Spaces:
Configuration error
Configuration error
| """ | |
| Hello, welcome on board, | |
| """ | |
| from __future__ import print_function | |
| import os | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from .ted import TED # TEED architecture | |
| from einops import rearrange | |
| from custom_controlnet_aux.util import safe_step, custom_hf_download, BDS_MODEL_NAME, common_input_validate, resize_image_with_pad, HWC3 | |
| from PIL import Image | |
| class TEDDetector: | |
| def __init__(self, model): | |
| self.model = model | |
| self.device = "cpu" | |
| def from_pretrained(cls, pretrained_model_or_path=BDS_MODEL_NAME, filename="7_model.pth", subfolder="Annotators"): | |
| model_path = custom_hf_download(pretrained_model_or_path, filename, subfolder=subfolder) | |
| model = TED() | |
| model.load_state_dict(torch.load(model_path, map_location='cpu')) | |
| model.eval() | |
| return cls(model) | |
| def to(self, device): | |
| self.model.to(device) | |
| self.device = device | |
| return self | |
| def __call__(self, input_image, detect_resolution=512, safe_steps=2, upscale_method="INTER_CUBIC", output_type="pil", **kwargs): | |
| input_image, output_type = common_input_validate(input_image, output_type, **kwargs) | |
| input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) | |
| H, W, _ = input_image.shape | |
| with torch.no_grad(): | |
| image_teed = torch.from_numpy(input_image.copy()).float().to(self.device) | |
| image_teed = rearrange(image_teed, 'h w c -> 1 c h w') | |
| edges = self.model(image_teed) | |
| edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges] | |
| edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges] | |
| edges = np.stack(edges, axis=2) | |
| edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64))) | |
| if safe_steps != 0: | |
| edge = safe_step(edge, safe_steps) | |
| edge = (edge * 255.0).clip(0, 255).astype(np.uint8) | |
| detected_map = remove_pad(HWC3(edge)) | |
| if output_type == "pil": | |
| detected_map = Image.fromarray(detected_map[..., :3]) | |
| return detected_map | |