File size: 14,609 Bytes
5ea1cbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
"""
HuggingFace model and dataset search functionality
"""
import re
import requests
from bs4 import BeautifulSoup
from collections import defaultdict
def parse_stat_number(stat_text):
"""
Parse HuggingFace stat numbers like '4.07M', '23.4k', '349' into integers
Returns integer value or 0 if parsing fails
"""
if not stat_text:
return 0
stat_text = stat_text.strip().upper()
try:
# Handle 'M' (millions)
if 'M' in stat_text:
return int(float(stat_text.replace('M', '')) * 1_000_000)
# Handle 'K' (thousands)
elif 'K' in stat_text:
return int(float(stat_text.replace('K', '')) * 1_000)
# Plain number
else:
return int(stat_text.replace(',', ''))
except (ValueError, AttributeError):
return 0
def search_huggingface_models(iso_639_1, iso_639_2, pipeline_tag, max_results=100, max_pages=3):
"""
Search HuggingFace for models supporting a specific language
Args:
iso_639_1: ISO 639-1 (2-letter) code
iso_639_2: ISO 639-2 (3-letter) code
pipeline_tag: 'automatic-speech-recognition' or 'text-to-speech'
max_results: maximum number of models to return
max_pages: maximum number of pages to search per language code
Returns:
tuple: (list of model dictionaries, log messages)
"""
logs = []
# Try both language code formats
codes_to_try = []
if iso_639_1:
codes_to_try.append(iso_639_1)
if iso_639_2:
codes_to_try.append(iso_639_2)
if not codes_to_try:
logs.append("No language codes available for search")
return [], logs
logs.append(f"Language codes to search: {set(codes_to_try)}")
models = []
seen_models = set()
for code in codes_to_try:
if len(models) >= max_results:
break
logs.append(f"Searching for language code: {code}")
# Try multiple pages for this language code
for page in range(max_pages):
if len(models) >= max_results:
break
try:
# Use HuggingFace model search with pagination
url = f"https://huggingface.co/models?pipeline_tag={pipeline_tag}&language={code}&sort=trending"
if page > 0:
url += f"&p={page}"
logs.append(f" Page {page}: {url}")
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36'
}
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
# Parse model cards from the page
model_cards = soup.find_all('article', class_='overview-card-wrapper')
if not model_cards:
logs.append(f" No model cards found on page {page}")
break
logs.append(f" Found {len(model_cards)} model cards on page {page}")
for card in model_cards:
if len(models) >= max_results:
break
try:
link = card.find('a', href=True)
if link:
href = link.get('href', '')
model_name = href.lstrip('/')
if model_name and model_name != '#' and model_name not in seen_models:
seen_models.add(model_name)
# Parse stats directly from the card HTML by looking at SVG icons
downloads = 0
likes = 0
size = ""
# Find all SVG elements in the card
svgs = card.find_all('svg')
for svg in svgs:
# Get the next sibling text after the SVG
next_elem = svg.find_next_sibling(string=True)
stat_text = ""
if next_elem and next_elem.strip():
stat_text = next_elem.strip()
else:
# Try to find text in the next sibling element (e.g., <span>)
next_tag = svg.find_next_sibling()
if next_tag:
stat_text = next_tag.get_text(strip=True)
if not stat_text or len(stat_text) < 1:
continue
# Identify icon type by viewBox or path content
svg_str = str(svg)
# Download icon
if 'M26 24v4H6v-4H4v4a2 2 0 0 0 2 2h20a2 2 0 0 0 2-2v-4zm0-10l-1.41-1.41L17 20.17V2h-2v18.17l-7.59-7.58L6 14l10 10l10-10z' in svg_str:
downloads = parse_stat_number(stat_text)
# Like/heart icon
elif 'M22.45,6a5.47,5.47,0,0,1,3.91,1.64,5.7,5.7,0,0,1,0,8L16,26.13' in svg_str:
likes = parse_stat_number(stat_text)
# Model size icon
elif 'M10 10H8.4V8.4H10V10Zm0-3.2H8.4V5.2H10v1.6ZM6.8 10H5.2V8.4h1.6V10Z' in svg_str:
# Model parameter count (e.g., "2B", "0.6B")
if len(stat_text) <= 6 and re.search(r'\d+\.?\d*\s*[Bb]', stat_text):
size = stat_text
models.append({
'name': model_name,
'url': f"https://huggingface.co/{model_name}",
'downloads': downloads,
'likes': likes,
'size': size
})
except Exception as e:
logs.append(f" Error parsing model card: {e}")
continue
except Exception as e:
logs.append(f" ERROR searching page {page}: {e}")
break
# Sort by downloads (descending)
models.sort(key=lambda x: x['downloads'], reverse=True)
logs.append(f"Total unique models found: {len(models)}")
return models, logs
def search_huggingface_datasets(iso_639_1, iso_639_2, task_category, max_results=100, max_pages=3):
"""
Search HuggingFace for datasets supporting a specific language
Args:
iso_639_1: ISO 639-1 (2-letter) code
iso_639_2: ISO 639-2 (3-letter) code
task_category: 'automatic-speech-recognition' or 'text-to-speech'
