File size: 8,597 Bytes
c54e3bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
#!/usr/bin/env python3
"""
Test script to validate FREE optimization improvements.
Measures before/after quality on sample tax queries.
"""
import sys
import json
from pathlib import Path
from rag_pipeline import RAGPipeline, DocumentStore
# Test questions covering different tax scenarios
TEST_QUESTIONS = [
{
"question": "What are the personal income tax rates in Nigeria?",
"expected_keywords": ["₦800,000", "15%", "18%", "21%", "23%", "25%"],
"category": "rates"
},
{
"question": "What is CRA and how is it calculated?",
"expected_keywords": ["Consolidated Relief Allowance", "₦200,000", "20%", "1%"],
"category": "relief"
},
{
"question": "What are the company income tax rates?",
"expected_keywords": ["30%", "20%", "CIT", "company"],
"category": "corporate"
},
{
"question": "Tell me about PAYE deductions",
"expected_keywords": ["Pay As You Earn", "employer", "monthly", "withholding"],
"category": "paye"
},
{
"question": "What tax reliefs are available for individuals?",
"expected_keywords": ["relief", "allowance", "deduction", "pension"],
"category": "reliefs"
},
]
def test_retrieval_quality(rag: RAGPipeline):
"""Test if retrieval finds expected keywords."""
print("\n" + "=" * 80)
print("RETRIEVAL QUALITY TEST")
print("=" * 80)
results = []
for item in TEST_QUESTIONS:
question = item["question"]
expected = item["expected_keywords"]
# Retrieve docs
docs = rag._retrieve(question)
retrieved_text = " ".join([d.page_content for d in docs[:10]]).lower()
# Check if expected keywords found
found = [kw for kw in expected if kw.lower() in retrieved_text]
precision = len(found) / len(expected) if expected else 0
results.append({
"question": question,
"precision": precision,
"found": len(found),
"total": len(expected),
"found_keywords": found
})
print(f"\n{item['category'].upper()}: {question}")
print(f" Found: {len(found)}/{len(expected)} keywords ({precision*100:.0f}%)")
if len(found) < len(expected):
missing = set(expected) - set([k for k in expected if k.lower() in retrieved_text])
print(f" Missing: {', '.join(missing)}")
avg_precision = sum(r["precision"] for r in results) / len(results)
print(f"\n{'='*80}")
print(f"AVERAGE RETRIEVAL PRECISION: {avg_precision*100:.1f}%")
print(f"{'='*80}\n")
return avg_precision
def test_answer_quality(rag: RAGPipeline):
"""Test if answers have good formatting and content."""
print("\n" + "=" * 80)
print("ANSWER QUALITY TEST")
print("=" * 80)
for idx, item in enumerate(TEST_QUESTIONS[:3], 1): # Test first 3 for speed
question = item["question"]
print(f"\n[{idx}] QUESTION: {question}")
print("-" * 80)
try:
answer = rag.query(question, verbose=False)
# Quality checks
has_bottom_line = "**Bottom line**" in answer
has_numbers = any(char.isdigit() for char in answer)
has_bold_numbers = "**₦" in answer or "**%" in answer
no_fact_ids = "[F1]" not in answer and "[F2]" not in answer
has_structure = "**Here's what you need to know**" in answer
print(f"ANSWER:\n{answer}\n")
print("QUALITY CHECKS:")
print(f" ✓ Has bottom line: {has_bottom_line}")
print(f" ✓ Contains numbers: {has_numbers}")
print(f" ✓ Numbers emphasized (bold): {has_bold_numbers}")
print(f" ✓ No fact IDs ([F1], etc.): {no_fact_ids}")
print(f" ✓ Structured format: {has_structure}")
if not all([has_bottom_line, has_numbers, no_fact_ids, has_structure]):
print(" ⚠️ WARNING: Some quality checks failed!")
except Exception as e:
print(f" ❌ ERROR: {e}")
print(f"\n{'='*80}\n")
def test_hallucination_prevention(rag: RAGPipeline):
"""Test if system avoids hallucinating specific examples."""
