Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from llava.model.builder import load_pretrained_model | |
| from llava.mm_utils import process_images, tokenizer_image_token | |
| from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN | |
| from llava.conversation import conv_templates | |
| from PIL import Image | |
| import copy | |
| import torch | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| pretrained = "AI-Safeguard/Ivy-VL-llava" | |
| model_name = "llava_qwen" | |
| device = "cpu" | |
| device_map = "auto" | |
| # Load model, tokenizer, and image processor | |
| tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map, attn_implementation="sdpa") | |
| model.eval() | |
| def respond(image, question, temperature, max_tokens): | |
| try: | |
| # Load and process the image | |
| image_tensor = process_images([image], image_processor, model.config) | |
| image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor] | |
| # Prepare the conversation template | |
| conv_template = "qwen_1_5" | |
| formatted_question = DEFAULT_IMAGE_TOKEN + "\n" + question | |
| conv = copy.deepcopy(conv_templates[conv_template]) | |
| conv.append_message(conv.roles[0], formatted_question) | |
| conv.append_message(conv.roles[1], None) | |
| prompt_question = conv.get_prompt() | |
| # Tokenize input | |
| input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) | |
| image_sizes = [image.size] | |
| # Generate response | |
| cont = model.generate( | |
| input_ids, | |
| images=image_tensor, | |
| image_sizes=image_sizes, | |
| do_sample=False, | |
| temperature=temperature, | |
| max_new_tokens=max_tokens, | |
| ) | |
| text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True) | |
| return text_outputs[0] | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| # Gradio Interface | |
| def chat_interface(image, question, temperature, max_tokens): | |
| if not image or not question: | |
| return "Please provide both an image and a question." | |
| return respond(image, question, temperature, max_tokens) | |
| demo = gr.Interface( | |
| fn=chat_interface, | |
| inputs=[ | |
| gr.Image(type="pil", label="Input Image"), | |
| gr.Textbox(label="Question"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max Tokens"), | |
| ], | |
| outputs="text", | |
| title="AI-Safeguard Ivy-VL-Llava Image Question Answering", | |
| description="Upload an image and ask a question about it. The model will provide a response based on the visual and textual input." | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |