 'add sunglasses', 'make it look like a painting'")
|
| 389 |
-
|
| 390 |
-
with gr.Row():
|
| 391 |
-
with gr.Column():
|
| 392 |
-
pix2pix_input = gr.Image(label="Input Image", type="pil")
|
| 393 |
-
pix2pix_instruction = gr.Textbox(
|
| 394 |
-
label="Edit Instruction",
|
| 395 |
-
placeholder="e.g., make it winter, turn day into night, add sunglasses...",
|
| 396 |
-
lines=2
|
| 397 |
-
)
|
| 398 |
-
|
| 399 |
-
with gr.Row():
|
| 400 |
-
pix2pix_seed = gr.Number(value=42, label="Seed")
|
| 401 |
-
pix2pix_steps = gr.Slider(10, 100, 50, step=5, label="Steps")
|
| 402 |
-
|
| 403 |
-
with gr.Row():
|
| 404 |
-
pix2pix_scale = gr.Slider(1, 20, 7.5, step=0.5, label="Text Guidance Scale")
|
| 405 |
-
pix2pix_image_scale = gr.Slider(1, 5, 1.5, step=0.1, label="Image Guidance Scale")
|
| 406 |
-
|
| 407 |
-
pix2pix_btn = gr.Button("🔄 Edit Image", variant="primary")
|
| 408 |
-
|
| 409 |
-
with gr.Column():
|
| 410 |
-
pix2pix_output = gr.Image(label="Edited Image", type="pil")
|
| 411 |
-
|
| 412 |
-
# ตัวอย่างคำสั่งที่พบบ่อย
|
| 413 |
-
with gr.Row():
|
| 414 |
-
gr.Examples(
|
| 415 |
-
examples=[
|
| 416 |
-
["make it winter", 42, 50, 7.5, 1.5],
|
| 417 |
-
["turn day into night", 42, 50, 7.5, 1.5],
|
| 418 |
-
["make it look like a painting", 42, 50, 7.5, 1.5],
|
| 419 |
-
["add sunglasses", 42, 50, 7.5, 1.5],
|
| 420 |
-
["make it cyberpunk style", 42, 50, 7.5, 1.5],
|
| 421 |
-
["change hair color to blue", 42, 50, 7.5, 1.5],
|
| 422 |
-
],
|
| 423 |
-
inputs=[pix2pix_instruction, pix2pix_seed, pix2pix_steps, pix2pix_scale, pix2pix_image_scale],
|
| 424 |
-
label="Quick Examples"
|
| 425 |
-
)
|
| 426 |
-
|
| 427 |
-
pix2pix_btn.click(
|
| 428 |
-
pix2pix_edit,
|
| 429 |
-
[pix2pix_input, pix2pix_instruction, pix2pix_seed, pix2pix_steps, pix2pix_scale, pix2pix_image_scale],
|
| 430 |
-
pix2pix_output
|
| 431 |
-
)
|
| 432 |
|
| 433 |
-
# เพิ่ม error handling ในการ launch
|
| 434 |
try:
|
| 435 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
except Exception as e:
|
| 437 |
-
print(f"Error launching Gradio app: {e}")
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
import gc
|
| 6 |
+
import os
|
| 7 |
+
import warnings
|
| 8 |
+
|
| 9 |
+
# Suppress specific warnings
|
| 10 |
+
warnings.filterwarnings('ignore', category=FutureWarning)
|
| 11 |
+
warnings.filterwarnings('ignore', category=UserWarning)
|
| 12 |
+
warnings.filterwarnings('ignore', message='.*torch_dtype.*deprecated.*')
|
| 13 |
+
warnings.filterwarnings('ignore', message='.*CLIPFeatureExtractor.*deprecated.*')
|
| 14 |
+
|
| 15 |
+
# Performance optimizations
|
| 16 |
+
if torch.cuda.is_available():
|
| 17 |
+
torch.backends.cudnn.benchmark = True
|
| 18 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 19 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 20 |
|
| 21 |
# Device
|
| 22 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 23 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 24 |
|
| 25 |
+
print(f"🖥️ Device: {device} | dtype: {dtype}")
|
| 26 |
+
|
| 27 |
# Lazy import (to avoid long startup if unused)
|
| 28 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionPipeline
|
|
|
|
| 29 |
from controlnet_aux import LineartDetector, LineartAnimeDetector
|
| 30 |
|
| 31 |
+
# Memory optimization
|
| 32 |
+
if torch.cuda.is_available():
|
| 33 |
+
torch.cuda.empty_cache()
|
| 34 |
+
# Set memory fraction to prevent OOM
|
| 35 |
+
torch.cuda.set_per_process_memory_fraction(0.95)
|
| 36 |
+
print(f"🔥 GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
|
| 37 |
+
else:
|
| 38 |
+
print("⚠️ Running on CPU - Image generation will be significantly slower")
|
| 39 |
+
|
| 40 |
# ===== Model & Config =====
|
| 41 |
+
CURRENT_CONTROLNET_PIPE = None
|
| 42 |
+
CURRENT_CONTROLNET_KEY = None # (model_name, is_anime)
|
| 43 |
LINEART_DETECTOR = None
|
| 44 |
LINEART_ANIME_DETECTOR = None
|
| 45 |
CURRENT_T2I_PIPE = None
|
| 46 |
CURRENT_T2I_MODEL = None
|
|
|
|
|
|
|
| 47 |
|
| 48 |
def get_pipeline(model_name: str, anime_model: bool = False):
|
| 49 |
"""Get or create a ControlNet pipeline for the given model and anime flag"""
|
| 50 |
+
global CURRENT_CONTROLNET_PIPE, CURRENT_CONTROLNET_KEY
|
| 51 |
+
|
| 52 |
key = (model_name, anime_model)
|
| 53 |
|
| 54 |
+
# ถ้าเป็นโมเดลเดิมให้ใช้ต่อ
|
| 55 |
+
if CURRENT_CONTROLNET_KEY == key and CURRENT_CONTROLNET_PIPE is not None:
|
| 56 |
+
print(f"✅ Reusing existing ControlNet pipeline: {model_name}, anime: {anime_model}")
|
| 57 |
+
return CURRENT_CONTROLNET_PIPE
|
| 58 |
+
|
| 59 |
+
# ถ้าเป็นโมเดลใหม่ ลบอันเก่าก่อน
|
| 60 |
+
if CURRENT_CONTROLNET_PIPE is not None:
|
| 61 |
+
print(f"🗑️ Unloading old ControlNet pipeline: {CURRENT_CONTROLNET_KEY}")
|
| 62 |
+
del CURRENT_CONTROLNET_PIPE
|
| 63 |
+
CURRENT_CONTROLNET_PIPE = None
|
| 64 |
+
CURRENT_CONTROLNET_KEY = None
|
| 65 |
+
gc.collect()
|
| 66 |
+
if torch.cuda.is_available():
|
| 67 |
+
torch.cuda.empty_cache()
|
| 68 |
|
| 69 |
+
print(f"📥 Loading ControlNet pipeline for model: {model_name}, anime: {anime_model}")
|
| 70 |
|
| 71 |
try:
|
| 72 |
# โหลด ControlNet ที่เหมาะสม
|
|
|
|
| 87 |
controlnet=controlnet,
|
| 88 |
torch_dtype=dtype,
|
| 89 |
safety_checker=None,
|
| 90 |
+
requires_safety_checker=False,
|
| 91 |
+
use_safetensors=True,
|
| 92 |
+
variant="fp16" if dtype == torch.float16 else None
|
| 93 |
).to(device)
|
| 94 |
|
| 95 |
+
# Aggressive memory optimizations
|
| 96 |
+
pipe.enable_attention_slicing(slice_size="max")
|
| 97 |
+
|
| 98 |
+
# Use new API for VAE slicing
|
| 99 |
+
if hasattr(pipe, 'vae') and hasattr(pipe.vae, 'enable_slicing'):
|
| 100 |
+
pipe.vae.enable_slicing()
|
| 101 |
+
else:
|
| 102 |
+
# Fallback for older versions
|
| 103 |
+
try:
|
| 104 |
+
pipe.enable_vae_slicing()
|
| 105 |
+
except:
|
| 106 |
+
pass
|
| 107 |
+
|
| 108 |
if device.type == "cuda":
|
| 109 |
+
# Use xformers if available for better performance
|
| 110 |
+
try:
|
| 111 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 112 |
+
print("✅ xFormers enabled for ControlNet")
|
| 113 |
+
except:
|
| 114 |
+
print("⚠️ xFormers not available, using standard attention")
|
| 115 |
+
pass
|
| 116 |
+
|
| 117 |
+
# Enable model CPU offload for memory efficiency
|
| 118 |
pipe.enable_model_cpu_offload()
|
| 119 |
|
| 120 |
+
# Compile model for faster inference (PyTorch 2.0+)
|
| 121 |
+
if hasattr(torch, 'compile') and device.type == "cuda":
|
| 122 |
+
try:
|
| 123 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 124 |
+
print("✅ Model compiled with torch.compile")
|
| 125 |
+
except Exception as e:
|
| 126 |
+
print(f"⚠️ torch.compile not available: {e}")
|
| 127 |
+
pass
|
| 128 |
+
|
| 129 |
+
# เก็บ pipeline ปัจจุบัน
|
| 130 |
+
CURRENT_CONTROLNET_PIPE = pipe
|
| 131 |
+
CURRENT_CONTROLNET_KEY = key
|
| 132 |
return pipe
|
| 133 |
|
| 134 |
except Exception as e:
|
| 135 |
print(f"Error loading ControlNet pipeline: {e}")
|
| 136 |
+
print(f"⚠️ Trying to load without use_safetensors...")
|
| 137 |
+
|
| 138 |
+
# Retry without use_safetensors for models that don't support it
|
| 139 |
+
try:
|
| 140 |
+
if anime_model:
|
| 141 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 142 |
+
"lllyasviel/control_v11p_sd15s2_lineart_anime",
|
| 143 |
+
torch_dtype=dtype
|
| 144 |
+
).to(device)
|
| 145 |
+
else:
|
| 146 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 147 |
+
"lllyasviel/control_v11p_sd15_lineart",
|
| 148 |
+
torch_dtype=dtype
|
| 149 |
+
).to(device)
|
| 150 |
+
|
| 151 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 152 |
+
model_name,
|
| 153 |
+
controlnet=controlnet,
|
| 154 |
+
torch_dtype=dtype,
|
| 155 |
+
safety_checker=None,
|
| 156 |
+
requires_safety_checker=False
|
| 157 |
+
).to(device)
|
| 158 |
+
|
| 159 |
+
# Optimizations
|
| 160 |
+
pipe.enable_attention_slicing(slice_size="max")
|
| 161 |
+
if hasattr(pipe, 'vae') and hasattr(pipe.vae, 'enable_slicing'):
|
| 162 |
+
pipe.vae.enable_slicing()
|
| 163 |
+
else:
|
| 164 |
+
try:
|
| 165 |
+
pipe.enable_vae_slicing()
|
| 166 |
+
except:
|
| 167 |
+
pass
|
| 168 |
+
|
| 169 |
+
if device.type == "cuda":
|
| 170 |
+
try:
|
| 171 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 172 |
+
print("✅ xFormers enabled for ControlNet")
|
| 173 |
+
except:
|
| 174 |
+
