Oluwaferanmi
commited on
Commit
·
143273c
1
Parent(s):
61a314c
This is the latest change
Browse files- EMBEDDING_MODEL_FIX.md +143 -0
- orchestrator.py +51 -24
EMBEDDING_MODEL_FIX.md
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Embedding Model Issue - Solutions
|
| 2 |
+
|
| 3 |
+
## Problem
|
| 4 |
+
```
|
| 5 |
+
[WARN] RAG not initialized: Can't load the model for 'sentence-transformers/all-MiniLM-L6-v2'
|
| 6 |
+
```
|
| 7 |
+
|
| 8 |
+
This happens because:
|
| 9 |
+
1. Hugging Face Spaces has limited disk space (~50GB)
|
| 10 |
+
2. The embedding model needs to download (~400MB)
|
| 11 |
+
3. First-time downloads can fail due to network/space issues
|
| 12 |
+
|
| 13 |
+
## Solutions
|
| 14 |
+
|
| 15 |
+
### Option 1: Disable RAG (Recommended for Now)
|
| 16 |
+
|
| 17 |
+
Set environment variable in Hugging Face Space settings:
|
| 18 |
+
|
| 19 |
+
```bash
|
| 20 |
+
DISABLE_RAG=true
|
| 21 |
+
```
|
| 22 |
+
|
| 23 |
+
**Result:**
|
| 24 |
+
- ✅ Service starts immediately
|
| 25 |
+
- ✅ Tax calculations work perfectly
|
| 26 |
+
- ❌ Tax optimization unavailable (requires RAG)
|
| 27 |
+
- ❌ Tax Q&A unavailable (requires RAG)
|
| 28 |
+
|
| 29 |
+
**Use this if:** You only need tax calculations, not optimization recommendations.
|
| 30 |
+
|
| 31 |
+
### Option 2: Wait for Model Download
|
| 32 |
+
|
| 33 |
+
The model will eventually download on subsequent restarts. It may take 2-3 tries.
|
| 34 |
+
|
| 35 |
+
**Steps:**
|
| 36 |
+
1. Don't set `DISABLE_RAG`
|
| 37 |
+
2. Restart the Space multiple times
|
| 38 |
+
3. Check logs for: `[INFO] Embedding model cached successfully`
|
| 39 |
+
|
| 40 |
+
**Use this if:** You need full tax optimization features.
|
| 41 |
+
|
| 42 |
+
### Option 3: Use Smaller Embedding Model
|
| 43 |
+
|
| 44 |
+
Change in `orchestrator.py`:
|
| 45 |
+
|
| 46 |
+
```python
|
| 47 |
+
# Instead of:
|
| 48 |
+
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
| 49 |
+
|
| 50 |
+
# Use:
|
| 51 |
+
EMBED_MODEL = "sentence-transformers/all-MiniLM-L12-v2" # Smaller, faster
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
### Option 4: Pre-build Docker Image with Model
|
| 55 |
+
|
| 56 |
+
Add to `Dockerfile`:
|
| 57 |
+
|
| 58 |
+
```dockerfile
|
| 59 |
+
# After RUN pip install...
|
| 60 |
+
RUN python -c "from sentence_transformers import SentenceTransformer; SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')"
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
This downloads the model during build time.
|
| 64 |
+
|
| 65 |
+
## Current Status
|
| 66 |
+
|
| 67 |
+
The code now:
|
| 68 |
+
1. ✅ Tries to pre-download the model
|
| 69 |
+
2. ✅ Provides clear error messages
|
| 70 |
+
3. ✅ Continues without RAG if model fails
|
| 71 |
+
4. ✅ Supports `DISABLE_RAG` environment variable
|
| 72 |
+
|
| 73 |
+
## What Works Without RAG
|
| 74 |
+
|
| 75 |
+
| Feature | Status |
|
| 76 |
+
|---------|--------|
|
| 77 |
+
| Tax Calculations (PIT, CIT, VAT) | ✅ Works |
|
| 78 |
+
| Tax Rules Engine | ✅ Works |
|
| 79 |
+
| `/v1/query` endpoint (calculations) | ✅ Works |
|
| 80 |
+
| `/v1/query` endpoint (Q&A) | ❌ Requires RAG |
|
| 81 |
+
| `/v1/optimize` endpoint | ❌ Requires RAG |
|
| 82 |
+
| Transaction classification | ⚠️ Basic patterns only |
|
| 83 |
+
|
| 84 |
+
## Recommendation for Production
|
| 85 |
+
|
| 86 |
+
**For auth-backend integration:**
|
| 87 |
+
|
| 88 |
+
Since you mainly need transaction classification and tax calculations (not Q&A), you have two options:
|
| 89 |
+
|
| 90 |
+
### Option A: Disable RAG, Use Basic Classification
|
| 91 |
+
```bash
|
| 92 |
+
# In HF Space settings
|
| 93 |
+
DISABLE_RAG=true
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
Transaction classification will use pattern matching (salary, pension, rent, etc.) without LLM.
