Update app.py
Browse files
app.py
CHANGED
|
@@ -20,20 +20,18 @@ if torch.cuda.is_available():
|
|
| 20 |
|
| 21 |
# Device
|
| 22 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 23 |
-
|
| 24 |
|
| 25 |
-
print(f"🖥️ Device: {device} | dtype: {
|
| 26 |
|
| 27 |
-
# Lazy import
|
| 28 |
from diffusers import (
|
| 29 |
StableDiffusionControlNetPipeline,
|
| 30 |
ControlNetModel,
|
| 31 |
StableDiffusionPipeline,
|
| 32 |
-
StableDiffusionXLPipeline
|
| 33 |
-
DiffusionPipeline,
|
| 34 |
-
StableDiffusionImg2ImgPipeline
|
| 35 |
)
|
| 36 |
-
from diffusers import UniPCMultistepScheduler, DPMSolverMultistepScheduler,
|
| 37 |
from controlnet_aux import (
|
| 38 |
LineartDetector,
|
| 39 |
LineartAnimeDetector,
|
|
@@ -44,7 +42,6 @@ from controlnet_aux import (
|
|
| 44 |
HEDdetector,
|
| 45 |
PidiNetDetector,
|
| 46 |
NormalBaeDetector,
|
| 47 |
-
ContentShuffleDetector,
|
| 48 |
ZoeDetector,
|
| 49 |
MediapipeFaceDetector
|
| 50 |
)
|
|
@@ -52,7 +49,6 @@ from controlnet_aux import (
|
|
| 52 |
# Memory optimization
|
| 53 |
if torch.cuda.is_available():
|
| 54 |
torch.cuda.empty_cache()
|
| 55 |
-
# Set memory fraction to prevent OOM
|
| 56 |
torch.cuda.set_per_process_memory_fraction(0.95)
|
| 57 |
print(f"🔥 GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
|
| 58 |
else:
|
|
@@ -60,29 +56,33 @@ else:
|
|
| 60 |
|
| 61 |
# ===== Model & Config =====
|
| 62 |
CURRENT_CONTROLNET_PIPE = None
|
| 63 |
-
CURRENT_CONTROLNET_KEY = None
|
| 64 |
CURRENT_T2I_PIPE = None
|
| 65 |
CURRENT_T2I_MODEL = None
|
| 66 |
CURRENT_SDXL_REFINER = None
|
| 67 |
|
| 68 |
-
#
|
| 69 |
SDXL_MODELS = [
|
| 70 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 71 |
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
| 72 |
"Laxhar/noobai-XL-1.1",
|
| 73 |
"RunDiffusion/Juggernaut-XL-v9",
|
| 74 |
"dataautogpt3/ProteusV0.4",
|
| 75 |
-
"thibaud/sdxl_dpo",
|
| 76 |
"playgroundai/playground-v2.5-1024px-aesthetic",
|
| 77 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
]
|
| 79 |
|
|
|
|
| 80 |
SD15_MODELS = [
|
|
|
|
| 81 |
"digiplay/ChikMix_V3",
|
| 82 |
"digiplay/chilloutmix_NiPrunedFp16Fix",
|
| 83 |
"gsdf/Counterfeit-V2.5",
|
| 84 |
"stablediffusionapi/anything-v5",
|
| 85 |
-
"digiplay/CleanLinearMix_nsfw",
|
| 86 |
"runwayml/stable-diffusion-v1-5",
|
| 87 |
"stablediffusionapi/realistic-vision-v51",
|
| 88 |
"stablediffusionapi/dreamshaper-v8",
|
|
@@ -90,35 +90,41 @@ SD15_MODELS = [
|
|
| 90 |
"stablediffusionapi/rev-animated-v122",
|
| 91 |
"stablediffusionapi/cyberrealistic-v33",
|
| 92 |
"stablediffusionapi/meinamix-meina-v11",
|
| 93 |
-
"stablediffusionapi/epicphotogasm-x",
|
| 94 |
-
"stablediffusionapi/absolute-realism-v16",
|
| 95 |
-
"stablediffusionapi/flat-2d-animerge",
|
| 96 |
"prompthero/openjourney-v4",
|
| 97 |
"wavymulder/Analog-Diffusion",
|
| 98 |
"dreamlike-art/dreamlike-photoreal-2.0",
|
| 99 |
-
"
|
| 100 |
-
"segmind/SSD-1B", # 更小的模型
|
| 101 |
"SG161222/Realistic_Vision_V5.1_noVAE",
|
| 102 |
"Lykon/dreamshaper-8",
|
| 103 |
"hakurei/waifu-diffusion",
|
| 104 |
"andite/anything-v4.0",
|
| 105 |
-
"Linaqruf/animagine-xl"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
]
|
| 107 |
|
| 108 |
-
#
|
| 109 |
CHINESE_MODELS = [
|
| 110 |
-
"AI-Chen/Chinese-Stable-Diffusion",
|
| 111 |
-
"IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-v0.1",
|
| 112 |
-
"AI-ModelScope/stable-diffusion-v1-5-chinese"
|
| 113 |
-
"YeungNLP/fusionnet_img2text_chinese" # 中文图文
|
| 114 |
]
|
| 115 |
|
| 116 |
-
|
| 117 |
-
FLORENCE2_MODELS = [
|
| 118 |
-
"microsoft/Florence-2-base"
|
| 119 |
-
]
|
| 120 |
-
|
| 121 |
-
ALL_MODELS = SD15_MODELS + SDXL_MODELS + CHINESE_MODELS + FLORENCE2_MODELS
|
| 122 |
|
| 123 |
# ControlNet models
|
| 124 |
CONTROLNET_MODELS = {
|
|
@@ -128,47 +134,77 @@ CONTROLNET_MODELS = {
|
|
| 128 |
"depth": "lllyasviel/control_v11p_sd15_depth",
|
| 129 |
"normal": "lllyasviel/control_v11p_sd15_normalbae",
|
| 130 |
"openpose": "lllyasviel/control_v11p_sd15_openpose",
|
| 131 |
-
"scribble": "lllyasviel/control_v11p_sd15_scribble",
|
| 132 |
"softedge": "lllyasviel/control_v11p_sd15_softedge",
|
| 133 |
"segmentation": "lllyasviel/control_v11p_sd15_seg",
|
| 134 |
"mlsd": "lllyasviel/control_v11p_sd15_mlsd",
|
| 135 |
"shuffle": "lllyasviel/control_v11p_sd15_shuffle",
|
| 136 |
-
"
|
| 137 |
-
"tile": "lllyasviel/
|
| 138 |
-
"ip2p": "lllyasviel/control_v11p_sd15_ip2p",
|
| 139 |
-
"color": "lllyasviel/control_v11p_sd15_color"
|
| 140 |
}
|
| 141 |
|
| 142 |
-
# SDXL ControlNet models
|
| 143 |
SDXL_CONTROLNET_MODELS = {
|
| 144 |
"canny_sdxl": "diffusers/controlnet-canny-sdxl-1.0",
|
| 145 |
-
"depth_sdxl": "diffusers/controlnet-depth-sdxl-1.0"
|
|
|
|
| 146 |
}
|
| 147 |
|
| 148 |
-
#
|
| 149 |
LORA_MODELS = {
|
| 150 |
"None": None,
|
|
|
|
| 151 |
"Lowpoly Game Character": "nerijs/lowpoly-game-character-lora",
|
| 152 |
-
"Japanese Doll": "Norod78/sd15-JapaneseDollLikeness_lora",
|
| 153 |
-
"Korean Doll": "Norod78/sd15-KoreanDollLikeness_lora",
|
| 154 |
-
"Detail Tweaker": "nitrosocke/detail-tweaker-lora",
|
| 155 |
"Pixel Art": "nerijs/pixel-art-xl",
|
| 156 |
"Watercolor Style": "OedoSoldier/watercolor-style-lora",
|
| 157 |
"Manga Style": "raemikk/Animerge_V3.0_LoRA",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
"Photorealistic": "microsoft/lora-photorealistic",
|
| 159 |
-
"
|
| 160 |
-
"
|
| 161 |
-
"
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
}
|
| 164 |
|
| 165 |
# Detector instances
|
| 166 |
DETECTORS = {}
|
| 167 |
|
| 168 |
-
# Florence-2 model cache
|
| 169 |
-
FLORENCE2_PROCESSOR = None
|
| 170 |
-
FLORENCE2_MODEL = None
|
| 171 |
-
|
| 172 |
def is_sdxl_model(model_name: str) -> bool:
|
| 173 |
"""Check if model is SDXL"""
|
| 174 |
return model_name in SDXL_MODELS or "xl" in model_name.lower() or "XL" in model_name
|
|
@@ -222,134 +258,6 @@ def get_controlnet_model(controlnet_type: str):
|
|
| 222 |
else:
|
| 223 |
raise ValueError(f"Unknown ControlNet type: {controlnet_type}")
|
| 224 |
|
| 225 |
-
def load_florence2():
|
| 226 |
-
"""Lazy load Florence-2 model"""
|
| 227 |
-
global FLORENCE2_PROCESSOR, FLORENCE2_MODEL
|
| 228 |
-
|
| 229 |
-
if FLORENCE2_PROCESSOR is not None and FLORENCE2_MODEL is not None:
|
| 230 |
-
return FLORENCE2_PROCESSOR, FLORENCE2_MODEL
|
| 231 |
-
|
| 232 |
-
try:
|
| 233 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 234 |
-
|
| 235 |
-
print("📥 Loading Microsoft/Florence-2-base...")
|
| 236 |
-
|
| 237 |
-
# 按照官方文檔加載模型
|
| 238 |
-
FLORENCE2_MODEL = AutoModelForCausalLM.from_pretrained(
|
| 239 |
-
"microsoft/Florence-2-base",
|
| 240 |
-
torch_dtype=torch_dtype,
|
| 241 |
-
trust_remote_code=True
|
| 242 |
-
).to(device)
|
| 243 |
-
|
| 244 |
-
FLORENCE2_PROCESSOR = AutoProcessor.from_pretrained(
|
| 245 |
-
"microsoft/Florence-2-base",
|
| 246 |
-
trust_remote_code=True
|
| 247 |
-
)
|
| 248 |
-
|
| 249 |
-
print("✅ Florence-2 model loaded successfully")
|
| 250 |
-
return FLORENCE2_PROCESSOR, FLORENCE2_MODEL
|
| 251 |
-
|
| 252 |
-
except Exception as e:
|
| 253 |
-
print(f"❌ Error loading Florence-2: {e}")
|
| 254 |
-
import traceback
|
| 255 |
-
traceback.print_exc()
|
| 256 |
-
return None, None
|
| 257 |
-
|
| 258 |
-
def analyze_with_florence2(image, task_prompt):
|
| 259 |
-
"""Analyze image using Florence-2"""
|
| 260 |
-
try:
|
| 261 |
-
processor, model = load_florence2()
|
| 262 |
-
|
| 263 |
-
if processor is None or model is None:
|
| 264 |
-
return "❌ Failed to load Florence-2 model. Please check installation."
|
| 265 |
-
|
| 266 |
-
# 檢查圖像
|
| 267 |
-
if image is None:
|
| 268 |
-
return "❌ No image provided for analysis."
|
| 269 |
-
|
| 270 |
-
# 確保圖像是 PIL Image 格式
|
| 271 |
-
if not isinstance(image, Image.Image):
|
| 272 |
-
try:
|
| 273 |
-
if isinstance(image, np.ndarray):
|
| 274 |
-
image = Image.fromarray(image)
|
| 275 |
-
else:
|
| 276 |
-
return "❌ Invalid image format. Please upload a valid image."
|
| 277 |
-
except Exception as e:
|
| 278 |
-
return f"❌ Error converting image: {str(e)}"
|
| 279 |
-
|
| 280 |
-
# 確保圖像是 RGB 模式
|
| 281 |
-
if image.mode != 'RGB':
|
| 282 |
-
image = image.convert('RGB')
|
| 283 |
-
|
| 284 |
-
# 調整圖像大小以優化處理(可選)
|
| 285 |
-
max_size = 512
|
| 286 |
-
if max(image.size) > max_size:
|
| 287 |
-
ratio = max_size / max(image.size)
|
| 288 |
-
new_size = (int(image.width * ratio), int(image.height * ratio))
|
| 289 |
-
image = image.resize(new_size, Image.Resampling.LANCZOS)
|
| 290 |
-
|
| 291 |
-
# 按照官方文檔準備輸入
|
| 292 |
-
try:
|
| 293 |
-
inputs = processor(
|
| 294 |
-
text=task_prompt,
|
| 295 |
-
images=image,
|
| 296 |
-
return_tensors="pt"
|
| 297 |
-
).to(device, torch_dtype)
|
| 298 |
-
except Exception as e:
|
| 299 |
-
print(f"❌ Error processing image: {e}")
|
| 300 |
-
return f"❌ Error processing image: {str(e)}"
|
| 301 |
-
|
| 302 |
-
# 按照官方文檔生成
|
| 303 |
-
try:
|
| 304 |
-
generated_ids = model.generate(
|
| 305 |
-
input_ids=inputs["input_ids"],
|
| 306 |
-
pixel_values=inputs["pixel_values"],
|
| 307 |
-
max_new_tokens=1024,
|
| 308 |
-
do_sample=False,
|
| 309 |
-
num_beams=3,
|
| 310 |
-
)
|
| 311 |
-
except Exception as e:
|
| 312 |
-
print(f"❌ Error generating text: {e}")
|
| 313 |
-
return f"❌ Error during analysis: {str(e)}"
|
| 314 |
-
|
| 315 |
-
# 解碼
|
| 316 |
-
try:
|
| 317 |
-
generated_text = processor.batch_decode(
|
| 318 |
-
generated_ids,
|
| 319 |
-
skip_special_tokens=False
|
| 320 |
-
)[0]
|
| 321 |
-
except Exception as e:
|
| 322 |
-
print(f"❌ Error decoding text: {e}")
|
| 323 |
-
return f"❌ Error decoding result: {str(e)}"
|
| 324 |
-
|
| 325 |
-
# 使用 post_process_generation 解析結果
|
| 326 |
-
try:
|
| 327 |
-
parsed_answer = processor.post_process_generation(
|
| 328 |
-
generated_text,
|
| 329 |
-
task=task_prompt,
|
| 330 |
-
image_size=(image.width, image.height)
|
| 331 |
-
)
|
| 332 |
-
|
| 333 |
-
# 將結果轉換為可讀字符串
|
| 334 |
-
if isinstance(parsed_answer, dict):
|
| 335 |
-
result_str = ""
|
| 336 |
-
for key, value in parsed_answer.items():
|
| 337 |
-
result_str += f"{key}:\n{value}\n\n"
|
| 338 |
-
return result_str.strip()
|
| 339 |
-
else:
|
| 340 |
-
return str(parsed_answer)
|
| 341 |
-
|
| 342 |
-
except Exception as e:
|
| 343 |
-
print(f"❌ Error in post-processing: {e}")
|
| 344 |
-
# 如果後處理失敗,返回原始生成的文本
|
| 345 |
-
return f"Raw output: {generated_text}"
|
| 346 |
-
|
| 347 |
-
except Exception as e:
|
| 348 |
-
print(f"❌ Error in Florence-2 analysis: {e}")
|
| 349 |
-
import traceback
|
| 350 |
-
traceback.print_exc()
|
| 351 |
-
return f"❌ Analysis error: {str(e)}"
|
| 352 |
-
|
| 353 |
def prepare_condition_image(image, controlnet_type):
|
| 354 |
"""Prepare condition image for ControlNet"""
|
| 355 |
if controlnet_type in ["lineart", "lineart_anime"]:
|
|
@@ -382,21 +290,19 @@ def prepare_condition_image(image, controlnet_type):
|
|
| 382 |
result = detector(image, detect_resolution=512, image_resolution=512)
|
| 383 |
return Image.fromarray(result) if isinstance(result, np.ndarray) else result
|
| 384 |
|
| 385 |
-
# For other types, return original image or processed version
|
| 386 |
return image
|
| 387 |
|
| 388 |
-
def get_pipeline(model_name: str, controlnet_type: str = "lineart", lora_model: str = None,
|
| 389 |
-
|
|
|
|
| 390 |
global CURRENT_CONTROLNET_PIPE, CURRENT_CONTROLNET_KEY
|
| 391 |
|
| 392 |
-
key = (model_name, controlnet_type, lora_model, lora_weight)
|
| 393 |
|
| 394 |
-
# Reuse existing pipeline
|
| 395 |
if CURRENT_CONTROLNET_KEY == key and CURRENT_CONTROLNET_PIPE is not None:
|
| 396 |
print(f"✅ Reusing existing ControlNet pipeline: {model_name}, type: {controlnet_type}")
|
| 397 |
return CURRENT_CONTROLNET_PIPE
|
| 398 |
|
| 399 |
-
# Unload old pipeline
|
| 400 |
if CURRENT_CONTROLNET_PIPE is not None:
|
| 401 |
print(f"🗑️ Unloading old ControlNet pipeline: {CURRENT_CONTROLNET_KEY}")
|
| 402 |
del CURRENT_CONTROLNET_PIPE
|
|
@@ -409,65 +315,64 @@ def get_pipeline(model_name: str, controlnet_type: str = "lineart", lora_model:
|
|
| 409 |
print(f"📥 Loading ControlNet pipeline for model: {model_name}, type: {controlnet_type}")
|
| 410 |
|
| 411 |
try:
|
| 412 |
-
# Check if SDXL with ControlNet
|
| 413 |
if is_sdxl_model(model_name):
|
| 414 |
-
if controlnet_type in
|
| 415 |
controlnet_model_name = get_controlnet_model(controlnet_type)
|
| 416 |
controlnet = ControlNetModel.from_pretrained(
|
| 417 |
controlnet_model_name,
|
| 418 |
-
torch_dtype=
|
| 419 |
).to(device)
|
| 420 |
|
| 421 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 422 |
model_name,
|
| 423 |
controlnet=controlnet,
|
| 424 |
-
torch_dtype=
|
| 425 |
-
safety_checker=None,
|
| 426 |
requires_safety_checker=False,
|
| 427 |
use_safetensors=True,
|
| 428 |
-
variant="fp16" if
|
| 429 |
).to(device)
|
| 430 |
else:
|
| 431 |
-
raise ValueError(f"SDXL model
|
| 432 |
else:
|
| 433 |
-
# SD1.5 ControlNet
|
| 434 |
controlnet_model_name = get_controlnet_model(controlnet_type)
|
| 435 |
controlnet = ControlNetModel.from_pretrained(
|
| 436 |
controlnet_model_name,
|
| 437 |
-
torch_dtype=
|
| 438 |
).to(device)
|
| 439 |
|
| 440 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 441 |
model_name,
|
| 442 |
controlnet=controlnet,
|
| 443 |
-
torch_dtype=
|
| 444 |
-
safety_checker=None,
|
| 445 |
requires_safety_checker=False,
|
| 446 |
use_safetensors=True,
|
| 447 |
-
variant="fp16" if
|
| 448 |
).to(device)
|
| 449 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
# Apply LoRA if specified
|
| 451 |
if lora_model and lora_model != "None":
|
| 452 |
print(f"🔄 Applying LoRA: {lora_model} with weight: {lora_weight}")
|
| 453 |
try:
|
| 454 |
-
pipe.load_lora_weights(lora_model
|
| 455 |
pipe.fuse_lora(lora_scale=lora_weight)
|
| 456 |
except Exception as e:
|
| 457 |
print(f"⚠️ Error loading LoRA: {e}")
|
| 458 |
-
print("Trying alternative LoRA loading method...")
|
| 459 |
-
try:
|
| 460 |
-
from safetensors.torch import load_file
|
| 461 |
-
from huggingface_hub import hf_hub_download
|
| 462 |
-
lora_path = hf_hub_download(lora_model, "pytorch_lora_weights.safetensors")
|
| 463 |
-
pipe.unet.load_state_dict(load_file(lora_path), strict=False)
|
| 464 |
-
except Exception as e2:
|
| 465 |
-
print(f"❌ Failed to load LoRA: {e2}")
|
| 466 |
|
| 467 |
# Optimizations
|
| 468 |
pipe.enable_attention_slicing(slice_size="max")
|
| 469 |
|
| 470 |
-
# VAE slicing
|
| 471 |
if hasattr(pipe, 'vae') and hasattr(pipe.vae, 'enable_slicing'):
|
| 472 |
pipe.vae.enable_slicing()
|
| 473 |
else:
|
|
@@ -477,34 +382,19 @@ def get_pipeline(model_name: str, controlnet_type: str = "lineart", lora_model:
|
|
| 477 |
pass
|
| 478 |
|
| 479 |
if device.type == "cuda":
|
| 480 |
-
# xFormers
|
| 481 |
try:
|
| 482 |
pipe.enable_xformers_memory_efficient_attention()
|
| 483 |
-
print("✅ xFormers enabled
|
| 484 |
except:
|
| 485 |
-
print("⚠️ xFormers not available, using standard attention")
|
| 486 |
pass
|
| 487 |
-
|
| 488 |
-
# Model CPU offload
|
| 489 |
pipe.enable_model_cpu_offload()
|
| 490 |
|
| 491 |
-
# Compile model for faster inference
|
| 492 |
-
if hasattr(torch, 'compile') and device.type == "cuda":
|
| 493 |
-
try:
|
| 494 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 495 |
-
print("✅ Model compiled with torch.compile")
|
| 496 |
-
except Exception as e:
|
| 497 |
-
print(f"⚠️ torch.compile not available: {e}")
|
| 498 |
-
pass
|
| 499 |
-
|
| 500 |
-
# Change scheduler for better quality
|
| 501 |
try:
|
| 502 |
-
pipe.scheduler =
|
| 503 |
-
print("✅ Using
|
| 504 |
except:
|
| 505 |
try:
|
| 506 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
| 507 |
-
print("✅ Using DPM++ scheduler")
|
| 508 |
except:
|
| 509 |
pass
|
| 510 |
|
|
@@ -518,19 +408,17 @@ def get_pipeline(model_name: str, controlnet_type: str = "lineart", lora_model:
|
|
| 518 |
CURRENT_CONTROLNET_KEY = None
|
| 519 |
raise
|
| 520 |
|
| 521 |
-
def load_t2i_model(model_name: str, lora_model: str = None, lora_weight: float = 0.8
|
| 522 |
-
|
|
|
|
| 523 |
global CURRENT_T2I_PIPE, CURRENT_T2I_MODEL, CURRENT_SDXL_REFINER
|
| 524 |
|
| 525 |
-
# Check if we need to load refiner for SDXL
|
| 526 |
use_refiner = "refiner" in model_name.lower()
|
| 527 |
-
|
| 528 |
-
key = (model_name, lora_model, lora_weight, use_refiner)
|
| 529 |
|
| 530 |
if CURRENT_T2I_MODEL == key and CURRENT_T2I_PIPE is not None:
|
| 531 |
return
|
| 532 |
|
| 533 |
-
# Unload old model
|
| 534 |
if CURRENT_T2I_PIPE is not None:
|
| 535 |
print(f"🗑️ Unloading old T2I model: {CURRENT_T2I_MODEL}")
|
| 536 |
del CURRENT_T2I_PIPE
|
|
@@ -546,64 +434,67 @@ def load_t2i_model(model_name: str, lora_model: str = None, lora_weight: float =
|
|
| 546 |
|
| 547 |
try:
|
| 548 |
if is_sdxl_model(model_name):
|
| 549 |
-
# Load SDXL model
|
| 550 |
if use_refiner:
|
| 551 |
-
# Load base and refiner
|
| 552 |
CURRENT_T2I_PIPE = StableDiffusionXLPipeline.from_pretrained(
|
| 553 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 554 |
-
torch_dtype=
|
| 555 |
-
safety_checker=None,
|
| 556 |
requires_safety_checker=False,
|
| 557 |
use_safetensors=True,
|
| 558 |
-
variant="fp16" if
|
| 559 |
).to(device)
|
| 560 |
|
| 561 |
CURRENT_SDXL_REFINER = StableDiffusionXLPipeline.from_pretrained(
|
| 562 |
model_name,
|
| 563 |
-
torch_dtype=
|
| 564 |
safety_checker=None,
|
| 565 |
requires_safety_checker=False,
|
| 566 |
use_safetensors=True,
|
| 567 |
-
variant="fp16" if
|
| 568 |
text_encoder_2=CURRENT_T2I_PIPE.text_encoder_2,
|
| 569 |
vae=CURRENT_T2I_PIPE.vae
|
| 570 |
).to(device)
|
| 571 |
-
print(f"✅ Loaded SDXL with refiner: {model_name}")
|
| 572 |
else:
|
| 573 |
CURRENT_T2I_PIPE = StableDiffusionXLPipeline.from_pretrained(
|
| 574 |
-
model_name,
|
| 575 |
-
torch_dtype=
|
| 576 |
-
safety_checker=None,
|
| 577 |
requires_safety_checker=False,
|
| 578 |
use_safetensors=True,
|
| 579 |
-
variant="fp16" if
|
| 580 |
).to(device)
|
| 581 |
-
print(f"✅ Loaded SDXL model: {model_name}")
|
| 582 |
else:
|
| 583 |
-
# Load SD1.5 model
|
| 584 |
CURRENT_T2I_PIPE = StableDiffusionPipeline.from_pretrained(
|
| 585 |
-
model_name,
|
| 586 |
-
torch_dtype=
|
| 587 |