print("⚠️ xFormers not available, using standard attention")
|
| 175 |
+
pass
|
| 176 |
+
pipe.enable_model_cpu_offload()
|
| 177 |
+
|
| 178 |
+
if hasattr(torch, 'compile') and device.type == "cuda":
|
| 179 |
+
try:
|
| 180 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 181 |
+
print("✅ Model compiled with torch.compile")
|
| 182 |
+
except Exception as compile_err:
|
| 183 |
+
print(f"⚠️ torch.compile not available: {compile_err}")
|
| 184 |
+
pass
|
| 185 |
+
|
| 186 |
+
CURRENT_CONTROLNET_PIPE = pipe
|
| 187 |
+
CURRENT_CONTROLNET_KEY = key
|
| 188 |
+
return pipe
|
| 189 |
+
|
| 190 |
+
except Exception as retry_e:
|
| 191 |
+
print(f"❌ Error loading ControlNet pipeline (retry): {retry_e}")
|
| 192 |
+
CURRENT_CONTROLNET_PIPE = None
|
| 193 |
+
CURRENT_CONTROLNET_KEY = None
|
| 194 |
+
raise
|
| 195 |
|
| 196 |
def load_lineart_detectors():
|
| 197 |
"""Load lineart detectors if not already loaded"""
|
|
|
|
| 211 |
if CURRENT_T2I_MODEL == model_name and CURRENT_T2I_PIPE is not None:
|
| 212 |
return
|
| 213 |
if CURRENT_T2I_PIPE is not None:
|
| 214 |
+
print(f"🗑️ Unloading old T2I model: {CURRENT_T2I_MODEL}")
|
| 215 |
del CURRENT_T2I_PIPE
|
| 216 |
CURRENT_T2I_PIPE = None
|
| 217 |
gc.collect()
|
| 218 |
if torch.cuda.is_available():
|
| 219 |
torch.cuda.empty_cache()
|
| 220 |
|
| 221 |
+
print(f"📥 Loading T2I model: {model_name}")
|
| 222 |
CURRENT_T2I_PIPE = StableDiffusionPipeline.from_pretrained(
|
| 223 |
+
model_name,
|
| 224 |
+
torch_dtype=dtype,
|
| 225 |
+
safety_checker=None,
|
| 226 |
+
requires_safety_checker=False,
|
| 227 |
+
use_safetensors=True,
|
| 228 |
+
variant="fp16" if dtype == torch.float16 else None
|
| 229 |
).to(device)
|
| 230 |
+
|
| 231 |
+
# Optimizations
|
| 232 |
+
CURRENT_T2I_PIPE.enable_attention_slicing(slice_size="max")
|
| 233 |
+
|
| 234 |
+
# Use new API for VAE slicing
|
| 235 |
+
if hasattr(CURRENT_T2I_PIPE, 'vae') and hasattr(CURRENT_T2I_PIPE.vae, 'enable_slicing'):
|
| 236 |
+
CURRENT_T2I_PIPE.vae.enable_slicing()
|
| 237 |
+
else:
|
| 238 |
+
try:
|
| 239 |
+
CURRENT_T2I_PIPE.enable_vae_slicing()
|
| 240 |
+
except:
|
| 241 |
+
pass
|
| 242 |
+
|
| 243 |
if device.type == "cuda":
|
| 244 |
+
try:
|
| 245 |
+
CURRENT_T2I_PIPE.enable_xformers_memory_efficient_attention()
|
| 246 |
+
print("✅ xFormers enabled for T2I")
|
| 247 |
+
except:
|
| 248 |
+
pass
|
| 249 |
CURRENT_T2I_PIPE.enable_model_cpu_offload()
|
| 250 |
+
|
| 251 |
+
# Compile if available
|
| 252 |
+
if hasattr(torch, 'compile') and device.type == "cuda":
|
| 253 |
+
try:
|
| 254 |
+
CURRENT_T2I_PIPE.unet = torch.compile(CURRENT_T2I_PIPE.unet, mode="reduce-overhead", fullgraph=True)
|
| 255 |
+
print("✅ T2I model compiled")
|
| 256 |
+
except:
|
| 257 |
+
pass
|
| 258 |
