Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,31 +19,55 @@ model_options = {
|
|
| 19 |
"BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
|
| 20 |
}
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
# Streamlit 侧边栏模型选择
|
| 23 |
selected_model = st.sidebar.selectbox("Choose classification model", list(model_options.keys()))
|
| 24 |
selected_model_id = model_options[selected_model]
|
| 25 |
-
|
| 26 |
classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
def classify_emoji_text(text: str):
|
| 29 |
-
"""
|
| 30 |
-
Step 1: 翻译文本中的 emoji
|
| 31 |
-
Step 2: 使用分类器判断是否冒犯
|
| 32 |
-
"""
|
| 33 |
prompt = f"输入:{text}\n输出:"
|
| 34 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
| 35 |
with torch.no_grad():
|
| 36 |
output_ids = emoji_model.generate(**input_ids, max_new_tokens=64, do_sample=False)
|
| 37 |
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 38 |
-
|
| 39 |
-
# 保留真正输出部分(移除 prompt)
|
| 40 |
-
if "输出:" in decoded:
|
| 41 |
-
translated_text = decoded.split("输出:")[-1].strip()
|
| 42 |
-
else:
|
| 43 |
-
translated_text = decoded.strip()
|
| 44 |
|
| 45 |
result = classifier(translated_text)[0]
|
| 46 |
label = result["label"]
|
| 47 |
score = result["score"]
|
| 48 |
|
| 49 |
return translated_text, label, score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
"BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
|
| 20 |
}
|
| 21 |
|
| 22 |
+
# ✅ 页面配置
|
| 23 |
+
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
|
| 24 |
+
|
| 25 |
+
# ✅ 页面标题
|
| 26 |
+
st.title("🧠 Emoji-based Offensive Language Classifier")
|
| 27 |
+
|
| 28 |
+
st.markdown("""
|
| 29 |
+
This application translates emojis in a sentence and classifies whether the final sentence is offensive or not using two AI models.
|
| 30 |
+
- The **first model** translates emoji or symbolic phrases into standard Chinese text.
|
| 31 |
+
- The **second model** performs offensive language detection.
|
| 32 |
+
""")
|
| 33 |
+
|
| 34 |
# Streamlit 侧边栏模型选择
|
| 35 |
selected_model = st.sidebar.selectbox("Choose classification model", list(model_options.keys()))
|
| 36 |
selected_model_id = model_options[selected_model]
|
|
|
|
| 37 |
classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)
|
| 38 |
|
| 39 |
+
# ✅ 输入区域
|
| 40 |
+
st.markdown("### ✍️ Input your sentence:")
|
| 41 |
+
default_text = "你是🐷"
|
| 42 |
+
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
|
| 43 |
+
|
| 44 |
+
# ✅ 主逻辑封装函数
|
| 45 |
def classify_emoji_text(text: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
prompt = f"输入:{text}\n输出:"
|
| 47 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
| 48 |
with torch.no_grad():
|
| 49 |
output_ids = emoji_model.generate(**input_ids, max_new_tokens=64, do_sample=False)
|
| 50 |
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 51 |
+
translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
result = classifier(translated_text)[0]
|
| 54 |
label = result["label"]
|
| 55 |
score = result["score"]
|
| 56 |
|
| 57 |
return translated_text, label, score
|
| 58 |
+
|
| 59 |
+
# ✅ 触发按钮
|
| 60 |
+
if st.button("🚦 Analyze"):
|
| 61 |
+
with st.spinner("🔍 Processing..."):
|
| 62 |
+
try:
|
| 63 |
+
translated, label, score = classify_emoji_text(text)
|
| 64 |
+
st.markdown("### 🔄 Translated sentence:")
|
| 65 |
+
st.code(translated, language="text")
|
| 66 |
+
|
| 67 |
+
st.markdown(f"### 🎯 Prediction: `{label}`")
|
| 68 |
+
st.markdown(f"### 📊 Confidence Score: `{score:.2%}`")
|
| 69 |
+
|
| 70 |
+
except Exception as e:
|
| 71 |
+
st.error(f"❌ An error occurred during processing:\n\n{e}")
|
| 72 |
+
else:
|
| 73 |
+
st.info("👈 Please input text and click the button to classify.")
|