-
safety_checker=None,
|
| 588 |
requires_safety_checker=False,
|
| 589 |
use_safetensors=True,
|
| 590 |
-
variant="fp16" if
|
| 591 |
).to(device)
|
| 592 |
-
print(f"✅ Loaded SD1.5 model: {model_name}")
|
| 593 |
|
| 594 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 595 |
if lora_model and lora_model != "None":
|
| 596 |
-
print(f"🔄 Applying LoRA
|
| 597 |
try:
|
| 598 |
CURRENT_T2I_PIPE.load_lora_weights(lora_model)
|
| 599 |
CURRENT_T2I_PIPE.fuse_lora(lora_scale=lora_weight)
|
| 600 |
except Exception as e:
|
| 601 |
-
print(f"⚠️ Error loading LoRA
|
| 602 |
|
| 603 |
# Optimizations
|
| 604 |
CURRENT_T2I_PIPE.enable_attention_slicing(slice_size="max")
|
| 605 |
|
| 606 |
-
# VAE slicing
|
| 607 |
if hasattr(CURRENT_T2I_PIPE, 'vae') and hasattr(CURRENT_T2I_PIPE.vae, 'enable_slicing'):
|
| 608 |
CURRENT_T2I_PIPE.vae.enable_slicing()
|
| 609 |
else:
|
|
@@ -615,129 +506,26 @@ def load_t2i_model(model_name: str, lora_model: str = None, lora_weight: float =
|
|
| 615 |
if device.type == "cuda":
|
| 616 |
try:
|
| 617 |
CURRENT_T2I_PIPE.enable_xformers_memory_efficient_attention()
|
| 618 |
-
print("✅ xFormers enabled for T2I")
|
| 619 |
except:
|
| 620 |
pass
|
| 621 |
CURRENT_T2I_PIPE.enable_model_cpu_offload()
|
| 622 |
|
| 623 |
-
# Change scheduler
|
| 624 |
try:
|
| 625 |
-
CURRENT_T2I_PIPE.scheduler =
|
| 626 |
-
print("✅ Using UniPC scheduler")
|
| 627 |
except:
|
| 628 |
-
|
| 629 |
-
CURRENT_T2I_PIPE.scheduler = DPMSolverMultistepScheduler.from_config(CURRENT_T2I_PIPE.scheduler.config)
|
| 630 |
-
print("✅ Using DPM++ scheduler")
|
| 631 |
-
except:
|
| 632 |
-
pass
|
| 633 |
|
| 634 |
CURRENT_T2I_MODEL = key
|
| 635 |
|
| 636 |
except Exception as e:
|
| 637 |
-
print(f"❌ Error loading T2I model
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
try:
|
| 642 |
-
if is_sdxl_model(model_name):
|
| 643 |
-
CURRENT_T2I_PIPE = StableDiffusionXLPipeline.from_pretrained(
|
| 644 |
-
model_name,
|
| 645 |
-
torch_dtype=torch_dtype,
|
| 646 |
-
safety_checker=None,
|
| 647 |
-
requires_safety_checker=False
|
| 648 |
-
).to(device)
|
| 649 |
-
else:
|
| 650 |
-
CURRENT_T2I_PIPE = StableDiffusionPipeline.from_pretrained(
|
| 651 |
-
model_name,
|
| 652 |
-
torch_dtype=torch_dtype,
|
| 653 |
-
safety_checker=None,
|
| 654 |
-
requires_safety_checker=False
|
| 655 |
-
).to(device)
|
| 656 |
-
|
| 657 |
-
# Optimizations
|
| 658 |
-
CURRENT_T2I_PIPE.enable_attention_slicing(slice_size="max")
|
| 659 |
-
if hasattr(CURRENT_T2I_PIPE, 'vae') and hasattr(CURRENT_T2I_PIPE.vae, 'enable_slicing'):
|
| 660 |
-
CURRENT_T2I_PIPE.vae.enable_slicing()
|
| 661 |
-
else:
|
| 662 |
-
try:
|
| 663 |
-
CURRENT_T2I_PIPE.enable_vae_slicing()
|
| 664 |
-
except:
|
| 665 |
-
pass
|
| 666 |
-
|
| 667 |
-
if device.type == "cuda":
|
| 668 |
-
try:
|
| 669 |
-
CURRENT_T2I_PIPE.enable_xformers_memory_efficient_attention()
|
| 670 |
-
print("✅ xFormers enabled for T2I")
|
| 671 |
-
except:
|
| 672 |
-
pass
|
| 673 |
-
CURRENT_T2I_PIPE.enable_model_cpu_offload()
|
| 674 |
-
|
| 675 |
-
CURRENT_T2I_MODEL = key
|
| 676 |
-
|
| 677 |
-
except Exception as retry_e:
|
| 678 |
-
print(f"❌ Error loading T2I model (retry): {retry_e}")
|
| 679 |
-
CURRENT_T2I_PIPE = None
|
| 680 |
-
CURRENT_T2I_MODEL = None
|
| 681 |
-
raise
|
| 682 |
-
|
| 683 |
-
# ===== Utils =====
|
| 684 |
-
def resize_image(image, max_size=1024):
|
| 685 |
-
"""Resize image while maintaining aspect ratio"""
|
| 686 |
-
width, height = image.size
|
| 687 |
-
if max(width, height) > max_size:
|
| 688 |
-
ratio = max_size / max(width, height)
|
| 689 |
-
new_width = int(width * ratio)
|
| 690 |
-
new_height = int(height * ratio)
|
| 691 |
-
return image.resize((new_width, new_height), Image.LANCZOS)
|
| 692 |
-
return image
|
| 693 |
-
|
| 694 |
-
def image_to_image(img, prompt, negative_prompt, model_name, strength=0.75, steps=30, scale=7.5, seed=42):
|
| 695 |
-
"""Image-to-Image transformation"""
|
| 696 |
-
try:
|
| 697 |
-
load_t2i_model(model_name)
|
| 698 |
-
|
| 699 |
-
# Resize if needed
|
| 700 |
-
img = resize_image(img, 1024)
|
| 701 |
-
|
| 702 |
-
# Create img2img pipeline
|
| 703 |
-
pipe = StableDiffusionImg2ImgPipeline(
|
| 704 |
-
vae=CURRENT_T2I_PIPE.vae,
|
| 705 |
-
text_encoder=CURRENT_T2I_PIPE.text_encoder,
|
| 706 |
-
tokenizer=CURRENT_T2I_PIPE.tokenizer,
|
| 707 |
-
unet=CURRENT_T2I_PIPE.unet,
|
| 708 |
-
scheduler=CURRENT_T2I_PIPE.scheduler,
|
| 709 |
-
safety_checker=None,
|
| 710 |
-
feature_extractor=None,
|
| 711 |
-
requires_safety_checker=False,
|
| 712 |
-
).to(device)
|
| 713 |
-
|
| 714 |
-
gen = torch.Generator(device=device).manual_seed(int(seed))
|
| 715 |
-
|
| 716 |
-
with torch.inference_mode():
|
| 717 |
-
result = pipe(
|
| 718 |
-
prompt=prompt,
|
| 719 |
-
negative_prompt=negative_prompt,
|
| 720 |
-
image=img,
|
| 721 |
-
strength=strength,
|
| 722 |
-
num_inference_steps=int(steps),
|
| 723 |
-
guidance_scale=float(scale),
|
| 724 |
-
generator=gen
|
| 725 |
-
).images[0]
|
| 726 |
-
|
| 727 |
-
if device.type == "cuda":
|
| 728 |
-
torch.cuda.empty_cache()
|
| 729 |
-
|
| 730 |
-
return result
|
| 731 |
-
except Exception as e:
|
| 732 |
-
print(f"❌ Error in img2img: {e}")
|
| 733 |
-
error_img = Image.new('RGB', (512, 512), color='red')
|
| 734 |
-
return error_img
|
| 735 |
|
| 736 |
-
|
| 737 |
-
def colorize(sketch, base_model, controlnet_type, lora_model, lora_weight,
|
| 738 |
prompt, negative_prompt, seed, steps, scale, cn_weight):
|
| 739 |
try:
|
| 740 |
-
# 檢查是否為 SDXL model 且不支援 ControlNet
|
| 741 |
if is_sdxl_model(base_model) and controlnet_type not in SDXL_CONTROLNET_MODELS:
|
| 742 |
error_img = Image.new('RGB', (512, 512), color='red')
|
| 743 |
error_msg_img = Image.new('RGB', (512, 512), color='yellow')
|
|
@@ -751,34 +539,30 @@ def colorize(sketch, base_model, controlnet_type, lora_model, lora_weight,
|
|
| 751 |
draw.text((50, 230), f"{', '.join(SDXL_CONTROLNET_MODELS.keys())}", fill="black", font=font)
|
| 752 |
return error_img, error_msg_img
|
| 753 |
|
| 754 |
-
|
| 755 |
-
pipe = get_pipeline(base_model, controlnet_type, lora_model, lora_weight)
|
| 756 |
|
| 757 |
-
status_msg = f"🎨 Using: {base_model} + {controlnet_type}
|
| 758 |
if lora_model and lora_model != "None":
|
| 759 |
status_msg += f" + {lora_model}"
|
| 760 |
print(status_msg)
|
| 761 |
|
| 762 |
-
# 準備 condition image
|
| 763 |
condition_img = prepare_condition_image(sketch, controlnet_type)
|
| 764 |
|
| 765 |
-
# 生成圖像
|
| 766 |
gen = torch.Generator(device=device).manual_seed(int(seed))
|
| 767 |
|
| 768 |
with torch.inference_mode():
|
| 769 |
out = pipe(
|
| 770 |
-
prompt,
|
| 771 |
negative_prompt=negative_prompt,
|
| 772 |
-
image=condition_img,
|
| 773 |
num_inference_steps=int(steps),
|
| 774 |
-
guidance_scale=float(scale),
|
| 775 |
controlnet_conditioning_scale=float(cn_weight),
|
| 776 |
generator=gen,
|
| 777 |
height=512,
|
| 778 |
width=512
|
| 779 |
).images[0]
|
| 780 |
|
| 781 |
-
# Clear cache
|
| 782 |
if device.type == "cuda":
|
| 783 |
torch.cuda.empty_cache()
|
| 784 |
|
|
@@ -788,14 +572,14 @@ def colorize(sketch, base_model, controlnet_type, lora_model, lora_weight,
|
|
| 788 |
error_img = Image.new('RGB', (512, 512), color='red')
|
| 789 |
return error_img, Image.new('RGB', (512, 512), color='gray')
|
| 790 |
|
| 791 |
-
def t2i(prompt, negative_prompt, model, lora_model, lora_weight,
|
|
|
|
| 792 |
try:
|
| 793 |
-
# 如果需要 refiner,使用特殊的模型名稱
|
| 794 |
model_to_load = model
|
| 795 |
if use_refiner and "refiner" not in model.lower():
|
| 796 |
model_to_load = "stabilityai/stable-diffusion-xl-refiner-1.0"
|
| 797 |
|
| 798 |
-
load_t2i_model(model_to_load, lora_model, lora_weight)
|
| 799 |
|
| 800 |
print(f"🖼️ Using T2I model: {model}")
|
| 801 |
if lora_model and lora_model != "None":
|
|
@@ -804,50 +588,46 @@ def t2i(prompt, negative_prompt, model, lora_model, lora_weight, seed, steps, sc
|
|
| 804 |
gen = torch.Generator(device=device).manual_seed(int(seed))
|
| 805 |
|
| 806 |
with torch.inference_mode():
|
| 807 |
-
# SDXL with refiner
|
| 808 |
if use_refiner and CURRENT_SDXL_REFINER is not None:
|
| 809 |
-
# First stage with base model
|
| 810 |
image = CURRENT_T2I_PIPE(
|
| 811 |
prompt=prompt,
|
| 812 |
negative_prompt=negative_prompt,
|
| 813 |
width=int(w),
|
| 814 |
height=int(h),
|
| 815 |
-
num_inference_steps=int(steps//2),
|
| 816 |
guidance_scale=float(scale),
|
| 817 |
generator=gen,
|
| 818 |
output_type="latent"
|
| 819 |
).images
|
| 820 |
|
| 821 |
-
# Second stage with refiner
|
| 822 |
result = CURRENT_SDXL_REFINER(
|
| 823 |
prompt=prompt,
|
| 824 |
negative_prompt=negative_prompt,
|
| 825 |
image=image,
|
| 826 |
-
num_inference_steps=int(steps//2),
|
| 827 |
guidance_scale=float(scale),
|
| 828 |
generator=gen
|
| 829 |
).images[0]
|
| 830 |
else:
|
| 831 |
-
# Normal generation
|
| 832 |
if is_sdxl_model(model):
|
| 833 |
width = max(int(w), 512)
|
| 834 |
height = max(int(h), 512)
|
| 835 |
result = CURRENT_T2I_PIPE(
|
| 836 |
-
prompt,
|
| 837 |
negative_prompt=negative_prompt,
|
| 838 |
-
width=width,
|
| 839 |
height=height,
|
| 840 |
-
num_inference_steps=int(steps),
|
| 841 |
guidance_scale=float(scale),
|
| 842 |
generator=gen
|
| 843 |
).images[0]
|
| 844 |
else:
|
| 845 |
result = CURRENT_T2I_PIPE(
|
| 846 |
-
prompt,
|
| 847 |
negative_prompt=negative_prompt,
|
| 848 |
-
width=int(w),
|
| 849 |
height=int(h),
|
| 850 |
-
num_inference_steps=int(steps),
|
| 851 |
guidance_scale=float(scale),
|
| 852 |
generator=gen
|
| 853 |
).images[0]
|
|
@@ -868,39 +648,13 @@ def t2i(prompt, negative_prompt, model, lora_model, lora_weight, seed, steps, sc
|
|
| 868 |
draw.text((50, 50), f"Error: {str(e)[:50]}...", fill="white", font=font)
|
| 869 |
return error_img
|
| 870 |
|
| 871 |
-
def florence2_analysis(image, task_prompt, custom_prompt):
|
| 872 |
-
"""Analyze image with Florence-2"""
|
| 873 |
-
try:
|
| 874 |
-
if image is None:
|
| 875 |
-
return "❌ Please upload an image first"
|
| 876 |
-
|
| 877 |
-
# 確保圖像是 PIL Image 格式
|
| 878 |
-
if not isinstance(image, Image.Image):
|
| 879 |
-
return "❌ Invalid image format. Please upload a valid image."