+
|
| 259 |
CURRENT_T2I_MODEL = model_name
|
| 260 |
|
| 261 |
except Exception as e:
|
| 262 |
print(f"Error loading T2I model {model_name}: {e}")
|
| 263 |
+
print(f"⚠️ Trying to load without use_safetensors...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
|
| 265 |
+
# Retry without use_safetensors
|
| 266 |
+
try:
|
| 267 |
+
CURRENT_T2I_PIPE = StableDiffusionPipeline.from_pretrained(
|
| 268 |
+
model_name,
|
| 269 |
+
torch_dtype=dtype,
|
| 270 |
+
safety_checker=None,
|
| 271 |
+
requires_safety_checker=False
|
| 272 |
+
).to(device)
|
| 273 |
+
|
| 274 |
+
CURRENT_T2I_PIPE.enable_attention_slicing(slice_size="max")
|
| 275 |
+
if hasattr(CURRENT_T2I_PIPE, 'vae') and hasattr(CURRENT_T2I_PIPE.vae, 'enable_slicing'):
|
| 276 |
+
CURRENT_T2I_PIPE.vae.enable_slicing()
|
| 277 |
+
else:
|
| 278 |
+
try:
|
| 279 |
+
CURRENT_T2I_PIPE.enable_vae_slicing()
|
| 280 |
+
except:
|
| 281 |
+
pass
|
| 282 |
+
|
| 283 |
+
if device.type == "cuda":
|
| 284 |
+
try:
|
| 285 |
+
CURRENT_T2I_PIPE.enable_xformers_memory_efficient_attention()
|
| 286 |
+
print("✅ xFormers enabled for T2I")
|
| 287 |
+
except:
|
| 288 |
+
pass
|
| 289 |
+
CURRENT_T2I_PIPE.enable_model_cpu_offload()
|
| 290 |
+
|
| 291 |
+
if hasattr(torch, 'compile') and device.type == "cuda":
|
| 292 |
+
try:
|
| 293 |
+
CURRENT_T2I_PIPE.unet = torch.compile(CURRENT_T2I_PIPE.unet, mode="reduce-overhead", fullgraph=True)
|
| 294 |
+
print("✅ T2I model compiled")
|
| 295 |
+
except:
|
| 296 |
+
pass
|
| 297 |
+
|
| 298 |
+
CURRENT_T2I_MODEL = model_name
|
| 299 |
+
|
| 300 |
+
except Exception as retry_e:
|
| 301 |
+
print(f"❌ Error loading T2I model (retry): {retry_e}")
|
| 302 |
+
CURRENT_T2I_PIPE = None
|
| 303 |
+
CURRENT_T2I_MODEL = None
|
| 304 |
+
raise
|
| 305 |
|
| 306 |
# ===== Utils =====
|
| 307 |
def is_lineart(img: Image.Image) -> bool:
|
|
|
|
| 330 |
# ===== Functions =====
|
| 331 |
def colorize(sketch, base_model, anime_model, prompt, seed, steps, scale, cn_weight):
|
| 332 |
try:
|
| 333 |
+
# โหลด pipeline ที่เหมาะสม (จะลบอันเก่าออกอัตโนมัติถ้าเปลี่ยนโมเดล)
|
| 334 |
pipe = get_pipeline(base_model, anime_model)
|
| 335 |
|
| 336 |
+
# แสดงโมเดลที่กำลังใช้
|
| 337 |
+
controlnet_type = "Anime" if anime_model else "Standard"
|
| 338 |
+
status_msg = f"🎨 Using: {base_model} + {controlnet_type} ControlNet"
|
| 339 |
+
print(status_msg)
|
| 340 |
+
|
| 341 |
# สกัด lineart
|
| 342 |
lineart = extract_lineart(sketch, anime_model)
|
| 343 |
|
| 344 |
+
# สร้างภาพ with optimizations
|
| 345 |
gen = torch.Generator(device=device).manual_seed(int(seed))
|
| 346 |
+
|
| 347 |
+
with torch.inference_mode():
|
| 348 |
+
out = pipe(
|
| 349 |
+
prompt,
|
| 350 |
+
image=lineart,
|
| 351 |
+
num_inference_steps=int(steps),
|