|
| 97 |
+
|
| 98 |
+
### Option B: Wait for Model Download
|
| 99 |
+
Keep trying to restart until the model downloads successfully. This gives you full optimization features.
|
| 100 |
+
|
| 101 |
+
## Testing After Fix
|
| 102 |
+
|
| 103 |
+
### Test 1: Health Check
|
| 104 |
+
```bash
|
| 105 |
+
curl https://your-space.hf.space/health
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
Expected with RAG disabled:
|
| 109 |
+
```json
|
| 110 |
+
{
|
| 111 |
+
"status": "ok",
|
| 112 |
+
"rag_ready": false
|
| 113 |
+
}
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
### Test 2: Tax Calculation (Should Work)
|
| 117 |
+
```bash
|
| 118 |
+
curl -X POST https://your-space.hf.space/v1/query \
|
| 119 |
+
-H "Content-Type: application/json" \
|
| 120 |
+
-d '{
|
| 121 |
+
"question": "Calculate PIT for 5000000 annual income",
|
| 122 |
+
"tax_type": "PIT"
|
| 123 |
+
}'
|
| 124 |
+
```
|
| 125 |
+
|
| 126 |
+
### Test 3: Tax Optimization (Requires RAG)
|
| 127 |
+
```bash
|
| 128 |
+
curl -X POST https://your-space.hf.space/v1/optimize \
|
| 129 |
+
-H "Content-Type: application/json" \
|
| 130 |
+
-d '{
|
| 131 |
+
"user_id": "test",
|
| 132 |
+
"transactions": [...],
|
| 133 |
+
"tax_year": 2025
|
| 134 |
+
}'
|
| 135 |
+
```
|
| 136 |
+
|
| 137 |
+
Will return 503 if RAG disabled.
|
| 138 |
+
|
| 139 |
+
## Next Steps
|
| 140 |
+
|
| 141 |
+
1. **For immediate use:** Set `DISABLE_RAG=true`
|
| 142 |
+
2. **For full features:** Wait for model download or use Option 4 (pre-build)
|
| 143 |
+
3. **For production:** Consider upgrading to Hugging Face Spaces Pro for more resources
|
orchestrator.py
CHANGED
|
@@ -38,6 +38,24 @@ GROQ_MODEL = "llama-3.1-8b-instant"
|
|
| 38 |
# Use /tmp for vector store in Hugging Face Spaces (writable directory)
|
| 39 |
VECTOR_STORE_DIR = os.getenv('VECTOR_STORE_DIR', '/tmp/vector_store')
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
CALC_KEYWORDS = {
|
| 42 |
"compute", "calculate", "calc", "how much tax", "tax due", "paye", "cit", "vat to pay",
|
| 43 |
"what will i pay", "liability", "estimate", "breakdown", "net pay", "withholding"
|
|
@@ -264,31 +282,40 @@ class Orchestrator:
|
|
| 264 |
|
| 265 |
# RAG
|
| 266 |
rag = None
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
# Create directory if it doesn't exist and is writable
|
| 273 |
try:
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
# Tax Optimizer
|
| 294 |
optimizer = None
|
|
|
|
| 38 |
# Use /tmp for vector store in Hugging Face Spaces (writable directory)
|
| 39 |
VECTOR_STORE_DIR = os.getenv('VECTOR_STORE_DIR', '/tmp/vector_store')
|
| 40 |
|
| 41 |
+
# Allow disabling RAG entirely for resource-constrained environments
|
| 42 |
+
DISABLE_RAG = os.getenv('DISABLE_RAG', 'false').lower() in ('true', '1', 'yes')
|
| 43 |
+
|
| 44 |
+
# Pre-download embedding model to cache
|
| 45 |
+
def _ensure_embedding_model_cached(model_name: str) -> bool:
|
| 46 |
+