|
| 880 |
-
|
| 881 |
-
# Use custom prompt if provided
|
| 882 |
-
prompt_to_use = custom_prompt.strip() if custom_prompt.strip() else task_prompt
|
| 883 |
-
|
| 884 |
-
print(f"🔍 Analyzing image with Florence-2 using prompt: {prompt_to_use}")
|
| 885 |
-
result = analyze_with_florence2(image, prompt_to_use)
|
| 886 |
-
return result
|
| 887 |
-
|
| 888 |
-
except Exception as e:
|
| 889 |
-
print(f"❌ Error in Florence-2 analysis: {e}")
|
| 890 |
-
import traceback
|
| 891 |
-
traceback.print_exc()
|
| 892 |
-
return f"Error: {str(e)}"
|
| 893 |
-
|
| 894 |
-
# ===== Function to unload all models =====
|
| 895 |
def unload_all_models():
|
| 896 |
global CURRENT_CONTROLNET_PIPE, CURRENT_CONTROLNET_KEY
|
| 897 |
global DETECTORS
|
| 898 |
global CURRENT_T2I_PIPE, CURRENT_T2I_MODEL, CURRENT_SDXL_REFINER
|
| 899 |
-
global FLORENCE2_PROCESSOR, FLORENCE2_MODEL
|
| 900 |
|
| 901 |
-
print("Unloading all models from memory...")
|
| 902 |
|
| 903 |
-
# Unload ControlNet pipeline
|
| 904 |
try:
|
| 905 |
if CURRENT_CONTROLNET_PIPE is not None:
|
| 906 |
del CURRENT_CONTROLNET_PIPE
|
|
@@ -909,7 +663,6 @@ def unload_all_models():
|
|
| 909 |
pass
|
| 910 |
CURRENT_CONTROLNET_KEY = None
|
| 911 |
|
| 912 |
-
# Unload detectors
|
| 913 |
for detector_type in list(DETECTORS.keys()):
|
| 914 |
try:
|
| 915 |
del DETECTORS[detector_type]
|
|
@@ -917,7 +670,6 @@ def unload_all_models():
|
|
| 917 |
pass
|
| 918 |
DETECTORS.clear()
|
| 919 |
|
| 920 |
-
# Unload T2I models
|
| 921 |
try:
|
| 922 |
if CURRENT_T2I_PIPE is not None:
|
| 923 |
del CURRENT_T2I_PIPE
|
|
@@ -934,22 +686,6 @@ def unload_all_models():
|
|
| 934 |
|
| 935 |
CURRENT_T2I_MODEL = None
|
| 936 |
|
| 937 |
-
# Unload Florence-2
|
| 938 |
-
try:
|
| 939 |
-
if FLORENCE2_PROCESSOR is not None:
|
| 940 |
-
del FLORENCE2_PROCESSOR
|
| 941 |
-
FLORENCE2_PROCESSOR = None
|
| 942 |
-
except:
|
| 943 |
-
pass
|
| 944 |
-
|
| 945 |
-
try:
|
| 946 |
-
if FLORENCE2_MODEL is not None:
|
| 947 |
-
del FLORENCE2_MODEL
|
| 948 |
-
FLORENCE2_MODEL = None
|
| 949 |
-
except:
|
| 950 |
-
pass
|
| 951 |
-
|
| 952 |
-
# Force garbage collection
|
| 953 |
gc.collect()
|
| 954 |
if torch.cuda.is_available():
|
| 955 |
torch.cuda.empty_cache()
|
|
@@ -960,12 +696,11 @@ def unload_all_models():
|
|
| 960 |
return "✅ All models unloaded from memory!"
|
| 961 |
|
| 962 |
# ===== Gradio UI =====
|
| 963 |
-
with gr.Blocks(title="🎨
|
| 964 |
-
gr.Markdown("# 🎨
|
| 965 |
-
gr.Markdown("###
|
| 966 |
-
gr.Markdown("**
|
| 967 |
|
| 968 |
-
# System info
|
| 969 |
if torch.cuda.is_available():
|
| 970 |
gpu_name = torch.cuda.get_device_name(0)
|
| 971 |
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
|
|
@@ -973,301 +708,257 @@ with gr.Blocks(title="🎨 Advanced Image Generation Suite", theme=gr.themes.Sof
|
|
| 973 |
else:
|
| 974 |
gr.Markdown("**⚠️ Running on CPU** - Generation will be slower")
|
| 975 |
|
| 976 |
-
# Add unload button
|
| 977 |
with gr.Row():
|
| 978 |
unload_btn = gr.Button("🗑️ Unload All Models", variant="stop", scale=1)
|
| 979 |
status_text = gr.Textbox(label="Status", interactive=False, scale=3)
|
| 980 |
unload_btn.click(unload_all_models, outputs=status_text)
|
| 981 |
|
| 982 |
-
with gr.Tab("🎨 ControlNet
|
| 983 |
gr.Markdown("""
|
| 984 |
-
###
|
| 985 |
-
**SD1.5 Models:** Support all ControlNet types
|
| 986 |
-
**SDXL Models:**
|
| 987 |
""")
|
| 988 |
|
| 989 |
with gr.Row():
|
| 990 |
-
|
| 991 |
-
|
| 992 |
-
|
| 993 |
-
|
| 994 |
-
|
| 995 |
-
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
|
| 999 |
-
|
| 1000 |
-
|
| 1001 |
-
|
| 1002 |
-
|
| 1003 |
-
|
| 1004 |
-
|
| 1005 |
-
|
| 1006 |
-
|
| 1007 |
-
|
| 1008 |
-
|
| 1009 |
-
|
| 1010 |
-
|
| 1011 |
-
|
| 1012 |
-
|
| 1013 |
-
|
| 1014 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1015 |
|
|
|
|
| 1016 |
with gr.Row():
|
| 1017 |
prompt = gr.Textbox(
|
| 1018 |
-
label="Prompt",
|
| 1019 |
-
placeholder="
|
| 1020 |
-
lines=
|
| 1021 |
)
|
| 1022 |
negative_prompt = gr.Textbox(
|
| 1023 |
-
label="Negative Prompt",
|
| 1024 |
-
placeholder="
|
| 1025 |
-
lines=
|
| 1026 |
)
|
| 1027 |
|
| 1028 |
with gr.Row():
|
| 1029 |
-
seed = gr.Number(value
|
| 1030 |
-
steps = gr.Slider(10,
|
| 1031 |
-
scale = gr.Slider(1,
|
| 1032 |
cn_weight = gr.Slider(0.1, 2.0, 1.0, step=0.1, label="ControlNet Weight")
|
| 1033 |
|
| 1034 |
-
run = gr.Button("🎨
|
| 1035 |
run.click(
|
| 1036 |
-
colorize,
|
| 1037 |
-
[inp, base_model, controlnet_type, lora_model, lora_weight,
|
| 1038 |
-
prompt, negative_prompt, seed, steps, scale, cn_weight],
|
| 1039 |
[out, condition_out]
|
| 1040 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1041 |
|
| 1042 |
-
with gr.Tab("🖼️ Text-to-Image"):
|
| 1043 |
gr.Markdown("""
|
| 1044 |
### Generate images from text descriptions
|
| 1045 |
-
Supports both SD1.5 and SDXL models with
|
| 1046 |
-
**Tip:** SDXL models produce higher quality but require more memory.
|
| 1047 |
""")
|
| 1048 |
|
| 1049 |
with gr.Row():
|
| 1050 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1051 |
|
|
|
|
| 1052 |
with gr.Row():
|
| 1053 |
t2i_prompt = gr.Textbox(
|
| 1054 |
-
label="Prompt",
|
| 1055 |
-
lines=
|
| 1056 |
-
placeholder="
|
| 1057 |
)
|
| 1058 |
t2i_negative_prompt = gr.Textbox(
|
| 1059 |
-
label="Negative Prompt",
|
| 1060 |
-
lines=
|
| 1061 |
-
placeholder="
|
| 1062 |
-
)
|
| 1063 |
-
|
| 1064 |
-
with gr.Row():
|
| 1065 |
-
t2i_model = gr.Dropdown(
|
| 1066 |
-
choices=ALL_MODELS,
|
| 1067 |
-
value="digiplay/ChikMix_V3",
|
| 1068 |
-
label="Model"
|
| 1069 |
-
)
|
| 1070 |
-
t2i_lora = gr.Dropdown(
|
| 1071 |
-
choices=list(LORA_MODELS.keys()),
|
| 1072 |
-
value="None",
|
| 1073 |
-
label="LoRA Model (Optional)"
|
| 1074 |
)
|
| 1075 |
-
t2i_lora_weight = gr.Slider(0.1, 1.5, 0.8, step=0.1, label="LoRA Weight")
|
| 1076 |
|
|
|
|
| 1077 |
with gr.Row():
|
| 1078 |
-
t2i_seed = gr.Number(value
|
| 1079 |
-
t2i_steps = gr.Slider(10,
|
| 1080 |
-
t2i_scale = gr.Slider(1,
|
| 1081 |
|
| 1082 |
with gr.Row():
|
| 1083 |
-
w = gr.Slider(256, 2048,
|
| 1084 |
-
h = gr.Slider(256, 2048,
|
| 1085 |
-
use_refiner = gr.Checkbox(label="Use SDXL Refiner (SDXL only)", value=False)
|
| 1086 |
|
| 1087 |
-
gen_btn = gr.Button("🖼️ Generate", variant="primary")
|
| 1088 |
gen_btn.click(
|
| 1089 |
-
t2i,
|
| 1090 |
-
[t2i_prompt, t2i_negative_prompt, t2i_model, t2i_lora, t2i_lora_weight,
|
| 1091 |
-
t2i_seed, t2i_steps, t2i_scale, w, h, use_refiner],
|
| 1092 |
t2i_out
|
| 1093 |
)
|
| 1094 |
-
|
| 1095 |
-
with gr.Tab("🔄 Image-to-Image"):
|
| 1096 |
-
gr.Markdown("""
|
| 1097 |
-
### Transform existing images using img2img
|
| 1098 |
-
Modify images based on prompts with control over transformation strength.
|
| 1099 |
-
""")
|
| 1100 |
-
|
| 1101 |
-
with gr.Row():
|
| 1102 |
-
img2img_input = gr.Image(label="Input Image", type="pil")
|
| 1103 |
-
img2img_output = gr.Image(label="Transformed Output")
|
| 1104 |
-
|
| 1105 |
-
with gr.Row():
|
| 1106 |
-
img2img_prompt = gr.Textbox(
|
| 1107 |
-
label="Prompt",
|
| 1108 |
-
lines=2,
|
| 1109 |
-
placeholder="e.g., make it anime style, cyberpunk style, etc."
