import tempfile import streamlit as st import pickle from langchain_google_genai import GoogleGenerativeAIEmbeddings from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import FAISS import faiss import os def process_pdf(uploaded_file): all_documents = [] st.session_state.embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") main_placeholder = st.empty() # Creating a temporary file to store the uploaded PDF's main_placeholder.text("Data Loading...Started...✅✅✅") for uploaded_file in uploaded_file: with tempfile.NamedTemporaryFile(delete=False , suffix='.pdf') as temp_file: temp_file.write(uploaded_file.read()) ## write file to temporary temp_file_path = temp_file.name # Get the temporary file path # Load the PDF's from the temporary file path loader = PyPDFLoader(temp_file_path) # Document loader doc= loader.load() # load Document main_placeholder.text("Text Splitter...Started...✅✅✅") text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) # Recursive Character String #final_documents = text_splitter.split_documents(doc)# splitting final_documents = text_splitter.split_documents(doc) all_documents.extend(final_documents) if all_documents: main_placeholder.text("Embedding Vector Started Building...✅✅✅") st.session_state.vectors = FAISS.from_documents(all_documents,st.session_state.embeddings) st.session_state.docs = all_documents # Save FAISS vector store to disk faiss_index = st.session_state.vectors.index # Extract FAISS index # faiss.write_index(faiss_index, "faiss_index.bin") # Save index to a binary file output_path = "/tmp/faiss_index.bin" # or another writable path faiss.write_index(faiss_index, output_path) main_placeholder.text("Vector database created!...✅✅✅") else: st.error("No documents found after processing the uploaded files or the pdf is corrupted / unsupported.")