Spaces:
Sleeping
Sleeping
Create train.py
Browse files
train.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoProcessor, AutoModelForImageClassification, TrainingArguments, Trainer
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Load dataset from the 'dataset' folder
|
| 6 |
+
dataset = load_dataset("imagefolder", data_dir="dataset", split="train", label_column="label")
|
| 7 |
+
|
| 8 |
+
# Load model and processor
|
| 9 |
+
model = AutoModelForImageClassification.from_pretrained("google/siglip2-base-patch16-naflex", num_labels=2)
|
| 10 |
+
processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-naflex")
|
| 11 |
+
|
| 12 |
+
# Preprocess the dataset
|
| 13 |
+
def transform(example):
|
| 14 |
+
inputs = processor(images=example["image"], return_tensors="pt")
|
| 15 |
+
inputs["label"] = example["label"]
|
| 16 |
+
return inputs
|
| 17 |
+
|
| 18 |
+
dataset = dataset.map(transform, batched=True)
|
| 19 |
+
|
| 20 |
+
# Training setup
|
| 21 |
+
training_args = TrainingArguments(
|
| 22 |
+
output_dir="./siglip2-meme-classifier",
|
| 23 |
+
per_device_train_batch_size=8,
|
| 24 |
+
num_train_epochs=3,
|
| 25 |
+
save_steps=100,
|
| 26 |
+
logging_dir="./logs",
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
trainer = Trainer(
|
| 30 |
+
model=model,
|
| 31 |
+
args=training_args,
|
| 32 |
+
train_dataset=dataset,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Start training
|
| 36 |
+
trainer.train()
|
| 37 |
+
|
| 38 |
+
# Save the fine-tuned model and processor
|
| 39 |
+
model.save_pretrained("model")
|
| 40 |
+
processor.save_pretrained("model")
|