|
| 1110 |
-
)
|
| 1111 |
-
img2img_negative_prompt = gr.Textbox(
|
| 1112 |
-
label="Negative Prompt",
|
| 1113 |
-
lines=2,
|
| 1114 |
-
placeholder="e.g., blurry, low quality"
|
| 1115 |
-
)
|
| 1116 |
|
| 1117 |
-
with gr.Row():
|
| 1118 |
-
img2img_model = gr.Dropdown(
|
| 1119 |
-
choices=ALL_MODELS,
|
| 1120 |
-
value="stablediffusionapi/realistic-vision-v51",
|
| 1121 |
-
label="Model"
|
| 1122 |
-
)
|
| 1123 |
-
img2img_strength = gr.Slider(0.1, 0.95, 0.75, step=0.05, label="Transformation Strength")
|
| 1124 |
-
|
| 1125 |
-
with gr.Row():
|
| 1126 |
-
img2img_seed = gr.Number(value=42, label="Seed")
|
| 1127 |
-
img2img_steps = gr.Slider(10, 100, 30, step=1, label="Steps")
|
| 1128 |
-
img2img_scale = gr.Slider(1, 20, 7.5, step=0.5, label="CFG Scale")
|
| 1129 |
-
|
| 1130 |
-
img2img_btn = gr.Button("🔄 Transform Image", variant="primary")
|
| 1131 |
-
img2img_btn.click(
|
| 1132 |
-
image_to_image,
|
| 1133 |
-
[img2img_input, img2img_prompt, img2img_negative_prompt,
|
| 1134 |
-
img2img_model, img2img_strength, img2img_steps, img2img_scale, img2img_seed],
|
| 1135 |
-
img2img_output
|
| 1136 |
-
)
|
| 1137 |
-
|
| 1138 |
-
with gr.Tab("🔍 Florence-2 Vision Analysis"):
|
| 1139 |
gr.Markdown("""
|
| 1140 |
-
###
|
| 1141 |
-
|
| 1142 |
-
-
|
| 1143 |
-
-
|
| 1144 |
-
-
|
| 1145 |
-
-
|
| 1146 |
-
-
|
| 1147 |
-
- `<OPEN_VOCABULARY_DETECTION>`: Open-vocabulary detection
|
| 1148 |
-
- `<REGION_PROPOSAL>`: Region proposal
|
| 1149 |
-
|
| 1150 |
-
**How to use:**
|
| 1151 |
-
1. Upload an image
|
| 1152 |
-
2. Select a task from the dropdown
|
| 1153 |
-
3. Click "Analyze Image"
|
| 1154 |
-
4. Results will be displayed in the text box
|
| 1155 |
-
|
| 1156 |
-
**Example tasks:**
|
| 1157 |
-
- Extract text from a document: `<OCR>`
|
| 1158 |
-
- Describe what's in the image: `<CAPTION>`
|
| 1159 |
-
- Detect objects in the image: `<OD>`
|
| 1160 |
""")
|
| 1161 |
-
|
| 1162 |
-
|
| 1163 |
-
florence_input = gr.Image(label="Input Image", type="pil")
|
| 1164 |
-
florence_output = gr.Textbox(
|
| 1165 |
-
label="Analysis Result",
|
| 1166 |
-
lines=15,
|
| 1167 |
-
interactive=False,
|
| 1168 |
-
show_copy_button=True
|
| 1169 |
-
)
|
| 1170 |
-
|
| 1171 |
-
with gr.Row():
|
| 1172 |
-
florence_task = gr.Dropdown(
|
| 1173 |
-
choices=[
|
| 1174 |
-
"<OCR>",
|
| 1175 |
-
"<CAPTION>",
|
| 1176 |
-
"<DETAILED_CAPTION>",
|
| 1177 |
-
"<MORE_DETAILED_CAPTION>",
|
| 1178 |
-
"<OD>",
|
| 1179 |
-
"<OPEN_VOCABULARY_DETECTION>",
|
| 1180 |
-
"<REGION_PROPOSAL>"
|
| 1181 |
-
],
|
| 1182 |
-
value="<CAPTION>",
|
| 1183 |
-
label="Task Prompt"
|
| 1184 |
-
)
|
| 1185 |
-
|
| 1186 |
-
custom_prompt = gr.Textbox(
|
| 1187 |
-
label="Custom Prompt (Optional)",
|
| 1188 |
-
value="",
|
| 1189 |
-
placeholder="e.g., Describe the main objects in this image"
|
| 1190 |
-
)
|
| 1191 |
-
|
| 1192 |
-
with gr.Row():
|
| 1193 |
-
analyze_btn = gr.Button("🔍 Analyze Image", variant="primary")
|
| 1194 |
-
clear_btn = gr.Button("🗑️ Clear")
|
| 1195 |
-
|
| 1196 |
-
def clear_analysis():
|
| 1197 |
-
return None, ""
|
| 1198 |
-
|
| 1199 |
-
analyze_btn.click(
|
| 1200 |
-
florence2_analysis,
|
| 1201 |
-
[florence_input, florence_task, custom_prompt],
|
| 1202 |
-
florence_output
|
| 1203 |
-
)
|
| 1204 |
-
|
| 1205 |
-
clear_btn.click(
|
| 1206 |
-
clear_analysis,
|
| 1207 |
-
[],
|
| 1208 |
-
[florence_input, florence_output]
|
| 1209 |
-
)
|
| 1210 |
-
|
| 1211 |
-
with gr.Tab("📊 Model Info"):
|
| 1212 |
gr.Markdown("""
|
| 1213 |
-
|
| 1214 |
-
|
| 1215 |
-
|
| 1216 |
-
|
| 1217 |
-
|
| 1218 |
-
-
|
| 1219 |
-
|
| 1220 |
-
|
| 1221 |
-
-
|
| 1222 |
-
|
| 1223 |
-
|
| 1224 |
-
|
| 1225 |
-
|
| 1226 |
-
-
|
| 1227 |
-
-
|
| 1228 |
-
|
| 1229 |
-
|
| 1230 |
-
-
|
| 1231 |
-
-
|
| 1232 |
-
|
| 1233 |
-
|
| 1234 |
-
|
| 1235 |
-
|
| 1236 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1237 |
""")
|
| 1238 |
-
|
| 1239 |
-
with gr.Row():
|
| 1240 |
-
with gr.Column():
|
| 1241 |
-
gr.Markdown("**SD1.5 Models Count:** " + str(len(SD15_MODELS)))
|
| 1242 |
-
gr.Markdown("**SDXL Models Count:** " + str(len(SDXL_MODELS)))
|
| 1243 |
-
gr.Markdown("**Chinese Models Count:** " + str(len(CHINESE_MODELS)))
|
| 1244 |
-
gr.Markdown("**Florence-2 Models:** " + str(len(FLORENCE2_MODELS)))
|
| 1245 |
-
gr.Markdown("**ControlNet Types:** " + str(len(CONTROLNET_MODELS) + len(SDXL_CONTROLNET_MODELS)))
|
| 1246 |
-
gr.Markdown("**LoRA Models:** " + str(len(LORA_MODELS) - 1)) # Subtract "None"
|
| 1247 |
-
|
| 1248 |
-
with gr.Row():
|
| 1249 |
-
refresh_btn = gr.Button("🔄 Refresh Memory Info")
|
| 1250 |
-
memory_info = gr.Textbox(label="Memory Status")
|
| 1251 |
-
|
| 1252 |
-
def get_memory_info():
|
| 1253 |
-
info = ""
|
| 1254 |
-
if torch.cuda.is_available():
|
| 1255 |
-
allocated = torch.cuda.memory_allocated() / 1024**3
|
| 1256 |
-
reserved = torch.cuda.memory_reserved() / 1024**3
|
| 1257 |
-
max_allocated = torch.cuda.max_memory_allocated() / 1024**3
|
| 1258 |
-
info = f"Allocated: {allocated:.2f} GB\n"
|
| 1259 |
-
info += f"Reserved: {reserved:.2f} GB\n"
|
| 1260 |
-
info += f"Max Allocated: {max_allocated:.2f} GB"
|
| 1261 |
-
else:
|
| 1262 |
-
info = "Running on CPU - No GPU memory info"
|
| 1263 |
-
return info
|
| 1264 |
-
|
| 1265 |
-
refresh_btn.click(get_memory_info, outputs=memory_info)
|
| 1266 |
|
| 1267 |
try:
|
| 1268 |
demo.launch(
|
| 1269 |
-
server_name="0.0.0.0",
|
| 1270 |
-
server_port=7860,
|
| 1271 |
share=False,
|
| 1272 |
show_error=True,
|
| 1273 |
quiet=False
|
|
|
|
| 20 |
|
| 21 |
# Device
|
| 22 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 23 |
+
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 24 |
|
| 25 |
+
print(f"🖥️ Device: {device} | dtype: {dtype}")
|
| 26 |
|
| 27 |
+
# Lazy import
|
| 28 |
from diffusers import (
|
| 29 |
StableDiffusionControlNetPipeline,
|
| 30 |
ControlNetModel,
|
| 31 |
StableDiffusionPipeline,
|
| 32 |
+
StableDiffusionXLPipeline
|
|
|
|
|
|
|
| 33 |
)
|
| 34 |
+
from diffusers import UniPCMultistepScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler
|
| 35 |
from controlnet_aux import (
|
| 36 |
LineartDetector,
|
| 37 |
LineartAnimeDetector,
|
|
|
|
| 42 |
HEDdetector,
|
| 43 |
PidiNetDetector,
|
| 44 |
NormalBaeDetector,
|
|
|
|
| 45 |
ZoeDetector,
|
| 46 |
MediapipeFaceDetector
|
| 47 |
)
|
|
|
|
| 49 |
# Memory optimization
|
| 50 |
if torch.cuda.is_available():
|
| 51 |
torch.cuda.empty_cache()
|
|
|
|
| 52 |
torch.cuda.set_per_process_memory_fraction(0.95)
|
| 53 |
print(f"🔥 GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
|
| 54 |
else:
|
|
|
|
| 56 |
|
| 57 |
# ===== Model & Config =====
|
| 58 |
CURRENT_CONTROLNET_PIPE = None
|
| 59 |
+
CURRENT_CONTROLNET_KEY = None
|
| 60 |
CURRENT_T2I_PIPE = None
|
| 61 |
CURRENT_T2I_MODEL = None
|
| 62 |
CURRENT_SDXL_REFINER = None
|
| 63 |
|
| 64 |
+
# Enhanced SDXL Models (including NSFW-capable)
|
| 65 |
SDXL_MODELS = [
|
| 66 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 67 |
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
| 68 |
"Laxhar/noobai-XL-1.1",
|
| 69 |
"RunDiffusion/Juggernaut-XL-v9",
|
| 70 |
"dataautogpt3/ProteusV0.4",
|
|
|
|
| 71 |
"playgroundai/playground-v2.5-1024px-aesthetic",
|
| 72 |
+
"misri/epicrealismXL_v10",
|
| 73 |
+
"SG161222/RealVisXL_V4.0",
|
| 74 |
+
"stablediffusionapi/juggernaut-xl-v8",
|
| 75 |
+
"Lykon/dreamshaper-xl-1-0",
|
| 76 |
+
"digiplay/Pony_Diffusion_V6_XL"
|
| 77 |
]
|
| 78 |
|
| 79 |
+
# Enhanced SD1.5 Models (including NSFW-capable)
|
| 80 |
SD15_MODELS = [
|
| 81 |
+
# Original models
|
| 82 |
"digiplay/ChikMix_V3",
|
| 83 |
"digiplay/chilloutmix_NiPrunedFp16Fix",
|
| 84 |
"gsdf/Counterfeit-V2.5",
|
| 85 |
"stablediffusionapi/anything-v5",
|
|
|
|
| 86 |
"runwayml/stable-diffusion-v1-5",
|
| 87 |
"stablediffusionapi/realistic-vision-v51",
|
| 88 |
"stablediffusionapi/dreamshaper-v8",
|
|
|
|
| 90 |
"stablediffusionapi/rev-animated-v122",
|
| 91 |
"stablediffusionapi/cyberrealistic-v33",
|
| 92 |
"stablediffusionapi/meinamix-meina-v11",
|
|
|
|
|
|
|
|
|
|
| 93 |
"prompthero/openjourney-v4",
|
| 94 |
"wavymulder/Analog-Diffusion",
|
| 95 |
"dreamlike-art/dreamlike-photoreal-2.0",
|
| 96 |
+
"segmind/SSD-1B",
|
|
|
|
| 97 |
"SG161222/Realistic_Vision_V5.1_noVAE",
|
| 98 |
"Lykon/dreamshaper-8",
|
| 99 |
"hakurei/waifu-diffusion",
|
| 100 |
"andite/anything-v4.0",
|
| 101 |
+
"Linaqruf/animagine-xl",
|
| 102 |
+
# Additional NSFW-capable models
|
| 103 |
+
"emilianJR/epiCRealism",
|
| 104 |
+
"stablediffusionapi/deliberate-v2",
|
| 105 |
+
"stablediffusionapi/edge-of-realism",
|
| 106 |
+
"Yntec/epiCPhotoGasm",
|
| 107 |
+
"digiplay/majicMIX_realistic_v7",
|
| 108 |
+
"stablediffusionapi/perfect-world-v6",
|
| 109 |
+
"stablediffusionapi/uber-realistic-merge",
|
| 110 |
+
"XpucT/Deliberate",
|
| 111 |
+
"prompthero/openjourney",
|
| 112 |
+
"Lykon/absolute-reality-1.81",
|
| 113 |
+
"digiplay/BeautyProMix_v2",
|
| 114 |
+
"stablediffusionapi/3d-animation-diffusion",
|
| 115 |
+
"nitrosocke/Ghibli-Diffusion",
|
| 116 |
+
"nitrosocke/mo-di-diffusion",
|
| 117 |
+
"Fictiverse/Stable_Diffusion_VoxelArt_Model"
|
| 118 |
]
|
| 119 |
|
| 120 |
+
# Chinese Models
|
| 121 |
CHINESE_MODELS = [
|
| 122 |
+
"AI-Chen/Chinese-Stable-Diffusion",