| 352 |
+
guidance_scale=float(scale),
|
| 353 |
+
controlnet_conditioning_scale=float(cn_weight),
|
| 354 |
+
generator=gen
|
| 355 |
+
).images[0]
|
| 356 |
+
|
| 357 |
+
# Clear cache after generation
|
| 358 |
+
if device.type == "cuda":
|
| 359 |
+
torch.cuda.empty_cache()
|
| 360 |
|
| 361 |
return out, lineart
|
| 362 |
except Exception as e:
|
| 363 |
+
print(f"❌ Error in colorize: {e}")
|
|
|
|
| 364 |
error_img = Image.new('RGB', (512, 512), color='red')
|
|
|
|
| 365 |
return error_img, Image.new('RGB', (512, 512), color='gray')
|
| 366 |
|
| 367 |
def t2i(prompt, model, seed, steps, scale, w, h):
|
| 368 |
try:
|
| 369 |
load_t2i_model(model)
|
| 370 |
+
print(f"🖼️ Using T2I model: {model}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
gen = torch.Generator(device=device).manual_seed(int(seed))
|
| 373 |
|
| 374 |
+
with torch.inference_mode():
|
| 375 |
+
result = CURRENT_T2I_PIPE(
|
| 376 |
+
prompt,
|
| 377 |
+
width=int(w),
|
| 378 |
+
height=int(h),
|
| 379 |
+
num_inference_steps=int(steps),
|
| 380 |
+
guidance_scale=float(scale),
|
| 381 |
+
generator=gen
|
| 382 |
+
).images[0]
|
| 383 |
|
| 384 |
+
if device.type == "cuda":
|
| 385 |
+
torch.cuda.empty_cache()
|
| 386 |
|
| 387 |
+
return result
|
| 388 |
except Exception as e:
|
| 389 |
+
print(f"❌ Error in t2i: {e}")
|
| 390 |
+
error_img = Image.new('RGB', (int(w), int(h)), color='red')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
return error_img
|
| 392 |
|
| 393 |
# ===== Function to unload all models =====
|
| 394 |
def unload_all_models():
|
| 395 |
+
global CURRENT_CONTROLNET_PIPE, CURRENT_CONTROLNET_KEY
|
| 396 |
+
global LINEART_DETECTOR, LINEART_ANIME_DETECTOR
|
| 397 |
global CURRENT_T2I_PIPE, CURRENT_T2I_MODEL
|
|
|
|
| 398 |
|
| 399 |
print("Unloading all models from memory...")
|
| 400 |
|
| 401 |
+
# Unload ControlNet pipeline
|
| 402 |
+
try:
|
| 403 |
+
if CURRENT_CONTROLNET_PIPE is not None:
|
| 404 |
+
del CURRENT_CONTROLNET_PIPE
|
| 405 |
+
CURRENT_CONTROLNET_PIPE = None
|
| 406 |
+
except:
|
| 407 |
+
pass
|
| 408 |
+
CURRENT_CONTROLNET_KEY = None
|
| 409 |
|
| 410 |
# Unload lineart detectors
|
| 411 |
try:
|
|
|
|
| 429 |
CURRENT_T2I_PIPE = None
|
| 430 |
except:
|
| 431 |
pass
|
|
|
|
| 432 |
CURRENT_T2I_MODEL = None
|
| 433 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
# Force garbage collection
|
| 435 |
gc.collect()
|
| 436 |
if torch.cuda.is_available():
|
| 437 |
torch.cuda.empty_cache()
|
| 438 |
allocated = torch.cuda.memory_allocated() / 1024**3
|
| 439 |
+
reserved = torch.cuda.memory_reserved() / 1024**3
|
| 440 |
+
print(f"💾 GPU memory - Allocated: {allocated:.2f} GB, Reserved: {reserved:.2f} GB")
|
| 441 |
|
| 442 |
return "✅ All models unloaded from memory!"
