PrepGraph-Backend / main_api.py
07Codex07's picture
changed the context and retrieval
41d23d8
# main_api.py
import os
import logging
import traceback
from typing import Optional, List, Dict, Any
import tiktoken
from fastapi import FastAPI, HTTPException, BackgroundTasks, UploadFile, File, Form
from fastapi.responses import JSONResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
import uvicorn
# import your existing modules (assumed in same directory)
from memory_store import init_db, save_message, get_last_messages, clear_user_memory, build_gradio_history # :contentReference[oaicite:4]{index=4}
from chatbot_retriever import build_or_load_indexes, hybrid_retrieve, retrieve_node_from_rows, load_all_docs, ensure_data_dir # :contentReference[oaicite:5]{index=5}
from chatbot_graph import SYSTEM_PROMPT, call_llm, _extract_answer_from_response # :contentReference[oaicite:6]{index=6}
# ----------------- CORS SETUP -----------------
from fastapi.middleware.cors import CORSMiddleware
app = FastAPI(title="RAG Chat Backend", version="1.0")
from fastapi.middleware.cors import CORSMiddleware
app.add_middleware(
CORSMiddleware,
allow_origins=[
"http://localhost:5173",
"http://127.0.0.1:5173",
],
allow_credentials=True,
allow_methods=["*"], # ✅ lowercase 'allow_'
allow_headers=["*"], # ✅ lowercase 'allow_'
)
# ------------------------------------------------
from dotenv import load_dotenv
load_dotenv()
logger = logging.getLogger("rag_api")
logging.basicConfig(level=logging.INFO)
logger.setLevel(logging.INFO)
# initialize DB now
init_db()
# Global in-memory flag/object to check indexes loaded (populated by build_or_load_indexes)
INDEXES = {"built": False, "info": None}
# ---------- Pydantic models ----------
class ChatRequest(BaseModel):
user_id: Optional[str] = None
message: str
class ChatResponse(BaseModel):
user_id: str
message: str
assistant: str
history: List[Dict[str, str]]
class RetrieveResponse(BaseModel):
query: str
context: Optional[str]
meta: List[Dict[str, Any]]
# ---------- helpers ----------
def ensure_indexes(force_reindex: bool = False):
"""
Build or load indexes synchronously. This wraps build_or_load_indexes from chatbot_retriever.
Also initializes hybrid_retrieve module variables to avoid reindexing.
"""
# Check if hybrid_retrieve already has indexes built (avoid duplicate work)
if hasattr(hybrid_retrieve, "_index_built") and hybrid_retrieve._index_built and not force_reindex:
if INDEXES["built"]:
return INDEXES["info"]
if INDEXES["built"] and not force_reindex:
# Ensure hybrid_retrieve module variables are also set
if not hasattr(hybrid_retrieve, "_index_built") or not hybrid_retrieve._index_built:
# Indexes exist but hybrid_retrieve wasn't initialized, reload them
try:
chunks, bm25, tokenized, corpus_texts, faiss_data = build_or_load_indexes(force_reindex=False)
hybrid_retrieve._chunks = chunks
hybrid_retrieve._bm25 = bm25
hybrid_retrieve._tokenized = tokenized
hybrid_retrieve._corpus = corpus_texts
hybrid_retrieve._faiss = faiss_data
hybrid_retrieve._index_built = True
logger.info("Initialized hybrid_retrieve module variables from existing indexes")
except Exception:
logger.exception("Failed to initialize hybrid_retrieve variables")
return INDEXES["info"]
try:
chunks, bm25, tokenized, corpus_texts, faiss_data = build_or_load_indexes(force_reindex=force_reindex)
# Set module-level variables in hybrid_retrieve to avoid rebuilding
hybrid_retrieve._chunks = chunks
hybrid_retrieve._bm25 = bm25
hybrid_retrieve._tokenized = tokenized
hybrid_retrieve._corpus = corpus_texts
hybrid_retrieve._faiss = faiss_data
hybrid_retrieve._index_built = True
INDEXES["built"] = True
INDEXES["info"] = {"chunks_len": len(chunks) if chunks else 0, "corpus_len": len(corpus_texts) if corpus_texts else 0}
logger.info("Indexes built/loaded: %d chunks, %d corpus texts", INDEXES["info"]["chunks_len"], INDEXES["info"]["corpus_len"])
return INDEXES["info"]
except Exception:
logger.exception("Index build/load failed")
raise
# ===== Token limiter helper =====
enc = tiktoken.get_encoding("cl100k_base")
def trim_to_token_limit(texts, limit=4000):
"""Join text chunks until token limit is reached."""
