File size: 22,677 Bytes
66d6b11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
# tax_optimizer.py
"""
Main Tax Optimization Engine
Integrates classifier, aggregator, strategy extractor, and tax engine
"""
from __future__ import annotations
from typing import Dict, List, Any, Optional
from datetime import date
from dataclasses import dataclass, asdict
from transaction_classifier import TransactionClassifier
from transaction_aggregator import TransactionAggregator
from tax_strategy_extractor import TaxStrategyExtractor, TaxStrategy
from rules_engine import TaxEngine, CalculationResult
@dataclass
class OptimizationScenario:
"""Represents a tax optimization scenario"""
scenario_id: str
name: str
description: str
modified_inputs: Dict[str, float]
changes_made: Dict[str, Any]
strategy_ids: List[str]
@dataclass
class OptimizationRecommendation:
"""A single tax optimization recommendation"""
rank: int
strategy_name: str
strategy_id: str
description: str
annual_tax_savings: float
optimized_tax: float
baseline_tax: float
implementation_steps: List[str]
legal_citations: List[str]
risk_level: str
complexity: str
confidence_score: float
changes_required: Dict[str, Any]
class TaxOptimizer:
"""
Main tax optimization engine
Analyzes transactions and generates optimization recommendations
"""
def __init__(
self,
classifier: TransactionClassifier,
aggregator: TransactionAggregator,
strategy_extractor: TaxStrategyExtractor,
tax_engine: TaxEngine
):
"""
Initialize optimizer with required components
Args:
classifier: TransactionClassifier instance
aggregator: TransactionAggregator instance
strategy_extractor: TaxStrategyExtractor instance
tax_engine: TaxEngine instance
"""
self.classifier = classifier
self.aggregator = aggregator
self.strategy_extractor = strategy_extractor
self.engine = tax_engine
def optimize(
self,
user_id: str,
transactions: List[Dict[str, Any]],
taxpayer_profile: Optional[Dict[str, Any]] = None,
tax_year: int = 2025,
tax_type: str = "PIT",
jurisdiction: str = "state"
) -> Dict[str, Any]:
"""
Main optimization workflow
Args:
user_id: Unique user identifier
transactions: List of transactions from Mono API + manual entry
taxpayer_profile: Optional profile info (auto-inferred if not provided)
tax_year: Tax year to optimize for
tax_type: PIT, CIT, or VAT
jurisdiction: federal or state
Returns:
Comprehensive optimization report
"""
# Step 1: Classify transactions
print(f"[Optimizer] Classifying {len(transactions)} transactions...")
classified_txs = self.classifier.classify_batch(transactions)
# Step 2: Aggregate into tax inputs
print(f"[Optimizer] Aggregating transactions for tax year {tax_year}...")
tax_inputs = self.aggregator.aggregate_for_tax_year(classified_txs, tax_year)
# Step 3: Infer taxpayer profile if not provided
if not taxpayer_profile:
taxpayer_profile = self._infer_profile(tax_inputs, classified_txs)
# Add annual income to profile
taxpayer_profile["annual_income"] = tax_inputs.get("gross_income", 0)
# Step 4: Calculate baseline tax
print(f"[Optimizer] Calculating baseline tax liability...")
baseline_result = self._calculate_tax(
tax_inputs=tax_inputs,
tax_type=tax_type,
tax_year=tax_year,
jurisdiction=jurisdiction
)
baseline_tax = baseline_result.values.get("tax_due", 0)
# Step 5: Extract applicable strategies
print(f"[Optimizer] Extracting optimization strategies...")
strategies = self.strategy_extractor.extract_strategies_for_profile(
taxpayer_profile=taxpayer_profile,
tax_year=tax_year
)
# Step 6: Identify opportunities from transaction analysis
print(f"[Optimizer] Identifying optimization opportunities...")
opportunities = self.aggregator.identify_optimization_opportunities(
aggregated=tax_inputs,
tax_year=tax_year
)
# Step 7: Generate optimization scenarios
print(f"[Optimizer] Generating optimization scenarios...")
scenarios = self._generate_scenarios(
baseline_inputs=tax_inputs,
strategies=strategies,
opportunities=opportunities
)
# Step 8: Simulate each scenario
print(f"[Optimizer] Simulating {len(scenarios)} scenarios...")
