Update app.py
Browse files
app.py
CHANGED
|
@@ -7,6 +7,8 @@ import re
|
|
| 7 |
import time
|
| 8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 9 |
import gc
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Fix for OpenMP duplicate library error
|
| 12 |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
|
|
@@ -34,29 +36,94 @@ class KittenTTSGradio:
|
|
| 34 |
if not self.model_loaded:
|
| 35 |
self.load_model()
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
def load_model(self):
|
| 38 |
-
"""Load the TTS model"""
|
| 39 |
if self.model_loaded:
|
| 40 |
return
|
| 41 |
|
| 42 |
try:
|
| 43 |
print("Loading KittenTTS model...")
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
except Exception as e:
|
| 49 |
-
print(f"
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
print("Trying nano model as fallback...")
|
| 53 |
-
self.model = KittenTTS("KittenML/kitten-tts-nano-0.2")
|
| 54 |
-
self.model_loaded = True
|
| 55 |
-
print("Nano model loaded successfully!")
|
| 56 |
-
except Exception as e2:
|
| 57 |
-
print(f"Failed to load nano model: {e2}")
|
| 58 |
-
self.model_loaded = False
|
| 59 |
-
raise Exception("Failed to load any KittenTTS model")
|
| 60 |
|
| 61 |
def split_into_sentences(self, text):
|
| 62 |
"""Split text into sentences"""
|
|
@@ -79,6 +146,19 @@ class KittenTTSGradio:
|
|
| 79 |
|
| 80 |
return processed_sentences
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
def clean_text_for_model(self, text):
|
| 83 |
"""Clean text for the TTS model"""
|
| 84 |
if not text:
|
|
@@ -138,7 +218,7 @@ class KittenTTSGradio:
|
|
| 138 |
audio = self.safe_generate_audio(cleaned_sentence, voice=voice, speed=speed)
|
| 139 |
return audio
|
| 140 |
|
| 141 |
-
def convert_text_to_speech(self, text, voice, speed, use_multithreading, progress=gr.Progress()):
|
| 142 |
"""Main conversion function for Gradio"""
|
| 143 |
# Ensure model is loaded
|
| 144 |
try:
|
|
@@ -150,25 +230,31 @@ class KittenTTSGradio:
|
|
| 150 |
raise gr.Error("Please enter some text to convert.")
|
| 151 |
|
| 152 |
try:
|
| 153 |
-
# Split into sentences
|
| 154 |
sentences = self.split_into_sentences(text)
|
| 155 |
|
| 156 |
if not sentences:
|
| 157 |
raise gr.Error("No valid sentences found in the text.")
|
| 158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
total_sentences = len(sentences)
|
| 160 |
-
progress(0, desc=f"Processing {total_sentences} sentences...")
|
| 161 |
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
| 163 |
audio_chunks = []
|
| 164 |
|
| 165 |
-
if use_multithreading and
|
| 166 |
# Multithreaded processing
|
| 167 |
with ThreadPoolExecutor(max_workers=self.max_workers) as executor:
|
| 168 |
-
# Submit all
|
| 169 |
futures = {
|
| 170 |
-
executor.submit(self.process_single_sentence,
|
| 171 |
-
for i,
|
| 172 |
}
|
| 173 |
|
| 174 |
# Collect results in order
|
|
@@ -181,10 +267,10 @@ class KittenTTSGradio:
|
|
| 181 |
audio = future.result()
|
| 182 |
results[idx] = audio
|
| 183 |
completed += 1
|
| 184 |
-
progress(completed /
|
| 185 |
-
desc=f"Processed {completed}/{
|
| 186 |
except Exception as e:
|
| 187 |
-
print(f"Error processing
|
| 188 |
continue
|
| 189 |
|
| 190 |
# Sort by index
|
|
@@ -192,14 +278,14 @@ class KittenTTSGradio:
|
|
| 192 |
audio_chunks.append(results[i])
|
| 193 |
else:
|
| 194 |
# Sequential processing
|
| 195 |
-
for i,
|
| 196 |
try:
|
| 197 |
-
audio = self.process_single_sentence(
|
| 198 |
audio_chunks.append(audio)
|
| 199 |
-
progress((i + 1) /
|
| 200 |
-
desc=f"Processed {i + 1}/{
|
| 201 |
except Exception as e:
|
| 202 |
-
print(f"Error processing
|
| 203 |
continue
|
| 204 |
|
| 205 |
if not audio_chunks:
|
|
@@ -224,7 +310,8 @@ class KittenTTSGradio:
|
|
| 224 |
gc.collect()
|
| 225 |
|
| 226 |
processing_method = "multithreading" if use_multithreading else "sequential"
|
| 227 |
-
|
|
|
|
| 228 |
|
| 229 |
return output_file.name, status_message