joined = ""
for t in texts:
if len(enc.encode(joined + t)) > limit:
break
joined += t + "\n"
return joined
def extract_history_for_frontend(user_id: str, limit: int = 500):
return build_gradio_history(user_id)
# ---------- Routes ----------
@app.get("/health")
def health():
"""Basic health check."""
return {"status": "ok", "indexes_built": INDEXES["built"]}
@app.post("/reindex")
def reindex(force: Optional[bool] = False):
"""
Force rebuild of indexes. This calls the same build_or_load_indexes used by your retriever module.
Use ?force=true to force.
"""
try:
info = ensure_indexes(force_reindex=bool(force))
return {"status": "ok", "info": info}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to build indexes: {e}")
@app.post("/upload")
async def upload_file(file: UploadFile = File(...), category: Optional[str] = Form("syllabus")):
"""
Upload PDF/PPTX into DATA_DIR (same dir used by chatbot_retriever.load_all_docs).
After upload you may call /reindex to include the file.
"""
from chatbot_retriever import DATA_DIR # keep using same constant
os.makedirs(DATA_DIR, exist_ok=True)
dest_path = os.path.join(DATA_DIR, file.filename)
try:
with open(dest_path, "wb") as f:
content = await file.read()
f.write(content)
return {"status": "ok", "filename": file.filename, "saved_to": dest_path}
except Exception as e:
logger.exception("upload failed")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/docs_list")
def docs_list():
"""List files in DATA_DIR (documents available to retriever)."""
from chatbot_retriever import DATA_DIR
if not os.path.isdir(DATA_DIR):
return {"files": []}
files = [f for f in os.listdir(DATA_DIR) if os.path.isfile(os.path.join(DATA_DIR, f))]
return {"files": files}
@app.get("/retrieve", response_model=RetrieveResponse)
def retrieve(query: str, subject: Optional[str] = None, top_k: Optional[int] = None):
"""
Directly call the hybrid retriever for a query. Returns context + meta.
"""
try:
# ensure indexes built (but don't force)
ensure_indexes(force_reindex=False)
res = hybrid_retrieve(query=query, subject=subject, top_k=(top_k or None))
return {"query": query, "context": res.get("context"), "meta": res.get("meta", [])}
except Exception as e:
logger.exception("retrieve failed")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/history/{user_id}")
def get_history(user_id: str, limit: Optional[int] = 500):
"""Return persisted history for a user (in same format your frontend expects)."""
try:
hist = extract_history_for_frontend(user_id)
if limit:
hist = hist[-int(limit):]
return {"user_id": user_id, "history": hist}
except Exception as e:
logger.exception("history fetch failed")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/memory/clear")
def clear_memory(user_id: str):
"""Clear stored memory for user."""
try:
deleted = clear_user_memory(user_id)
return {"status": "ok", "deleted_rows": deleted}
except Exception as e:
logger.exception("clear failed")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/chat", response_model=ChatResponse)
def chat(req: ChatRequest):
"""
Main chat endpoint.
- saves user message
- fetches last messages from sqlite memory
- runs retriever to get context
- builds the system prompt + last 3 user messages
- calls the LLM via call_llm (same wrapper imported from chatbot_graph)
- saves assistant reply and returns it + updated history
"""
uid = (req.user_id or os.getenv("DEFAULT_USER", "vinayak")).strip() or "vinayak"
if not req.message:
raise HTTPException(status_code=400, detail="message is required")
try:
# 1) persist user message
save_message(uid, "user", req.message)
# 2) get rows (chronological order) for retriever
rows = get_last_messages(uid, limit=200)
# 3) ensure indexes exist (non-force)
try:
ensure_indexes(force_reindex=False)
except Exception:
logger.warning("Indexes not built or failed. retriever may return no context.")