"""Pre-download embedding model to avoid runtime errors"""
|
| 47 |
+
try:
|
| 48 |
+
from sentence_transformers import SentenceTransformer
|
| 49 |
+
print(f"[INFO] Pre-downloading embedding model: {model_name}", file=sys.stderr)
|
| 50 |
+
model = SentenceTransformer(model_name)
|
| 51 |
+
print(f"[INFO] Embedding model cached successfully", file=sys.stderr)
|
| 52 |
+
return True
|
| 53 |
+
except Exception as e:
|
| 54 |
+
print(f"[WARN] Failed to cache embedding model: {e}", file=sys.stderr)
|
| 55 |
+
print(f"[INFO] This is common in Hugging Face Spaces with limited disk space", file=sys.stderr)
|
| 56 |
+
print(f"[INFO] Set DISABLE_RAG=true to skip RAG initialization", file=sys.stderr)
|
| 57 |
+
return False
|
| 58 |
+
|
| 59 |
CALC_KEYWORDS = {
|
| 60 |
"compute", "calculate", "calc", "how much tax", "tax due", "paye", "cit", "vat to pay",
|
| 61 |
"what will i pay", "liability", "estimate", "breakdown", "net pay", "withholding"
|
|
|
|
| 282 |
|
| 283 |
# RAG
|
| 284 |
rag = None
|
| 285 |
+
|
| 286 |
+
if DISABLE_RAG:
|
| 287 |
+
print(f"[INFO] RAG disabled via DISABLE_RAG environment variable", file=sys.stderr)
|
| 288 |
+
else:
|
|
|
|
|
|
|
| 289 |
try:
|
| 290 |
+
# Pre-download embedding model
|
| 291 |
+
if not _ensure_embedding_model_cached(EMBED_MODEL):
|
| 292 |
+
print(f"[WARN] Embedding model not available. RAG disabled.", file=sys.stderr)
|
| 293 |
+
raise RuntimeError("Embedding model unavailable")
|
| 294 |
+
|
| 295 |
+
src = Path(PDF_SOURCE)
|
| 296 |
+
# Use writable directory for Hugging Face Spaces
|
| 297 |
+
vector_store_path = Path(VECTOR_STORE_DIR)
|
| 298 |
+
|
| 299 |
+
# Create directory if it doesn't exist and is writable
|
| 300 |
+
try:
|
| 301 |
+
vector_store_path.mkdir(parents=True, exist_ok=True)
|
| 302 |
+
except (PermissionError, OSError) as mkdir_err:
|
| 303 |
+
print(f"[WARN] Cannot create vector_store directory: {mkdir_err}", file=sys.stderr)
|
| 304 |
+
print(f"[INFO] RAG will be disabled. Tax calculations will still work.", file=sys.stderr)
|
| 305 |
+
raise
|
| 306 |
+
|
| 307 |
+
ds = DocumentStore(persist_dir=vector_store_path, embedding_model=EMBED_MODEL)
|
| 308 |
+
pdfs = ds.discover_pdfs(src)
|
| 309 |
+
if not pdfs:
|
| 310 |
+
print(f"[WARN] No PDFs found under {src}. RAG disabled.", file=sys.stderr)
|
| 311 |
+
raise FileNotFoundError(f"No PDFs found under {src}")
|
| 312 |
+
ds.build_vector_store(pdfs, force_rebuild=False)
|
| 313 |
+
# RAGPipeline reads GROQ_API_KEY from env via langchain_groq; ensure .env loaded
|
| 314 |
+
rag = RAGPipeline(doc_store=ds, model=GROQ_MODEL, temperature=0.1)
|
| 315 |
+
print("[INFO] RAG pipeline initialized successfully", file=sys.stderr)
|
| 316 |
+
except Exception as e:
|
| 317 |
+
print(f"[WARN] RAG not initialized: {e}", file=sys.stderr)
|
| 318 |
+
print(f"[INFO] Service will continue without RAG. Tax calculations available.", file=sys.stderr)
|
| 319 |
|
| 320 |
# Tax Optimizer
|
| 321 |
optimizer = None
|