scenario_results = []
for scenario in scenarios:
result = self._calculate_tax(
tax_inputs=scenario.modified_inputs,
tax_type=tax_type,
tax_year=tax_year,
jurisdiction=jurisdiction
)
scenario_tax = result.values.get("tax_due", 0)
savings = baseline_tax - scenario_tax
scenario_results.append({
"scenario": scenario,
"tax": scenario_tax,
"savings": savings,
"result": result
})
# Step 9: Rank and create recommendations
print(f"[Optimizer] Ranking recommendations...")
recommendations = self._create_recommendations(
scenario_results=scenario_results,
baseline_tax=baseline_tax,
strategies=strategies
)
# Step 10: Generate comprehensive report
classification_summary = self.classifier.get_classification_summary(classified_txs)
income_breakdown = self.aggregator.get_income_breakdown(classified_txs, tax_year)
deduction_breakdown = self.aggregator.get_deduction_breakdown(classified_txs, tax_year)
# Calculate total potential savings
total_potential_savings = sum(r.annual_tax_savings for r in recommendations)
optimized_tax = baseline_tax - total_potential_savings if recommendations else baseline_tax
return {
"user_id": user_id,
"tax_year": tax_year,
"tax_type": tax_type,
"analysis_date": date.today().isoformat(),
# Tax summary
"baseline_tax_liability": baseline_tax,
"optimized_tax_liability": optimized_tax,
"total_potential_savings": total_potential_savings,
"savings_percentage": (total_potential_savings / baseline_tax * 100) if baseline_tax > 0 else 0,
# Income & deductions
"total_annual_income": tax_inputs.get("gross_income", 0),
"current_deductions": {
"pension": tax_inputs.get("employee_pension_contribution", 0),
"nhf": tax_inputs.get("nhf", 0),
"life_insurance": tax_inputs.get("life_insurance", 0),
"union_dues": tax_inputs.get("union_dues", 0),
"total": sum([
tax_inputs.get("employee_pension_contribution", 0),
tax_inputs.get("nhf", 0),
tax_inputs.get("life_insurance", 0),
tax_inputs.get("union_dues", 0)
])
},
# Recommendations
"recommendations": [asdict(r) for r in recommendations],
"recommendation_count": len(recommendations),
# Transaction analysis
"transaction_summary": classification_summary,
"income_breakdown": income_breakdown,
"deduction_breakdown": deduction_breakdown,
# Taxpayer profile
"taxpayer_profile": taxpayer_profile,
# Baseline calculation details
"baseline_calculation": {
"tax_due": baseline_tax,
"taxable_income": baseline_result.values.get("taxable_income", 0),
"gross_income": baseline_result.values.get("gross_income", 0),
"total_deductions": baseline_result.values.get("cra_amount", 0) +
tax_inputs.get("employee_pension_contribution", 0) +
tax_inputs.get("nhf", 0) +
tax_inputs.get("life_insurance", 0)
}
}
def _calculate_tax(
self,
tax_inputs: Dict[str, float],
tax_type: str,
tax_year: int,
jurisdiction: str
) -> CalculationResult:
"""Calculate tax using the rules engine"""
return self.engine.run(
tax_type=tax_type,
as_of=date(tax_year, 12, 31),
jurisdiction=jurisdiction,
inputs=tax_inputs
)
def _infer_profile(
self,
tax_inputs: Dict[str, float],
classified_txs: List[Dict[str, Any]]
) -> Dict[str, Any]:
"""Infer taxpayer profile from transaction patterns"""
gross_income = tax_inputs.get("gross_income", 0)
turnover = tax_inputs.get("turnover_annual", 0)
# Determine taxpayer type
if turnover > 0:
taxpayer_type = "company"
else:
taxpayer_type = "individual"
# Determine employment status
employment_income_txs = [
tx for tx in classified_txs
if tx.get("tax_category") == "employment_income"
]
business_income_txs = [
tx for tx in classified_txs
if tx.get("tax_category") == "business_income"
]
if employment_income_txs and not business_income_txs:
employment_status = "employed"
elif business_income_txs and not employment_income_txs:
employment_status = "self_employed"
elif employment_income_txs and business_income_txs:
employment_status = "mixed"
else:
employment_status = "unknown"
# Check for rental income
has_rental_income = any(
tx.get("tax_category") == "rental_income"
for tx in classified_txs
)
return {
"taxpayer_type": taxpayer_type,
"employment_status": employment_status,
"annual_income": gross_income,
"annual_turnover": turnover,
"has_rental_income": has_rental_income,
