Eniiyanu commited on
Commit
c407c64
·
verified ·
1 Parent(s): eca2a0f

Upload 14 files

Browse files
orchestrator.py CHANGED
@@ -33,7 +33,7 @@ from tax_optimizer import TaxOptimizer
33
  RULES_PATH = "rules/rules_all.yaml" # adjust if yours is different
34
  PDF_SOURCE = "data" # folder or a single PDF
35
  EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
36
- GROQ_MODEL = "llama-3.1-70b-versatile"
37
 
38
  # Use /tmp for vector store in Hugging Face Spaces (writable directory)
39
  VECTOR_STORE_DIR = os.getenv('VECTOR_STORE_DIR', '/tmp/vector_store')
 
33
  RULES_PATH = "rules/rules_all.yaml" # adjust if yours is different
34
  PDF_SOURCE = "data" # folder or a single PDF
35
  EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
36
+ GROQ_MODEL = "llama-3.3-70b-versatile"
37
 
38
  # Use /tmp for vector store in Hugging Face Spaces (writable directory)
39
  VECTOR_STORE_DIR = os.getenv('VECTOR_STORE_DIR', '/tmp/vector_store')
rag_pipeline.py CHANGED
@@ -344,7 +344,7 @@ class RAGPipeline:
344
  def __init__(
345
  self,
346
  doc_store: DocumentStore,
347
- model: str = "llama-3.1-70b-versatile",
348
  temperature: float = 0.1,
349
  max_tokens: int = 4096,
350
  top_k: int = 8,
@@ -1106,7 +1106,7 @@ def main():
1106
  parser.add_argument(
1107
  "--model",
1108
  type=str,
1109
- default="llama-3.1-70b-versatile",
1110
  help="Groq model name"
1111
  )
1112
  parser.add_argument(
 
344
  def __init__(
345
  self,
346
  doc_store: DocumentStore,
347
+ model: str = "llama-3.3-70b-versatile",
348
  temperature: float = 0.1,
349
  max_tokens: int = 4096,
350
  top_k: int = 8,
 
1106
  parser.add_argument(
1107
  "--model",
1108
  type=str,
1109
+ default="llama-3.3-70b-versatile",
1110
  help="Groq model name"
1111
  )
1112
  parser.add_argument(
test_enhanced_responses.py CHANGED
@@ -28,7 +28,7 @@ def test_student_question():
28
  # Initialize RAG
29
  rag = RAGPipeline(
30
  doc_store=doc_store,
31
- model="llama-3.1-70b-versatile",
32
  temperature=0.1,
33
  top_k=8
34
  )
@@ -74,7 +74,7 @@ def test_multiple_personas():
74
 
75
  rag = RAGPipeline(
76
  doc_store=doc_store,
77
- model="llama-3.1-70b-versatile",
78
  temperature=0.1,
79
  top_k=6
80
  )
 
28
  # Initialize RAG
29
  rag = RAGPipeline(
30
  doc_store=doc_store,
31
+ model="llama-3.3-70b-versatile",
32
  temperature=0.1,
33
  top_k=8
34
  )
 
74
 
75
  rag = RAGPipeline(
76
  doc_store=doc_store,
77
+ model="llama-3.3-70b-versatile",
78
  temperature=0.1,
79
  top_k=6
80
  )
test_optimizer.py CHANGED
@@ -200,7 +200,7 @@ def test_with_rag():
200
  )
201
  pdfs = doc_store.discover_pdfs(pdf_source)
202
  doc_store.build_vector_store(pdfs, force_rebuild=False)
203
- rag = RAGPipeline(doc_store=doc_store, model="llama-3.1-70b-versatile", temperature=0.1)
204
 
205
  # Initialize tax engine
206
  catalog = RuleCatalog.from_yaml_files(["rules/rules_all.yaml"])
@@ -293,7 +293,7 @@ def test_high_earner():
293
  )
294
  pdfs = doc_store.discover_pdfs(pdf_source)
295
  doc_store.build_vector_store(pdfs, force_rebuild=False)
296
- rag = RAGPipeline(doc_store=doc_store, model="llama-3.1-70b-versatile", temperature=0.1)
297
 
298
  # Initialize tax engine
299
  catalog = RuleCatalog.from_yaml_files(["rules/rules_all.yaml"])
 
200
  )
201
  pdfs = doc_store.discover_pdfs(pdf_source)
202
  doc_store.build_vector_store(pdfs, force_rebuild=False)
203
+ rag = RAGPipeline(doc_store=doc_store, model="llama-3.3-70b-versatile", temperature=0.1)
204
 
205
  # Initialize tax engine
206
  catalog = RuleCatalog.from_yaml_files(["rules/rules_all.yaml"])
 
293
  )
294
  pdfs = doc_store.discover_pdfs(pdf_source)
295
  doc_store.build_vector_store(pdfs, force_rebuild=False)
296
+ rag = RAGPipeline(doc_store=doc_store, model="llama-3.3-70b-versatile", temperature=0.1)
297
 
298
  # Initialize tax engine
299
  catalog = RuleCatalog.from_yaml_files(["rules/rules_all.yaml"])