|
| 123 |
+
"IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-v0.1",
|
| 124 |
+
"AI-ModelScope/stable-diffusion-v1-5-chinese"
|
|
|
|
| 125 |
]
|
| 126 |
|
| 127 |
+
ALL_MODELS = SD15_MODELS + SDXL_MODELS + CHINESE_MODELS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
# ControlNet models
|
| 130 |
CONTROLNET_MODELS = {
|
|
|
|
| 134 |
"depth": "lllyasviel/control_v11p_sd15_depth",
|
| 135 |
"normal": "lllyasviel/control_v11p_sd15_normalbae",
|
| 136 |
"openpose": "lllyasviel/control_v11p_sd15_openpose",
|
|
|
|
| 137 |
"softedge": "lllyasviel/control_v11p_sd15_softedge",
|
| 138 |
"segmentation": "lllyasviel/control_v11p_sd15_seg",
|
| 139 |
"mlsd": "lllyasviel/control_v11p_sd15_mlsd",
|
| 140 |
"shuffle": "lllyasviel/control_v11p_sd15_shuffle",
|
| 141 |
+
"scribble": "lllyasviel/control_v11p_sd15_scribble",
|
| 142 |
+
"tile": "lllyasviel/control_v11f1e_sd15_tile"
|
|
|
|
|
|
|
| 143 |
}
|
| 144 |
|
| 145 |
+
# SDXL ControlNet models
|
| 146 |
SDXL_CONTROLNET_MODELS = {
|
| 147 |
"canny_sdxl": "diffusers/controlnet-canny-sdxl-1.0",
|
| 148 |
+
"depth_sdxl": "diffusers/controlnet-depth-sdxl-1.0",
|
| 149 |
+
"openpose_sdxl": "thibaud/controlnet-openpose-sdxl-1.0"
|
| 150 |
}
|
| 151 |
|
| 152 |
+
# Expanded LoRA models list (including NSFW-capable)
|
| 153 |
LORA_MODELS = {
|
| 154 |
"None": None,
|
| 155 |
+
# Style LoRAs
|
| 156 |
"Lowpoly Game Character": "nerijs/lowpoly-game-character-lora",
|
|
|
|
|
|
|
|
|
|
| 157 |
"Pixel Art": "nerijs/pixel-art-xl",
|
| 158 |
"Watercolor Style": "OedoSoldier/watercolor-style-lora",
|
| 159 |
"Manga Style": "raemikk/Animerge_V3.0_LoRA",
|
| 160 |
+
"Cyberpunk": "artificialguybr/cyberpunk-anime-diffusion",
|
| 161 |
+
"Fantasy Art": "artificialguybr/fantasy-art-lora",
|
| 162 |
+
"Chinese Style": "yfszzx/Chinese_style_xl_LoRA",
|
| 163 |
+
"Traditional Painting": "artificialguybr/Traditional-Painting-Style-LoRA",
|
| 164 |
+
"Anime Art": "Linaqruf/anime-detailer-xl-lora",
|
| 165 |
+
"Cinematic": "artificialguybr/cinematic-diffusion",
|
| 166 |
+
"Oil Painting": "artificialguybr/oil-painting-style",
|
| 167 |
+
# Character/Face LoRAs
|
| 168 |
+
"Japanese Doll": "Norod78/sd15-JapaneseDollLikeness_lora",
|
| 169 |
+
"Korean Doll": "Norod78/sd15-KoreanDollLikeness_lora",
|
| 170 |
+
"Detail Tweaker": "nitrosocke/detail-tweaker-lora",
|
| 171 |
+
"Beautiful Realistic Asians": "etok/Beautiful_Realistic_Asians",
|
| 172 |
+
"Asian Beauty": "digiplay/AsianBeauty_V1",
|
| 173 |
+
"Perfect Hands": "Sanster/perfect-hands",
|
| 174 |
+
"Face Detail": "ostris/face-detail-lora",
|
| 175 |
+
# Body/Pose LoRAs
|
| 176 |
+
"Body Pose Control": "alvdansen/lora-body-pose",
|
| 177 |
+
"Dynamic Poses": "alvdansen/dynamic-poses-lora",
|
| 178 |
+
"Full Body": "artificialguybr/full-body-lora",
|
| 179 |
+
# Realism LoRAs
|
| 180 |
"Photorealistic": "microsoft/lora-photorealistic",
|
| 181 |
+
"Hyper-Realistic": "dallinmackay/hyper-realistic-lora",
|
| 182 |
+
"Ultra Realistic": "artificialguybr/ultra-realistic-lora",
|
| 183 |
+
"Realistic Vision": "SG161222/Realistic_Vision_V5.1_noVAE",
|
| 184 |
+
# Lighting/Quality LoRAs
|
| 185 |
+
"Add Detail": "ostris/add-detail-lora",
|
| 186 |
+
"Sharp Details": "ostris/sharp-details-lora",
|
| 187 |
+
"Better Lighting": "artificialguybr/better-lighting-lora",
|
| 188 |
+
"Studio Lighting": "artificialguybr/studio-lighting",
|
| 189 |
+
# NSFW-capable LoRAs
|
| 190 |
+
"NSFW Master": "hearmeneigh/nsfw-master-lora",
|
| 191 |
+
"Realistic NSFW": "digiplay/RealisticNSFW_v1",
|
| 192 |
+
"Anime NSFW": "Linaqruf/anime-nsfw-lora",
|
| 193 |
+
"Hentai Diffusion": "Deltaadams/Hentai-Diffusion",
|
| 194 |
+
"Sexy Pose": "alvdansen/sexy-pose-lora"
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
+
# VAE models for better quality
|
| 198 |
+
VAE_MODELS = {
|
| 199 |
+
"None": None,
|
| 200 |
+
"SD1.5 VAE": "stabilityai/sd-vae-ft-mse",
|
| 201 |
+
"Anime VAE": "hakurei/waifu-diffusion-v1-4",
|
| 202 |
+
"SDXL VAE": "madebyollin/sdxl-vae-fp16-fix"
|
| 203 |
}
|
| 204 |
|
| 205 |
# Detector instances
|
| 206 |
DETECTORS = {}
|
| 207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
def is_sdxl_model(model_name: str) -> bool:
|
| 209 |
"""Check if model is SDXL"""
|
| 210 |
return model_name in SDXL_MODELS or "xl" in model_name.lower() or "XL" in model_name
|
|
|
|
| 258 |
else:
|
| 259 |
raise ValueError(f"Unknown ControlNet type: {controlnet_type}")
|
| 260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
def prepare_condition_image(image, controlnet_type):
|
| 262 |
"""Prepare condition image for ControlNet"""
|
| 263 |
if controlnet_type in ["lineart", "lineart_anime"]:
|
|
|
|
| 290 |
result = detector(image, detect_resolution=512, image_resolution=512)
|
| 291 |
return Image.fromarray(result) if isinstance(result, np.ndarray) else result
|
| 292 |
|
|
|
|
| 293 |
return image
|
| 294 |
|
| 295 |
+
def get_pipeline(model_name: str, controlnet_type: str = "lineart", lora_model: str = None,
|
| 296 |
+
lora_weight: float = 0.8, vae_model: str = None):
|
| 297 |
+
"""Get or create a ControlNet pipeline with optional LoRA and VAE"""
|
| 298 |
global CURRENT_CONTROLNET_PIPE, CURRENT_CONTROLNET_KEY
|
| 299 |
|
| 300 |
+
key = (model_name, controlnet_type, lora_model, lora_weight, vae_model)
|
| 301 |
|
|
|
|
| 302 |
if CURRENT_CONTROLNET_KEY == key and CURRENT_CONTROLNET_PIPE is not None:
|
| 303 |
print(f"✅ Reusing existing ControlNet pipeline: {model_name}, type: {controlnet_type}")
|
| 304 |
return CURRENT_CONTROLNET_PIPE
|
| 305 |
|
|
|
|
| 306 |
if CURRENT_CONTROLNET_PIPE is not None:
|
| 307 |
print(f"🗑️ Unloading old ControlNet pipeline: {CURRENT_CONTROLNET_KEY}")
|
| 308 |
del CURRENT_CONTROLNET_PIPE
|
|
|
|
| 315 |
print(f"📥 Loading ControlNet pipeline for model: {model_name}, type: {controlnet_type}")
|
| 316 |
|
| 317 |
try:
|
|
|
|
| 318 |
if is_sdxl_model(model_name):
|
| 319 |
+
if controlnet_type in SDXL_CONTROLNET_MODELS:
|
| 320 |
controlnet_model_name = get_controlnet_model(controlnet_type)
|
| 321 |
controlnet = ControlNetModel.from_pretrained(
|
| 322 |
controlnet_model_name,
|
| 323 |
+
torch_dtype=dtype
|
| 324 |
).to(device)
|
| 325 |
|
| 326 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 327 |
model_name,
|
| 328 |
controlnet=controlnet,
|
| 329 |
+
torch_dtype=dtype,
|
| 330 |
+
safety_checker=None,
|
| 331 |
requires_safety_checker=False,
|
| 332 |
use_safetensors=True,
|
| 333 |
+
variant="fp16" if dtype == torch.float16 else None
|
| 334 |
).to(device)
|
| 335 |
else:
|
| 336 |
+
raise ValueError(f"SDXL model only supports: {list(SDXL_CONTROLNET_MODELS.keys())}")
|
| 337 |
else:
|
|
|
|
| 338 |
controlnet_model_name = get_controlnet_model(controlnet_type)
|
| 339 |
controlnet = ControlNetModel.from_pretrained(
|
| 340 |
controlnet_model_name,
|
| 341 |
+
torch_dtype=dtype
|
| 342 |
).to(device)
|
| 343 |
|
| 344 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 345 |
model_name,
|
| 346 |
controlnet=controlnet,
|
| 347 |
+
torch_dtype=dtype,
|
| 348 |
+
safety_checker=None,
|
| 349 |
requires_safety_checker=False,
|
| 350 |
use_safetensors=True,
|
| 351 |
+
variant="fp16" if dtype == torch.float16 else None
|
| 352 |
).to(device)
|
| 353 |
|
| 354 |
+
# Load custom VAE if specified
|
| 355 |
+
if vae_model and vae_model != "None":
|
| 356 |
+
try:
|
| 357 |
+
from diffusers import AutoencoderKL
|
| 358 |
+
print(f"🔄 Loading custom VAE: {vae_model}")
|
| 359 |
+
vae = AutoencoderKL.from_pretrained(vae_model, torch_dtype=dtype).to(device)
|
| 360 |
+
pipe.vae = vae
|
| 361 |
+
except Exception as e:
|
| 362 |
+
print(f"⚠️ Error loading VAE: {e}")
|
| 363 |
+
|
| 364 |
# Apply LoRA if specified
|
| 365 |
if lora_model and lora_model != "None":
|
| 366 |
print(f"🔄 Applying LoRA: {lora_model} with weight: {lora_weight}")
|
| 367 |
try:
|
| 368 |
+
pipe.load_lora_weights(lora_model)
|
| 369 |
pipe.fuse_lora(lora_scale=lora_weight)
|
| 370 |
except Exception as e:
|
| 371 |
print(f"⚠️ Error loading LoRA: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
|
| 373 |
# Optimizations
|
| 374 |
pipe.enable_attention_slicing(slice_size="max")
|
| 375 |
|
|
|
|
| 376 |
if hasattr(pipe, 'vae') and hasattr(pipe.vae, 'enable_slicing'):
|
| 377 |
pipe.vae.enable_slicing()
|
| 378 |
else:
|
|
|
|
| 382 |
pass
|
| 383 |
|
| 384 |
if device.type == "cuda":
|
|
|
|
| 385 |
try:
|
| 386 |
pipe.enable_xformers_memory_efficient_attention()
|
| 387 |
+
print("✅ xFormers enabled")
|
| 388 |
except:
|
|
|
|
| 389 |
pass
|
|
|
|
|
|
|
| 390 |
pipe.enable_model_cpu_offload()
|
| 391 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
try:
|
| 393 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 394 |
+
print("✅ Using Euler Ancestral scheduler")
|
| 395 |
except:
|
| 396 |
try:
|
| 397 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
|
|
|
| 398 |
except:
|
| 399 |
pass
|
| 400 |
|
|
|
|
| 408 |
CURRENT_CONTROLNET_KEY = None
|
| 409 |
raise
|
| 410 |
|
| 411 |
+
def load_t2i_model(model_name: str, lora_model: str = None, lora_weight: float = 0.8,
|
| 412 |
+
vae_model: str = None):
|
| 413 |
+
"""Load text-to-image model with optional LoRA and VAE"""
|
| 414 |
global CURRENT_T2I_PIPE, CURRENT_T2I_MODEL, CURRENT_SDXL_REFINER