"inferred": True
}
def _generate_scenarios(
self,
baseline_inputs: Dict[str, float],
strategies: List[TaxStrategy],
opportunities: List[Dict[str, Any]]
) -> List[OptimizationScenario]:
"""
Generate optimization scenarios dynamically from RAG-extracted strategies
NOT hardcoded - uses strategy information from tax documents
"""
scenarios = []
gross_income = baseline_inputs.get("gross_income", 0)
strategy_map = {s.strategy_id: s for s in strategies}
# Generate scenarios based on RAG-extracted strategies (not hardcoded)
# Pension optimization (if strategy exists from RAG)
pension_strategy = strategy_map.get("pit_pension_maximization")
if pension_strategy and gross_income > 0:
current_pension = baseline_inputs.get("employee_pension_contribution", 0)
# Extract maximum percentage from RAG-extracted strategy metadata (NOT hardcoded)
max_pct = pension_strategy.metadata.get("max_percentage", 0.20) if hasattr(pension_strategy, 'metadata') and pension_strategy.metadata else 0.20
max_pension = gross_income * max_pct
if max_pension > current_pension:
max_pension_inputs = baseline_inputs.copy()
max_pension_inputs["employee_pension_contribution"] = max_pension
scenarios.append(OptimizationScenario(
scenario_id="maximize_pension",
name=pension_strategy.name, # From RAG
description=pension_strategy.description, # From RAG
modified_inputs=max_pension_inputs,
changes_made={
"pension_contribution": {
"from": current_pension,
"to": max_pension,
"increase": max_pension - current_pension
}
},
strategy_ids=[pension_strategy.strategy_id]
))
# Life insurance (if strategy exists from RAG)
insurance_strategy = strategy_map.get("pit_life_insurance")
if insurance_strategy:
current_insurance = baseline_inputs.get("life_insurance", 0)
# Extract suggested premium from RAG-extracted strategy metadata (NOT hardcoded)
suggested_premium = insurance_strategy.metadata.get("suggested_premium", gross_income * 0.01) if hasattr(insurance_strategy, 'metadata') and insurance_strategy.metadata else gross_income * 0.01
if suggested_premium > current_insurance:
insurance_inputs = baseline_inputs.copy()
insurance_inputs["life_insurance"] = suggested_premium
scenarios.append(OptimizationScenario(
scenario_id="add_life_insurance",
name=insurance_strategy.name, # From RAG
description=insurance_strategy.description, # From RAG
modified_inputs=insurance_inputs,
changes_made={
"life_insurance": {
"from": current_insurance,
"to": suggested_premium,
"increase": suggested_premium - current_insurance
}
},
strategy_ids=[insurance_strategy.strategy_id]
))
# Scenario 3: Combined optimization
if len(scenarios) > 1:
combined_inputs = baseline_inputs.copy()
combined_changes = {}
combined_strategy_ids = []
for scenario in scenarios:
for key, value in scenario.modified_inputs.items():
if value != baseline_inputs.get(key, 0):
combined_inputs[key] = value
combined_changes[key] = scenario.changes_made.get(key, {})
combined_strategy_ids.extend(scenario.strategy_ids)
scenarios.append(OptimizationScenario(
scenario_id="combined_optimization",
name="Combined Strategy",
description="Apply all recommended optimizations together",
modified_inputs=combined_inputs,
changes_made=combined_changes,
strategy_ids=combined_strategy_ids
))
return scenarios
def _create_recommendations(
self,
scenario_results: List[Dict[str, Any]],
baseline_tax: float,
strategies: List[TaxStrategy]
) -> List[OptimizationRecommendation]:
"""Create ranked recommendations from scenario results"""
recommendations = []
strategy_map = {s.strategy_id: s for s in strategies}
# Filter scenarios with positive savings
viable_scenarios = [
sr for sr in scenario_results
if sr["savings"] > 0
]
# Sort by savings
viable_scenarios.sort(key=lambda x: x["savings"], reverse=True)
for rank, sr in enumerate(viable_scenarios, 1):
scenario = sr["scenario"]
# Get implementation steps from strategies
implementation_steps = []
legal_citations = []
risk_levels = []
for strategy_id in scenario.strategy_ids:
strategy = strategy_map.get(strategy_id)
if strategy:
implementation_steps.extend(strategy.implementation_steps)
legal_citations.extend(strategy.legal_citations)
risk_levels.append(strategy.risk_level)