|
| 230 |
|
|
@@ -247,10 +334,11 @@ def create_interface():
|
|
| 247 |
**Features:**
|
| 248 |
- 8 different voice options (male and female)
|
| 249 |
- Adjustable speech speed
|
| 250 |
-
-
|
|
|
|
| 251 |
- Multithreading support for faster processing
|
| 252 |
|
| 253 |
-
**Note:** The model will
|
| 254 |
""")
|
| 255 |
|
| 256 |
with gr.Row():
|
|
@@ -320,10 +408,19 @@ def create_interface():
|
|
| 320 |
info="Adjust the speed of speech (1.0 = normal)"
|
| 321 |
)
|
| 322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
multithread_checkbox = gr.Checkbox(
|
| 324 |
value=True,
|
| 325 |
label=f"Enable Multithreading ({app.max_workers} workers)",
|
| 326 |
-
info="Process multiple
|
| 327 |
)
|
| 328 |
|
| 329 |
convert_btn = gr.Button(
|
|
@@ -358,7 +455,7 @@ def create_interface():
|
|
| 358 |
# Connect the conversion function
|
| 359 |
convert_btn.click(
|
| 360 |
fn=app.convert_text_to_speech,
|
| 361 |
-
inputs=[text_input, voice_dropdown, speed_slider, multithread_checkbox],
|
| 362 |
outputs=[audio_output, status_output]
|
| 363 |
)
|
| 364 |
|
|
@@ -370,7 +467,7 @@ def create_interface():
|
|
| 370 |
- Processing time depends on text length, chunk size, and multithreading setting
|
| 371 |
- Each voice has different characteristics - try them out!
|
| 372 |
- The model runs entirely on CPU - no GPU required
|
| 373 |
-
- First conversion will take longer as the model loads
|
| 374 |
|
| 375 |
### 🎭 Available Voices:
|
| 376 |
- **expr-voice-2-m/f**: Expressive male/female voices
|
|
|
|
| 7 |
import time
|
| 8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 9 |
import gc
|
| 10 |
+
from huggingface_hub import hf_hub_download
|
| 11 |
+
import json
|
| 12 |
|
| 13 |
# Fix for OpenMP duplicate library error
|
| 14 |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
|
|
|
|
| 36 |
if not self.model_loaded:
|
| 37 |
self.load_model()
|
| 38 |
|
| 39 |
+
def download_and_load_model(self, repo_id):
|
| 40 |
+
"""Download model files and load them"""
|
| 41 |
+
try:
|
| 42 |
+
print(f"Downloading model files from {repo_id}...")
|
| 43 |
+
|
| 44 |
+
# Download config file
|
| 45 |
+
config_path = hf_hub_download(
|
| 46 |
+
repo_id=repo_id,
|
| 47 |
+
filename="config.json"
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Read config to get file names
|
| 51 |
+
with open(config_path, 'r') as f:
|
| 52 |
+
config = json.load(f)
|
| 53 |
+
|
| 54 |
+
# Download model file - try different possible names
|
| 55 |
+
model_filename = config.get("model_file", None)
|
| 56 |
+
if not model_filename:
|
| 57 |
+
# Try common names
|
| 58 |
+
possible_names = ["kitten_tts_mini_v0_1.onnx", "kitten_tts_nano_v0_2.onnx", "kitten_tts_nano_v0_1.onnx"]
|
| 59 |
+
for name in possible_names:
|
| 60 |
+
try:
|
| 61 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=name)
|
| 62 |
+
model_filename = name
|
| 63 |
+
break
|
| 64 |
+
except:
|
| 65 |
+
continue
|
| 66 |
+
else:
|
| 67 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=model_filename)
|
| 68 |
+
|
| 69 |
+
# Download voices file
|
| 70 |
+
voices_filename = config.get("voices", "voices.npz")
|
| 71 |
+
voices_path = hf_hub_download(
|
| 72 |
+
repo_id=repo_id,
|
| 73 |
+
filename=voices_filename
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
print(f"Model files downloaded successfully")
|
| 77 |
+
|
| 78 |
+
# Now try to load with KittenTTS using the repo_id
|
| 79 |
+
# The library should use the cached files
|
| 80 |
+
self.model = KittenTTS(repo_id)
|
| 81 |
+
return True
|
| 82 |
+
|
| 83 |
+
except Exception as e:
|
| 84 |
+
print(f"Failed to download and load {repo_id}: {e}")
|
| 85 |
+
return False
|
| 86 |
+
|
| 87 |
def load_model(self):
|
| 88 |
+
"""Load the TTS model with multiple fallback options"""
|
| 89 |
if self.model_loaded:
|
| 90 |
return
|
| 91 |
|
| 92 |
try:
|
| 93 |
print("Loading KittenTTS model...")