print("\n" + "=" * 80)
print("HALLUCINATION PREVENTION TEST")
print("=" * 80)
# Questions designed to tempt hallucination
trick_questions = [
{
"question": "How much tax will I pay if I earn ₦500,000 per month?",
"should_calculate": True, # Should use tax calculator
"forbidden_phrases": [] # Calculator is allowed to show examples
},
{
"question": "What happens if I don't pay my taxes?",
"should_calculate": False,
"forbidden_phrases": ["for example, you could be fined ₦", "typically around ₦"]
},
]
hallucinations = 0
total = 0
for item in trick_questions:
question = item["question"]
print(f"\nQUESTION: {question}")
try:
answer = rag.query(question, verbose=False)
# Check for forbidden phrases
found_forbidden = []
for phrase in item["forbidden_phrases"]:
if phrase.lower() in answer.lower():
found_forbidden.append(phrase)
hallucinations += 1
if found_forbidden:
print(f" ❌ HALLUCINATION DETECTED: {found_forbidden}")
print(f" Answer excerpt: {answer[:200]}...")
else:
print(f" ✓ No hallucinations detected")
total += 1
except Exception as e:
print(f" ⚠️ ERROR: {e}")
if total > 0:
hallucination_rate = (hallucinations / total) * 100
print(f"\n{'='*80}")
print(f"HALLUCINATION RATE: {hallucination_rate:.1f}%")
if hallucination_rate == 0:
print("✓ EXCELLENT: No hallucinations detected!")
elif hallucination_rate < 10:
print("✓ GOOD: Low hallucination rate")
else:
print("⚠️ WARNING: High hallucination rate, review prompts")
print(f"{'='*80}\n")
def main():
print("=" * 80)
print("FREE OPTIMIZATION VALIDATION TEST")
print("Testing: Improved embeddings, prompts, formatting, and retrieval")
print("=" * 80)
# Initialize RAG pipeline
print("\nInitializing RAG pipeline...")
vector_store_path = Path("vector_store")
doc_store = DocumentStore(
persist_dir=vector_store_path,
embedding_model="BAAI/bge-large-en-v1.5" # New embedding model
)
src = Path("data")
pdfs = doc_store.discover_pdfs(src)
doc_store.build_vector_store(pdfs, force_rebuild=False)
rag = RAGPipeline(
doc_store=doc_store,
model="llama-3.3-70b-versatile",
temperature=0.1,
top_k=15, # Increased from 8
use_hybrid=True,
use_mmr=True,
use_reranker=True
)
print("✓ RAG pipeline initialized\n")
# Run tests
try:
retrieval_precision = test_retrieval_quality(rag)
test_answer_quality(rag)
test_hallucination_prevention(rag)
# Summary
print("\n" + "=" * 80)
print("SUMMARY")
print("=" * 80)
print(f"Retrieval Precision: {retrieval_precision*100:.1f}%")
print(f" Target: >55% (baseline was ~42%)")
if retrieval_precision > 0.55:
print(f" ✓ EXCELLENT: Retrieval improved!")
elif retrieval_precision > 0.45:
print(f" ✓ GOOD: Retrieval improved")
else:
print(f" ⚠️ Need improvement")
print("\nOPTIMIZATIONS APPLIED:")
print(" ✓ Upgraded embedding: all-MiniLM-L6-v2 → bge-large-en-v1.5")
print(" ✓ Upgraded reranker: MiniLM-L-6 → MiniLM-L-12")
print(" ✓ Anti-hallucination system prompts")
print(" ✓ Enhanced fact schema with number extraction")
print(" ✓ Removed fact IDs from output")
print(" ✓ Bold emphasis on numbers and percentages")
print(" ✓ Tax-aware query expansion")
print(" ✓ Increased retrieval: 8 → 15 docs")
print(" ✓ Context added to thresholds (₦800K → ₦800K (₦66,667/month))")
print("\n" + "=" * 80)
print("TEST COMPLETE")
print("=" * 80)
except Exception as e:
print(f"\n❌ TEST FAILED: {e}")
import traceback
traceback.print_exc()
sys.exit(1)
if __name__ == "__main__":
main()
|