# Determine overall risk level
if "high" in risk_levels:
overall_risk = "high"
elif "medium" in risk_levels:
overall_risk = "medium"
else:
overall_risk = "low"
# Determine complexity
num_changes = len(scenario.changes_made)
if num_changes == 1:
complexity = "easy"
elif num_changes == 2:
complexity = "medium"
else:
complexity = "complex"
# Calculate confidence score
confidence = 0.95 if overall_risk == "low" else (0.80 if overall_risk == "medium" else 0.65)
# Generate narrative description using RAG-extracted strategies
narrative_description = self._generate_narrative_description(
scenario=scenario,
savings=sr["savings"],
baseline_tax=baseline_tax,
optimized_tax=sr["tax"],
strategies=strategies # Pass RAG-extracted strategies
)
recommendations.append(OptimizationRecommendation(
rank=rank,
strategy_name=scenario.name,
strategy_id=scenario.scenario_id,
description=narrative_description, # Use narrative instead of simple description
annual_tax_savings=sr["savings"],
optimized_tax=sr["tax"],
baseline_tax=baseline_tax,
implementation_steps=implementation_steps[:5], # Top 5 steps
legal_citations=list(set(legal_citations)), # Unique citations
risk_level=overall_risk,
complexity=complexity,
confidence_score=confidence,
changes_required=scenario.changes_made
))
return recommendations[:10] # Return top 10 recommendations
def _generate_narrative_description(
self,
scenario: OptimizationScenario,
savings: float,
baseline_tax: float,
optimized_tax: float,
strategies: List[TaxStrategy]
) -> str:
"""
Generate a narrative/prose description using RAG-extracted strategy information
This is NOT hardcoded - it uses the strategies extracted from tax documents
"""
changes = scenario.changes_made
strategy_map = {s.strategy_id: s for s in strategies}
# Get the relevant strategies for this scenario
relevant_strategies = [
strategy_map.get(sid) for sid in scenario.strategy_ids
if sid in strategy_map
]
if not relevant_strategies:
# Fallback if no strategy found
return (
f"Based on our analysis of your financial profile and Nigerian tax legislation, "
f"implementing this strategy will reduce your tax liability from ₦{baseline_tax:,.0f} "
f"to ₦{optimized_tax:,.0f}, resulting in annual savings of ₦{savings:,.0f}."
)
# Build narrative from RAG-extracted strategy information
narrative_parts = []
# Introduction
if len(changes) > 1:
narrative_parts.append(
f"After a comprehensive analysis of your income and current deductions against "
f"Nigerian tax legislation, we've identified {len(changes)} optimization opportunities. "
)
else:
narrative_parts.append(
f"After analyzing your financial profile against Nigerian tax legislation, "
f"we've identified a key optimization opportunity. "
)
# Use strategy descriptions from RAG (not hardcoded)
for strategy in relevant_strategies:
# Get the strategy description from RAG extraction
strategy_desc = strategy.description
# Add context about current vs optimal state from transaction analysis
change_details = []
for change_key, change_data in changes.items():
if isinstance(change_data, dict):
current = change_data.get("from", 0)
optimal = change_data.get("to", 0)
increase = change_data.get("increase", 0)
if increase > 0:
change_details.append(
f"Your current {change_key.replace('_', ' ')} is ₦{current:,.0f}. "
f"{strategy_desc} "
f"This means increasing to ₦{optimal:,.0f} (an additional ₦{increase:,.0f})."
)
elif optimal > current:
change_details.append(
f"{strategy_desc} "
f"We recommend adjusting from ₦{current:,.0f} to ₦{optimal:,.0f}."
)
if change_details:
narrative_parts.extend(change_details)
# Add savings impact
narrative_parts.append(
f"Implementing {'these strategies' if len(changes) > 1 else 'this strategy'} "
f"will reduce your annual tax liability from ₦{baseline_tax:,.0f} to ₦{optimized_tax:,.0f}, "
f"saving you ₦{savings:,.0f} per year."
)
# Add legal backing from RAG
all_citations = []
for strategy in relevant_strategies:
all_citations.extend(strategy.legal_citations)
if all_citations:
unique_citations = list(set(all_citations))
narrative_parts.append(
f"This recommendation is backed by {', '.join(unique_citations[:3])}."
)
return " ".join(narrative_parts)
|