|
| 94 |
+
|
| 95 |
+
# Try different loading strategies
|
| 96 |
+
strategies = [
|
| 97 |
+
("KittenML/kitten-tts-mini-0.1", "mini"),
|
| 98 |
+
("KittenML/kitten-tts-nano-0.2", "nano v0.2"),
|
| 99 |
+
("KittenML/kitten-tts-nano-0.1", "nano v0.1"),
|
| 100 |
+
]
|
| 101 |
+
|
| 102 |
+
for repo_id, name in strategies:
|
| 103 |
+
print(f"Trying to load {name} model...")
|
| 104 |
+
|
| 105 |
+
# First try direct loading (in case files are cached)
|
| 106 |
+
try:
|
| 107 |
+
self.model = KittenTTS(repo_id)
|
| 108 |
+
self.model_loaded = True
|
| 109 |
+
print(f"Successfully loaded {name} model!")
|
| 110 |
+
return
|
| 111 |
+
except Exception as e:
|
| 112 |
+
print(f"Direct loading failed: {e}")
|
| 113 |
+
|
| 114 |
+
# Try downloading and loading
|
| 115 |
+
if self.download_and_load_model(repo_id):
|
| 116 |
+
self.model_loaded = True
|
| 117 |
+
print(f"Successfully loaded {name} model after download!")
|
| 118 |
+
return
|
| 119 |
+
|
| 120 |
+
# If all strategies failed
|
| 121 |
+
raise Exception("Failed to load any KittenTTS model. Please check your internet connection.")
|
| 122 |
+
|
| 123 |
except Exception as e:
|
| 124 |
+
print(f"Error loading model: {e}")
|
| 125 |
+
self.model_loaded = False
|
| 126 |
+
raise e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
def split_into_sentences(self, text):
|
| 129 |
"""Split text into sentences"""
|
|
|
|
| 146 |
|
| 147 |
return processed_sentences
|
| 148 |
|
| 149 |
+
def group_sentences_into_chunks(self, sentences, chunk_size):
|
| 150 |
+
"""Group sentences into chunks of specified size"""
|
| 151 |
+
if chunk_size <= 0:
|
| 152 |
+
chunk_size = 1
|
| 153 |
+
|
| 154 |
+
chunks = []
|
| 155 |
+
for i in range(0, len(sentences), chunk_size):
|
| 156 |
+
# Join sentences in this chunk with a space
|
| 157 |
+
chunk = ' '.join(sentences[i:i + chunk_size])
|
| 158 |
+
chunks.append(chunk)
|
| 159 |
+
|
| 160 |
+
return chunks
|
| 161 |
+
|
| 162 |
def clean_text_for_model(self, text):
|
| 163 |
"""Clean text for the TTS model"""
|
| 164 |
if not text:
|
|
|
|
| 218 |
audio = self.safe_generate_audio(cleaned_sentence, voice=voice, speed=speed)
|
| 219 |
return audio
|
| 220 |
|
| 221 |
+
def convert_text_to_speech(self, text, voice, speed, chunk_size, use_multithreading, progress=gr.Progress()):
|
| 222 |
"""Main conversion function for Gradio"""
|
| 223 |
# Ensure model is loaded
|
| 224 |
try:
|
|
|
|
| 230 |
raise gr.Error("Please enter some text to convert.")
|
| 231 |
|
| 232 |
try:
|
| 233 |
+
# Split into sentences first
|
| 234 |
sentences = self.split_into_sentences(text)
|
| 235 |
|
| 236 |
if not sentences:
|
| 237 |
raise gr.Error("No valid sentences found in the text.")
|
| 238 |
|
| 239 |
+
# Group sentences into chunks based on chunk_size
|
| 240 |
+
chunks = self.group_sentences_into_chunks(sentences, chunk_size)
|
| 241 |
+
|
| 242 |
+
total_chunks = len(chunks)
|
| 243 |
total_sentences = len(sentences)
|
|
|
|
| 244 |
|
| 245 |
+
chunk_label = "chunk" if chunk_size == 1 else f"chunk ({chunk_size} sentences each)"
|
| 246 |
+
progress(0, desc=f"Processing {total_sentences} sentences in {total_chunks} {chunk_label}s...")