|
| 443 |
|
| 444 |
# ===== Gradio UI =====
|
| 445 |
+
with gr.Blocks(title="🎨 Advanced Image Generation Suite", theme=gr.themes.Soft()) as demo:
|
| 446 |
gr.Markdown("# 🎨 Advanced Image Generation & Editing Suite")
|
| 447 |
+
gr.Markdown("### Powered by Stable Diffusion & ControlNet")
|
| 448 |
+
|
| 449 |
+
# Add system info
|
| 450 |
+
if torch.cuda.is_available():
|
| 451 |
+
gpu_name = torch.cuda.get_device_name(0)
|
| 452 |
+
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
|
| 453 |
+
gr.Markdown(f"**GPU:** {gpu_name} ({gpu_memory:.1f} GB)")
|
| 454 |
+
else:
|
| 455 |
+
gr.Markdown("**⚠️ Running on CPU** - Generation will be slower")
|
| 456 |
|
| 457 |
# Add unload button at the top
|
| 458 |
with gr.Row():
|
| 459 |
+
unload_btn = gr.Button("🗑️ Unload All Models", variant="stop", scale=1)
|
| 460 |
+
status_text = gr.Textbox(label="Status", interactive=False, scale=3)
|
| 461 |
unload_btn.click(unload_all_models, outputs=status_text)
|
| 462 |
|
| 463 |
with gr.Tab("🎨 Colorize Sketch"):
|
| 464 |
+
gr.Markdown("""
|
| 465 |
+
### Convert your sketches to colored images using ControlNet
|
| 466 |
+
Upload a sketch or line art, and the AI will automatically colorize it based on your prompt.
|
| 467 |
+
""")
|
| 468 |
+
|
| 469 |
with gr.Row():
|
| 470 |
inp = gr.Image(label="Input Sketch/Image", type="pil")
|
| 471 |
out = gr.Image(label="Colored Output")
|
|
|
|
| 474 |
sketch_out = gr.Image(label="Detected Lineart", type="pil")
|
| 475 |
|
| 476 |
with gr.Row():
|
|
|
|
| 477 |
base_model = gr.Dropdown(
|
| 478 |
choices=[
|
|
|
|
| 479 |
"digiplay/ChikMix_V3",
|
| 480 |
"digiplay/chilloutmix_NiPrunedFp16Fix",
|
| 481 |
+
"gsdf/Counterfeit-V2.5",
|
| 482 |
+
"stablediffusionapi/anything-v5"
|
| 483 |
],
|
| 484 |
+
value="digiplay/ChikMix_V3",
|
| 485 |
label="Base Model"
|
| 486 |
)
|
| 487 |
anime_chk = gr.Checkbox(label="Use Anime ControlNet", value=True)
|
|
|
|
| 507 |
)
|
| 508 |
|
| 509 |
with gr.Tab("🖼️ Text-to-Image"):
|
| 510 |
+
gr.Markdown("""
|
| 511 |
+
### Generate images from text descriptions
|
| 512 |
+
Describe what you want to see, and the AI will create it for you.
|
| 513 |
+
""")
|
| 514 |
+
|
| 515 |
with gr.Row():
|
| 516 |
t2i_out = gr.Image(label="Output", type="pil")
|
| 517 |
|
| 518 |
with gr.Row():
|
| 519 |
+
t2i_prompt = gr.Textbox(
|
| 520 |
+
label="Prompt",
|
| 521 |
+
lines=3,
|
| 522 |
+
placeholder="e.g., a beautiful landscape with mountains and a lake at sunset, highly detailed, 4k"
|
| 523 |
+
)
|
| 524 |
t2i_model = gr.Dropdown(
|
| 525 |
choices=[
|
|
|
|
| 526 |
"digiplay/ChikMix_V3",
|
| 527 |
"digiplay/chilloutmix_NiPrunedFp16Fix",
|
| 528 |
+
"gsdf/Counterfeit-V2.5",
|
| 529 |
+
"stablediffusionapi/anything-v5"
|
| 530 |
],
|
| 531 |
+
value="digiplay/ChikMix_V3",
|
| 532 |
label="Model"
|
| 533 |
)
|
| 534 |
|
|
|
|
| 547 |
[t2i_prompt, t2i_model, t2i_seed, t2i_steps, t2i_scale, w, h],
|
| 548 |
t2i_out
|
| 549 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 550 |
|
|
|
|
| 551 |
try:
|
| 552 |
+
demo.launch(
|
| 553 |
+
server_name="0.0.0.0",
|
| 554 |
+
server_port=7860,
|
| 555 |
+
share=False,
|
| 556 |
+
show_error=True,
|
| 557 |
+
quiet=False
|
| 558 |
+
)
|
| 559 |
except Exception as e:
|
| 560 |
+
print(f"❌ Error launching Gradio app: {e}")
|