max_results: maximum number of datasets to return
max_pages: maximum number of pages to search per language code
Returns:
tuple: (list of dataset dictionaries, log messages)
"""
logs = []
# Collect all unique language codes for this language
language_codes = set()
if iso_639_1:
language_codes.add(iso_639_1)
if iso_639_2:
language_codes.add(iso_639_2)
if not language_codes:
logs.append("No language codes available for search")
return [], logs
logs.append(f"Language codes to search: {language_codes}")
datasets = []
seen_datasets = set()
# Search separately for each language code
for code in language_codes:
if len(datasets) >= max_results:
break
logs.append(f"Searching for language code: {code}")
for page in range(max_pages):
if len(datasets) >= max_results:
break
try:
# Use HuggingFace dataset search
url = f"https://huggingface.co/datasets?task_categories=task_categories:{task_category}&language=language:{code}&sort=trending"
if page > 0:
url += f"&p={page}"
logs.append(f" Page {page}: {url}")
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36'
}
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
# Parse dataset cards from the page
dataset_cards = soup.find_all('article', class_='overview-card-wrapper')
if not dataset_cards:
logs.append(f" No dataset cards found on page {page}")
break
logs.append(f" Found {len(dataset_cards)} dataset cards on page {page}")
for card in dataset_cards:
if len(datasets) >= max_results:
break
try:
link = card.find('a', href=True)
if link:
href = link.get('href', '')
dataset_path = href.lstrip('/')
# Remove "datasets/" prefix if present
if dataset_path.startswith('datasets/'):
dataset_name = dataset_path[9:]
else:
dataset_name = dataset_path
if dataset_name and dataset_name != '#' and dataset_name not in seen_datasets:
seen_datasets.add(dataset_name)
# Parse stats directly from the card HTML by looking at SVG icons
downloads = 0
likes = 0
size = ""
# Find all SVG elements in the card
svgs = card.find_all('svg')
for svg in svgs:
# Get the next sibling text after the SVG
next_elem = svg.find_next_sibling(string=True)
stat_text = ""
if next_elem and next_elem.strip():
stat_text = next_elem.strip()
else:
# Try to find text in the next sibling element (e.g., <span>)
next_tag = svg.find_next_sibling()
if next_tag:
stat_text = next_tag.get_text(strip=True)
# Skip non-numeric text like "Viewer", "Updated", etc.
if not stat_text or len(stat_text) < 1 or stat_text in ['Viewer', 'Updated']:
continue
# Identify icon type by viewBox or path content
svg_str = str(svg)
# Download icon
if 'M26 24v4H6v-4H4v4a2 2 0 0 0 2 2h20a2 2 0 0 0 2-2v-4zm0-10l-1.41-1.41L17 20.17V2h-2v18.17l-7.59-7.58L6 14l10 10l10-10z' in svg_str:
downloads = parse_stat_number(stat_text)
# Like/heart icon
elif 'M22.45,6a5.47,5.47,0,0,1,3.91,1.64,5.7,5.7,0,0,1,0,8L16,26.13' in svg_str:
likes = parse_stat_number(stat_text)
# Dataset size icon
elif 'fill-rule="evenodd"' in svg_str and 'clip-rule="evenodd"' in svg_str:
# Dataset size (e.g., "411k", "23.4M", "65.1k")
if any(c in stat_text for c in ['k', 'K', 'm', 'M']) or stat_text.replace(',', '').replace('.', '').isdigit():
size = stat_text
datasets.append({
'name': dataset_name,
'url': f"https://huggingface.co/datasets/{dataset_name}",
'downloads': downloads,
'likes': likes,
'size': size
})
except Exception as e:
logs.append(f" Error parsing dataset card: {e}")
continue
except Exception as e:
logs.append(f" ERROR searching page {page}: {e}")
break
# Sort by downloads (descending)
datasets.sort(key=lambda x: x['downloads'], reverse=True)
logs.append(f"Total unique datasets found: {len(datasets)}")
return datasets, logs
def deduplicate_models(models):
"""
Deduplicate models by base name (without user/org prefix)
Keep the model with most downloads and count duplicates
Returns list of deduplicated models with duplicate count added
"""
# Group models by base name
grouped = defaultdict(list)
for model in models:
# Extract base name (everything after last '/')
name_parts = model['name'].split('/')
if len(name_parts) > 1:
base_name = name_parts[-1] # e.g., "whisper-large-v3"
else:
base_name = model['name']
grouped[base_name].append(model)
# For each group, keep the one with most downloads
deduplicated = []
for base_name, model_list in grouped.items():
# Sort by downloads (descending) and keep the first one
model_list.sort(key=lambda x: x['downloads'], reverse=True)
best_model = model_list[0]
# Add duplicate count (total in group)
best_model['duplicates'] = len(model_list) - 1
deduplicated.append(best_model)
# Sort by downloads again
deduplicated.sort(key=lambda x: x['downloads'], reverse=True)
return deduplicated
|