# 4) run retrieve_node_from_rows to get context (keeps same logic as your retriever glue)
try:
retrieved = retrieve_node_from_rows(rows)
context = retrieved.get("context")
if context:
logger.info("Retrieved context: %d characters from documents", len(context))
else:
logger.warning("Retriever returned empty context for query: %s", req.message)
except Exception as e:
logger.exception("retriever call failed: %s", e)
context = None
# 5) build system prompt content
# ===== Combine retrieval context + last 2 user turns =====
MAX_TOKENS_CONTEXT = 3000
NUM_RECENT_TURNS = 2 # last 2 user + assistant pairs
# Get last few messages (both user + assistant)
recent_pairs = rows[-(NUM_RECENT_TURNS * 2):]
recent_chat = "\n".join([f"{r[0].upper()}: {r[1]}" for r in recent_pairs])
# Trim context to token-safe limit
context_texts = context.split("\n\n") if context else []
trimmed_context = trim_to_token_limit(context_texts, limit=MAX_TOKENS_CONTEXT)
# Final system prompt
system_content = SYSTEM_PROMPT
if trimmed_context:
system_content += "\n\n===== RETRIEVED CONTEXT =====\n" + trimmed_context
logger.debug("Added context to system prompt: %d characters", len(trimmed_context))
else:
logger.warning("No context to add to system prompt for query: %s", req.message)
# build prompt messages as list of simple dicts (call_llm expects same message format as in chatbot_graph)
# chatbot_graph.call_llm expects langchain messages (SystemMessage/HumanMessage) — we built that in original file.
# create messages as minimal objects that call_llm can accept (we rely on original call_llm).
from langchain_core.messages import SystemMessage, HumanMessage # re-use same message classes
prompt_msgs = [SystemMessage(content=system_content)]
# collect last 3 user messages
last_users = [r[1] for r in rows if r[0] == "user"][-1:]
if not last_users:
last_users = [req.message]
for u in last_users:
prompt_msgs.append(HumanMessage(content=u))
# 6) call LLM
try:
raw = call_llm(prompt_msgs)
answer = _extract_answer_from_response(raw) or ""
except Exception as e:
logger.exception("LLM call failed")
# If LLM client not configured (ChatGroq missing or no API KEY), return helpful message
detail = str(e)
answer = f"LLM call failed: {detail}"
# 7) persist assistant reply
try:
save_message(uid, "assistant", answer)
except Exception:
logger.exception("Failed to persist assistant message")
# 8) build history to return
history = extract_history_for_frontend(uid)
return {
"user_id": uid,
"message": req.message,
"assistant": answer,
"history": history,
}
except HTTPException:
raise
except Exception as e:
logger.exception("chat failed: %s", e)
raise HTTPException(status_code=500, detail=str(e))
# Mount static files for frontend
FRONTEND_DIR = os.path.join(os.path.dirname(__file__), "frontend", "dist")
if os.path.exists(FRONTEND_DIR):
app.mount("/assets", StaticFiles(directory=os.path.join(FRONTEND_DIR, "assets")), name="assets")
@app.get("/{full_path:path}")
async def serve_frontend(full_path: str):
"""Serve the React frontend for all non-API routes"""
if full_path and not full_path.startswith("api"):
file_path = os.path.join(FRONTEND_DIR, full_path)
if os.path.exists(file_path) and os.path.isfile(file_path):
return FileResponse(file_path)
return FileResponse(os.path.join(FRONTEND_DIR, "index.html"))
# Run with: uvicorn main_api:app --reload --host 127.0.0.1 --port 8000
if __name__ == "__main__":
uvicorn.run("main_api:app", host="127.0.0.1", port=8000, reload=True)