|
| 415 |
|
|
|
|
| 416 |
use_refiner = "refiner" in model_name.lower()
|
| 417 |
+
key = (model_name, lora_model, lora_weight, vae_model, use_refiner)
|
|
|
|
| 418 |
|
| 419 |
if CURRENT_T2I_MODEL == key and CURRENT_T2I_PIPE is not None:
|
| 420 |
return
|
| 421 |
|
|
|
|
| 422 |
if CURRENT_T2I_PIPE is not None:
|
| 423 |
print(f"🗑️ Unloading old T2I model: {CURRENT_T2I_MODEL}")
|
| 424 |
del CURRENT_T2I_PIPE
|
|
|
|
| 434 |
|
| 435 |
try:
|
| 436 |
if is_sdxl_model(model_name):
|
|
|
|
| 437 |
if use_refiner:
|
|
|
|
| 438 |
CURRENT_T2I_PIPE = StableDiffusionXLPipeline.from_pretrained(
|
| 439 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 440 |
+
torch_dtype=dtype,
|
| 441 |
+
safety_checker=None,
|
| 442 |
requires_safety_checker=False,
|
| 443 |
use_safetensors=True,
|
| 444 |
+
variant="fp16" if dtype == torch.float16 else None
|
| 445 |
).to(device)
|
| 446 |
|
| 447 |
CURRENT_SDXL_REFINER = StableDiffusionXLPipeline.from_pretrained(
|
| 448 |
model_name,
|
| 449 |
+
torch_dtype=dtype,
|
| 450 |
safety_checker=None,
|
| 451 |
requires_safety_checker=False,
|
| 452 |
use_safetensors=True,
|
| 453 |
+
variant="fp16" if dtype == torch.float16 else None,
|
| 454 |
text_encoder_2=CURRENT_T2I_PIPE.text_encoder_2,
|
| 455 |
vae=CURRENT_T2I_PIPE.vae
|
| 456 |
).to(device)
|
|
|
|
| 457 |
else:
|
| 458 |
CURRENT_T2I_PIPE = StableDiffusionXLPipeline.from_pretrained(
|
| 459 |
+
model_name,
|
| 460 |
+
torch_dtype=dtype,
|
| 461 |
+
safety_checker=None,
|
| 462 |
requires_safety_checker=False,
|
| 463 |
use_safetensors=True,
|
| 464 |
+
variant="fp16" if dtype == torch.float16 else None
|
| 465 |
).to(device)
|
|
|
|
| 466 |
else:
|
|
|
|
| 467 |
CURRENT_T2I_PIPE = StableDiffusionPipeline.from_pretrained(
|
| 468 |
+
model_name,
|
| 469 |
+
torch_dtype=dtype,
|
| 470 |
+
safety_checker=None,
|
| 471 |
requires_safety_checker=False,
|
| 472 |
use_safetensors=True,
|
| 473 |
+
variant="fp16" if dtype == torch.float16 else None
|
| 474 |
).to(device)
|
|
|
|
| 475 |
|
| 476 |
+
# Load custom VAE
|
| 477 |
+
if vae_model and vae_model != "None":
|
| 478 |
+
try:
|
| 479 |
+
from diffusers import AutoencoderKL
|
| 480 |
+
print(f"🔄 Loading custom VAE: {vae_model}")
|
| 481 |
+
vae = AutoencoderKL.from_pretrained(vae_model, torch_dtype=dtype).to(device)
|
| 482 |
+
CURRENT_T2I_PIPE.vae = vae
|
| 483 |
+
except Exception as e:
|
| 484 |
+
print(f"⚠️ Error loading VAE: {e}")
|
| 485 |
+
|
| 486 |
+
# Apply LoRA
|
| 487 |
if lora_model and lora_model != "None":
|
| 488 |
+
print(f"🔄 Applying LoRA: {lora_model} with weight: {lora_weight}")
|
| 489 |
try:
|
| 490 |
CURRENT_T2I_PIPE.load_lora_weights(lora_model)
|
| 491 |
CURRENT_T2I_PIPE.fuse_lora(lora_scale=lora_weight)
|
| 492 |
except Exception as e:
|
| 493 |
+
print(f"⚠️ Error loading LoRA: {e}")
|
| 494 |
|
| 495 |
# Optimizations
|
| 496 |
CURRENT_T2I_PIPE.enable_attention_slicing(slice_size="max")
|
| 497 |
|
|
|
|
| 498 |
if hasattr(CURRENT_T2I_PIPE, 'vae') and hasattr(CURRENT_T2I_PIPE.vae, 'enable_slicing'):
|
| 499 |
CURRENT_T2I_PIPE.vae.enable_slicing()
|
| 500 |
else:
|
|
|
|
| 506 |
if device.type == "cuda":
|
| 507 |
try:
|
| 508 |
CURRENT_T2I_PIPE.enable_xformers_memory_efficient_attention()
|
|
|
|
| 509 |
except:
|
| 510 |
pass
|
| 511 |
CURRENT_T2I_PIPE.enable_model_cpu_offload()
|
| 512 |
|
|
|
|
| 513 |
try:
|
| 514 |
+
CURRENT_T2I_PIPE.scheduler = EulerAncestralDiscreteScheduler.from_config(CURRENT_T2I_PIPE.scheduler.config)
|
|
|
|
| 515 |
except:
|
| 516 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
| 517 |
|
| 518 |
CURRENT_T2I_MODEL = key
|
| 519 |
|
| 520 |
except Exception as e:
|
| 521 |
+
print(f"❌ Error loading T2I model: {e}")
|
| 522 |
+
CURRENT_T2I_PIPE = None
|
| 523 |
+
CURRENT_T2I_MODEL = None
|
| 524 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 525 |
|
| 526 |
+
def colorize(sketch, base_model, controlnet_type, lora_model, lora_weight, vae_model,
|
|
|
|
| 527 |
prompt, negative_prompt, seed, steps, scale, cn_weight):
|
| 528 |
try:
|
|
|
|
| 529 |
if is_sdxl_model(base_model) and controlnet_type not in SDXL_CONTROLNET_MODELS:
|
| 530 |
error_img = Image.new('RGB', (512, 512), color='red')
|
| 531 |
error_msg_img = Image.new('RGB', (512, 512), color='yellow')
|
|
|
|
| 539 |
draw.text((50, 230), f"{', '.join(SDXL_CONTROLNET_MODELS.keys())}", fill="black", font=font)
|
| 540 |
return error_img, error_msg_img
|
| 541 |
|
| 542 |
+
pipe = get_pipeline(base_model, controlnet_type, lora_model, lora_weight, vae_model)
|
|
|
|
| 543 |
|
| 544 |
+
status_msg = f"🎨 Using: {base_model} + {controlnet_type}"
|
| 545 |
if lora_model and lora_model != "None":
|
| 546 |
status_msg += f" + {lora_model}"
|
| 547 |
print(status_msg)
|
| 548 |
|
|
|
|
| 549 |
condition_img = prepare_condition_image(sketch, controlnet_type)
|
| 550 |
|
|
|
|
| 551 |
gen = torch.Generator(device=device).manual_seed(int(seed))
|
| 552 |
|
| 553 |
with torch.inference_mode():
|
| 554 |
out = pipe(
|
| 555 |
+
prompt,
|
| 556 |
negative_prompt=negative_prompt,
|
| 557 |
+
image=condition_img,
|
| 558 |
num_inference_steps=int(steps),
|
| 559 |
+
guidance_scale=float(scale),
|
| 560 |
controlnet_conditioning_scale=float(cn_weight),
|
| 561 |
generator=gen,
|
| 562 |
height=512,
|
| 563 |
width=512
|
| 564 |
).images[0]
|
| 565 |
|
|
|
|
| 566 |
if device.type == "cuda":
|
| 567 |
torch.cuda.empty_cache()
|
| 568 |
|
|
|
|
| 572 |
error_img = Image.new('RGB', (512, 512), color='red')
|
| 573 |
return error_img, Image.new('RGB', (512, 512), color='gray')
|
| 574 |
|
| 575 |
+
def t2i(prompt, negative_prompt, model, lora_model, lora_weight, vae_model,
|
| 576 |
+
seed, steps, scale, w, h, use_refiner=False):
|
| 577 |
try:
|
|
|
|
| 578 |
model_to_load = model
|
| 579 |
if use_refiner and "refiner" not in model.lower():
|
| 580 |
model_to_load = "stabilityai/stable-diffusion-xl-refiner-1.0"
|
| 581 |
|
| 582 |
+
load_t2i_model(model_to_load, lora_model, lora_weight, vae_model)
|
| 583 |
|
| 584 |
print(f"🖼️ Using T2I model: {model}")
|
| 585 |
if lora_model and lora_model != "None":
|
|
|
|
| 588 |
gen = torch.Generator(device=device).manual_seed(int(seed))
|
| 589 |
|
| 590 |
with torch.inference_mode():
|
|
|
|
| 591 |
if use_refiner and CURRENT_SDXL_REFINER is not None:
|
|
|
|
| 592 |
image = CURRENT_T2I_PIPE(
|
| 593 |
prompt=prompt,
|
| 594 |
negative_prompt=negative_prompt,
|
| 595 |
width=int(w),
|
| 596 |
height=int(h),
|
| 597 |
+
num_inference_steps=int(steps//2),
|
| 598 |
guidance_scale=float(scale),
|
| 599 |
generator=gen,
|
| 600 |
output_type="latent"
|
| 601 |
).images
|
| 602 |
|
|
|
|
| 603 |
result = CURRENT_SDXL_REFINER(
|
| 604 |
prompt=prompt,
|
| 605 |
negative_prompt=negative_prompt,
|
| 606 |
image=image,
|
| 607 |
+
num_inference_steps=int(steps//2),
|
| 608 |
guidance_scale=float(scale),
|
| 609 |
generator=gen
|
| 610 |
).images[0]
|
| 611 |
else:
|
|
|
|
| 612 |
if is_sdxl_model(model):
|
| 613 |
width = max(int(w), 512)
|
| 614 |
height = max(int(h), 512)
|
| 615 |
result = CURRENT_T2I_PIPE(
|
| 616 |
+
prompt,
|
| 617 |
negative_prompt=negative_prompt,
|
| 618 |
+
width=width,
|
| 619 |
height=height,
|
| 620 |
+
num_inference_steps=int(steps),
|
| 621 |
guidance_scale=float(scale),
|
| 622 |
generator=gen
|
| 623 |
).images[0]
|
| 624 |
else:
|
| 625 |
result = CURRENT_T2I_PIPE(
|
| 626 |
+
prompt,
|
| 627 |
negative_prompt=negative_prompt,
|
| 628 |
+
width=int(w),
|
| 629 |
height=int(h),
|
| 630 |
+
num_inference_steps=int(steps),
|
| 631 |
guidance_scale=float(scale),
|
| 632 |
generator=gen
|
| 633 |
).images[0]
|
|
|
|
| 648 |
draw.text((50, 50), f"Error: {str(e)[:50]}...", fill="white", font=font)
|
| 649 |
return error_img
|
| 650 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 651 |
def unload_all_models():
|
| 652 |
global CURRENT_CONTROLNET_PIPE, CURRENT_CONTROLNET_KEY
|
| 653 |
global DETECTORS
|
| 654 |
global CURRENT_T2I_PIPE, CURRENT_T2I_MODEL, CURRENT_SDXL_REFINER
|
|
|
|
| 655 |
|
| 656 |
+
print("🗑️ Unloading all models from memory...")
|
| 657 |
|
|
|
|
| 658 |
try:
|
| 659 |
if CURRENT_CONTROLNET_PIPE is not None:
|
| 660 |
del CURRENT_CONTROLNET_PIPE
|
|
|
|
| 663 |
pass
|
| 664 |
CURRENT_CONTROLNET_KEY = None
|
| 665 |
|
|
|
|
| 666 |
for detector_type in list(DETECTORS.keys()):
|
| 667 |
try:
|
| 668 |
del DETECTORS[detector_type]
|
|
|
|
| 670 |
pass
|
| 671 |
DETECTORS.clear()
|
| 672 |
|
|
|
|
| 673 |
try:
|
| 674 |
if CURRENT_T2I_PIPE is not None:
|
| 675 |
del CURRENT_T2I_PIPE
|
|
|
|
| 686 |
|
| 687 |
CURRENT_T2I_MODEL = None
|
| 688 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 689 |
gc.collect()
|
| 690 |
if torch.cuda.is_available():
|
| 691 |
torch.cuda.empty_cache()
|
|
|
|
| 696 |
return "✅ All models unloaded from memory!"
|
| 697 |
|
| 698 |
# ===== Gradio UI =====
|
| 699 |
+
with gr.Blocks(title="🎨 AI Image Generator Pro", theme=gr.themes.Soft()) as demo:
|
| 700 |
+
gr.Markdown("# 🎨 AI Image Generator Pro - NSFW Capable")
|
| 701 |
+
gr.Markdown("### Advanced Image Generation with ControlNet, LoRA & VAE Support")
|
| 702 |
+
gr.Markdown("⚠️ **Content Warning:** This tool can generate NSFW content. Use responsibly and in compliance with applicable laws.")
|
| 703 |
|
|
|
|
| 704 |
if torch.cuda.is_available():
|
| 705 |
gpu_name = torch.cuda.get_device_name(0)
|
| 706 |
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
|
|
|
|
| 708 |
else:
|
| 709 |
gr.Markdown("**⚠️ Running on CPU** - Generation will be slower")
|
| 710 |
|
|
|
|
| 711 |
with gr.Row():
|
| 712 |
unload_btn = gr.Button("🗑️ Unload All Models", variant="stop", scale=1)
|
| 713 |
status_text = gr.Textbox(label="Status", interactive=False, scale=3)
|
| 714 |
unload_btn.click(unload_all_models, outputs=status_text)
|
| 715 |
|
| 716 |
+
with gr.Tab("🎨 ControlNet Image-to-Image"):
|
| 717 |
gr.Markdown("""
|
| 718 |
+
### Transform sketches/images using ControlNet
|
| 719 |
+
- **SD1.5 Models:** Support all ControlNet types
|
| 720 |
+
- **SDXL Models:** Support canny_sdxl, depth_sdxl, openpose_sdxl only
|
| 721 |
""")
|
| 722 |
|
| 723 |
with gr.Row():
|
| 724 |
+
with gr.Column(scale=1):
|
| 725 |
+
inp = gr.Image(label="Input Sketch/Image", type="pil")
|
| 726 |
+
|
| 727 |
+
gr.Markdown("### Model Settings")
|
| 728 |
+
base_model = gr.Dropdown(
|
| 729 |
+
choices=ALL_MODELS,
|
| 730 |
+
value="digiplay/ChikMix_V3",
|
| 731 |
+
label="Base Model"
|
| 732 |
+
)
|
| 733 |
+
controlnet_type = gr.Dropdown(
|
| 734 |
+
choices=list(CONTROLNET_MODELS.keys()) + list(SDXL_CONTROLNET_MODELS.keys()),
|
| 735 |
+
value="lineart_anime",
|
| 736 |
+
label="ControlNet Type"
|
| 737 |
+
)
|
| 738 |
+
|
| 739 |
+
gr.Markdown("### Enhancement Options")
|
| 740 |
+
with gr.Row():
|
| 741 |
+
lora_model = gr.Dropdown(
|
| 742 |
+
choices=list(LORA_MODELS.keys()),
|
| 743 |
+
value="None",
|
| 744 |
+
label="LoRA Model"
|
| 745 |
+
)
|
| 746 |
+
lora_weight = gr.Slider(0.1, 2.0, 0.8, step=0.1, label="LoRA Weight")
|
| 747 |
+
|
| 748 |
+
vae_model = gr.Dropdown(
|
| 749 |
+
choices=list(VAE_MODELS.keys()),
|
| 750 |
+
value="None",
|
| 751 |
+
label="VAE Model (Optional)"
|
| 752 |
+
)
|
| 753 |
+
|
| 754 |
+
with gr.Column(scale=1):
|
| 755 |
+
out = gr.Image(label="Generated Output")
|
| 756 |
+
condition_out = gr.Image(label="Processed Condition", type="pil")
|
| 757 |
|
| 758 |
+
gr.Markdown("### Generation Parameters")
|
| 759 |
with gr.Row():
|
| 760 |
prompt = gr.Textbox(
|
| 761 |
+
label="Prompt",
|
| 762 |
+
placeholder="masterpiece, best quality, 1girl, beautiful detailed eyes, long hair",
|
| 763 |
+
lines=3
|
| 764 |
)
|
| 765 |
negative_prompt = gr.Textbox(
|
| 766 |
+
label="Negative Prompt",
|
| 767 |
+
placeholder="lowres, bad anatomy, bad hands, text, error, missing fingers",
|
| 768 |
+
lines=3
|
| 769 |
)
|
| 770 |
|
| 771 |
with gr.Row():
|
| 772 |
+
seed = gr.Number(value=-1, label="Seed (-1 for random)")
|
| 773 |
+
steps = gr.Slider(10, 150, 30, step=1, label="Steps")
|
| 774 |
+
scale = gr.Slider(1, 30, 7.5, step=0.5, label="CFG Scale")
|
| 775 |
cn_weight = gr.Slider(0.1, 2.0, 1.0, step=0.1, label="ControlNet Weight")
|
| 776 |
|
| 777 |
+
run = gr.Button("🎨 Generate", variant="primary", size="lg")
|
| 778 |
run.click(
|
| 779 |
+
colorize,
|
| 780 |
+
[inp, base_model, controlnet_type, lora_model, lora_weight, vae_model,
|
| 781 |
+
prompt, negative_prompt, seed, steps, scale, cn_weight],
|
| 782 |
[out, condition_out]
|
| 783 |
)
|
| 784 |
+
|
| 785 |
+
gr.Markdown("""
|
| 786 |
+
### Tips for Better Results:
|
| 787 |
+
- Use detailed prompts for better control
|
| 788 |
+
- Adjust ControlNet weight to balance between condition and creativity
|
| 789 |
+
- Try different LoRA models for various styles
|
| 790 |
+
- Higher steps = better quality but slower generation
|
| 791 |
+
""")
|
| 792 |
|
| 793 |
+
with gr.Tab("🖼️ Text-to-Image Generation"):
|
| 794 |
gr.Markdown("""
|
| 795 |
### Generate images from text descriptions
|
| 796 |
+
Supports both SD1.5 and SDXL models with advanced features
|
|
|
|
| 797 |
""")
|
| 798 |
|
| 799 |
with gr.Row():
|
| 800 |
+
with gr.Column(scale=1):
|
| 801 |
+
gr.Markdown("### Model Configuration")
|
| 802 |
+
t2i_model = gr.Dropdown(
|
| 803 |
+
choices=ALL_MODELS,
|
| 804 |
+
value="digiplay/ChikMix_V3",
|
| 805 |
+
label="Base Model"
|
| 806 |
+
)
|
| 807 |
+
|
| 808 |
+
gr.Markdown("### Enhancement Options")
|
| 809 |
+
with gr.Row():
|
| 810 |
+
t2i_lora = gr.Dropdown(
|
| 811 |
+
choices=list(LORA_MODELS.keys()),
|
| 812 |
+
value="None",
|
| 813 |
+
label="LoRA Model"
|
| 814 |
+
)
|
| 815 |
+
t2i_lora_weight = gr.Slider(0.1, 2.0, 0.8, step=0.1, label="LoRA Weight")
|
| 816 |
+
|
| 817 |
+
t2i_vae = gr.Dropdown(
|
| 818 |
+
choices=list(VAE_MODELS.keys()),
|
| 819 |
+
value="None",
|
| 820 |
+
label="VAE Model"
|
| 821 |
+
)
|
| 822 |
+
|
| 823 |
+
use_refiner = gr.Checkbox(
|
| 824 |
+
label="Use SDXL Refiner (SDXL only)",
|
| 825 |
+
value=False
|
| 826 |
+
)
|
| 827 |
+
|
| 828 |
+
with gr.Column(scale=1):
|
| 829 |
+
t2i_out = gr.Image(label="Generated Image", type="pil")
|
| 830 |
|
| 831 |
+
gr.Markdown("### Prompts")
|
| 832 |
with gr.Row():
|
| 833 |
t2i_prompt = gr.Textbox(
|
| 834 |
+
label="Prompt",
|
| 835 |
+
lines=4,
|
| 836 |
+
placeholder="masterpiece, best quality, highly detailed, 8k, photorealistic, beautiful lighting"
|
| 837 |
)
|
| 838 |
t2i_negative_prompt = gr.Textbox(
|
| 839 |
+
label="Negative Prompt",
|
| 840 |
+
lines=4,
|
| 841 |
+
placeholder="lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 842 |
)
|
|
|
|
| 843 |
|
| 844 |
+
gr.Markdown("### Generation Parameters")
|
| 845 |
with gr.Row():
|
| 846 |
+
t2i_seed = gr.Number(value=-1, label="Seed (-1 for random)")
|
| 847 |
+
t2i_steps = gr.Slider(10, 150, 30, step=1, label="Steps")
|
| 848 |
+
t2i_scale = gr.Slider(1, 30, 7.5, step=0.5, label="CFG Scale")
|
| 849 |
|
| 850 |
with gr.Row():
|
| 851 |
+
w = gr.Slider(256, 2048, 512, step=64, label="Width")
|
| 852 |
+
h = gr.Slider(256, 2048, 768, step=64, label="Height")
|
|
|
|
| 853 |
|
| 854 |
+
gen_btn = gr.Button("🖼️ Generate Image", variant="primary", size="lg")
|
| 855 |
gen_btn.click(
|
| 856 |
+
t2i,
|
| 857 |
+
[t2i_prompt, t2i_negative_prompt, t2i_model, t2i_lora, t2i_lora_weight,
|
| 858 |
+
t2i_vae, t2i_seed, t2i_steps, t2i_scale, w, h, use_refiner],
|
| 859 |
t2i_out
|
| 860 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 861 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 862 |
gr.Markdown("""
|
| 863 |
+
### Pro Tips:
|
| 864 |
+
- **SDXL models** produce higher quality at 1024x1024
|
| 865 |
+
- **SD1.5 models** work best at 512x512 or 512x768
|
| 866 |
+
- Use **LoRA** for specific styles (anime, realistic, etc.)
|
| 867 |
+
- Use **VAE** for better colors and details
|
| 868 |
+
- **Refiner** adds extra polish to SDXL generations
|
| 869 |
+
- Higher **CFG Scale** = more prompt adherence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 870 |
""")
|
| 871 |
+
|
| 872 |
+
with gr.Tab("📚 Quick Reference"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 873 |
gr.Markdown("""
|
| 874 |
+
# Model & Feature Guide
|
| 875 |
+
|
| 876 |
+
## 🎯 Recommended Models for Different Purposes
|
| 877 |
+
|
| 878 |
+
### Realistic/Photorealistic
|
| 879 |
+
- `emilianJR/epiCRealism` - Excellent for realistic portraits
|
| 880 |
+
- `stablediffusionapi/realistic-vision-v51` - High quality realistic images
|
| 881 |
+
- `digiplay/majicMIX_realistic_v7` - Great for realistic characters
|
| 882 |
+
- `SG161222/RealVisXL_V4.0` - SDXL realistic model
|
| 883 |
+
|
| 884 |
+
### Anime/Cartoon
|
| 885 |
+
- `digiplay/ChikMix_V3` - Versatile anime style
|
| 886 |
+
- `gsdf/Counterfeit-V2.5` - High quality anime
|
| 887 |
+
- `stablediffusionapi/anything-v5` - Popular anime model
|
| 888 |
+
- `digiplay/Pony_Diffusion_V6_XL` - SDXL anime model
|
| 889 |
+
|
| 890 |
+
### Artistic/Stylized
|
| 891 |
+
- `stablediffusionapi/dreamshaper-v8` - Dream-like artistic style
|
| 892 |
+
- `wavymulder/Analog-Diffusion` - Analog photo aesthetic
|
| 893 |
+
- `Lykon/dreamshaper-xl-1-0` - SDXL artistic model
|
| 894 |
+
|
| 895 |
+
## 🎨 ControlNet Types Explained
|
| 896 |
+
|
| 897 |
+
- **lineart/lineart_anime**: Convert line drawings to colored images
|
| 898 |
+
- **canny**: Edge detection based generation
|
| 899 |
+
- **depth**: Depth map based generation
|
| 900 |
+
- **openpose**: Human pose based generation
|
| 901 |
+
- **normal**: Normal map based generation
|
| 902 |
+
- **softedge**: Soft edge detection
|
| 903 |
+
- **scribble**: Scribble to image
|
| 904 |
+
- **tile**: Upscaling and detail enhancement
|
| 905 |
+
|
| 906 |
+
## 💎 Popular LoRA Combinations
|
| 907 |
+
|
| 908 |
+
### For Portraits
|
| 909 |
+
- Base: `digiplay/majicMIX_realistic_v7`
|
| 910 |
+
- LoRA: `Detail Tweaker` or `Face Detail`
|
| 911 |
+
- VAE: `SD1.5 VAE`
|
| 912 |
+
|
| 913 |
+
### For Anime Characters
|
| 914 |
+
- Base: `digiplay/ChikMix_V3`
|
| 915 |
+
- LoRA: `Anime Art` or `Manga Style`
|
| 916 |
+
- VAE: `Anime VAE`
|
| 917 |
+
|
| 918 |
+
### For NSFW Content
|
| 919 |
+
- Base: Any NSFW-capable model
|
| 920 |
+
- LoRA: `NSFW Master`, `Realistic NSFW`, or `Anime NSFW`
|
| 921 |
+
- Note: Always use responsibly and legally
|
| 922 |
+
|
| 923 |
+
## ⚙️ Parameter Guidelines
|
| 924 |
+
|
| 925 |
+
### Steps
|
| 926 |
+
- **20-30**: Fast, good quality
|
| 927 |
+
- **30-50**: Balanced
|
| 928 |
+
- **50-100**: High quality, slow
|
| 929 |
+
|
| 930 |
+
### CFG Scale
|
| 931 |
+
- **5-7**: Creative, loose interpretation
|
| 932 |
+
- **7-10**: Balanced
|
| 933 |
+
- **10-15**: Strict prompt adherence
|
| 934 |
+
- **15+**: Very strict, may oversaturate
|
| 935 |
+
|
| 936 |
+
### Resolution
|
| 937 |
+
- **SD1.5**: 512x512, 512x768, 768x512
|
| 938 |
+
- **SDXL**: 1024x1024, 1024x1536, 1536x1024
|
| 939 |
+
|
| 940 |
+
## 🔞 NSFW Generation Guidelines
|
| 941 |
+
|
| 942 |
+
1. Use NSFW-capable base models
|
| 943 |
+
2. Apply relevant LoRA for style enhancement
|
| 944 |
+
3. Use detailed prompts
|
| 945 |
+
4. Adjust CFG scale (7-12 recommended)
|
| 946 |
+
5. Consider using higher steps (40-60)
|
| 947 |
+
6. **Always comply with local laws and regulations**
|
| 948 |
+
|
| 949 |
+
## 🚀 Performance Tips
|
| 950 |
+
|
| 951 |
+
- Unload models when switching between different types
|
| 952 |
+
- Use lower resolutions for testing
|
| 953 |
+
- Enable xFormers if available (automatic)
|
| 954 |
+
- Use appropriate batch sizes for your GPU
|
| 955 |
+
- Monitor GPU memory usage
|
| 956 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 957 |
|
| 958 |
try:
|
| 959 |
demo.launch(
|
| 960 |
+
server_name="0.0.0.0",
|
| 961 |
+
server_port=7860,
|
| 962 |
share=False,
|
| 963 |
show_error=True,
|
| 964 |
quiet=False
|