|
| 247 |
+
|
| 248 |
+
# Process chunks
|
| 249 |
audio_chunks = []
|
| 250 |
|
| 251 |
+
if use_multithreading and total_chunks > 1:
|
| 252 |
# Multithreaded processing
|
| 253 |
with ThreadPoolExecutor(max_workers=self.max_workers) as executor:
|
| 254 |
+
# Submit all chunks
|
| 255 |
futures = {
|
| 256 |
+
executor.submit(self.process_single_sentence, chunk, voice, speed): i
|
| 257 |
+
for i, chunk in enumerate(chunks)
|
| 258 |
}
|
| 259 |
|
| 260 |
# Collect results in order
|
|
|
|
| 267 |
audio = future.result()
|
| 268 |
results[idx] = audio
|
| 269 |
completed += 1
|
| 270 |
+
progress(completed / total_chunks,
|
| 271 |
+
desc=f"Processed {completed}/{total_chunks} {chunk_label}s")
|
| 272 |
except Exception as e:
|
| 273 |
+
print(f"Error processing chunk: {e}")
|
| 274 |
continue
|
| 275 |
|
| 276 |
# Sort by index
|
|
|
|
| 278 |
audio_chunks.append(results[i])
|
| 279 |
else:
|
| 280 |
# Sequential processing
|
| 281 |
+
for i, chunk in enumerate(chunks):
|
| 282 |
try:
|
| 283 |
+
audio = self.process_single_sentence(chunk, voice, speed)
|
| 284 |
audio_chunks.append(audio)
|
| 285 |
+
progress((i + 1) / total_chunks,
|
| 286 |
+
desc=f"Processed {i + 1}/{total_chunks} {chunk_label}s")
|
| 287 |
except Exception as e:
|
| 288 |
+
print(f"Error processing chunk: {e}")
|
| 289 |
continue
|
| 290 |
|
| 291 |
if not audio_chunks:
|
|
|
|
| 310 |
gc.collect()
|
| 311 |
|
| 312 |
processing_method = "multithreading" if use_multithreading else "sequential"
|
| 313 |
+
chunk_description = f"{chunk_size} sentence(s) per chunk" if chunk_size > 1 else "sentence-by-sentence"
|
| 314 |
+
status_message = f"✅ Successfully converted {total_sentences} sentences ({total_chunks} chunks) using {processing_method} processing with {chunk_description}!"
|
| 315 |
|
| 316 |
return output_file.name, status_message
|
| 317 |
|
|
|
|
| 334 |
**Features:**
|
| 335 |
- 8 different voice options (male and female)
|
| 336 |
- Adjustable speech speed
|
| 337 |
+
- Adjustable chunk size for processing
|
| 338 |
+
- Sentence-by-sentence or multi-sentence processing
|
| 339 |
- Multithreading support for faster processing
|
| 340 |
|
| 341 |
+
**Note:** The model will download on first use (~170MB for mini model, ~25MB for nano).
|
| 342 |
""")
|
| 343 |
|
| 344 |
with gr.Row():
|
|
|
|
| 408 |
info="Adjust the speed of speech (1.0 = normal)"
|
| 409 |
)
|
| 410 |
|
| 411 |
+
chunk_size_slider = gr.Slider(
|
| 412 |
+
minimum=1,
|
| 413 |
+
maximum=10,
|
| 414 |
+
value=1,
|
| 415 |
+
step=1,
|
| 416 |
+
label="Sentences per Chunk",
|
| 417 |
+
info="Group sentences together (1 = best quality, higher = faster processing)"
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
multithread_checkbox = gr.Checkbox(
|
| 421 |
value=True,
|
| 422 |
label=f"Enable Multithreading ({app.max_workers} workers)",
|
| 423 |
+
info="Process multiple chunks in parallel"
|
| 424 |
)
|
| 425 |
|
| 426 |
convert_btn = gr.Button(
|
|
|
|
| 455 |
# Connect the conversion function
|
| 456 |
convert_btn.click(
|
| 457 |
fn=app.convert_text_to_speech,
|
| 458 |
+
inputs=[text_input, voice_dropdown, speed_slider, chunk_size_slider, multithread_checkbox],
|
| 459 |
outputs=[audio_output, status_output]
|
| 460 |
)
|
| 461 |
|
|
|
|
| 467 |
- Processing time depends on text length, chunk size, and multithreading setting
|
| 468 |
- Each voice has different characteristics - try them out!
|
| 469 |
- The model runs entirely on CPU - no GPU required
|
| 470 |
+
- First conversion will take longer as the model downloads and loads
|
| 471 |
|
| 472 |
### 🎭 Available Voices:
|
| 473 |
- **expr-voice-2-m/f**: Expressive male/female voices
|