Upload folder using huggingface_hub
Browse files- .gitattributes +8 -0
- README.md +161 -0
- config.json +32 -0
- model.rknn +3 -0
- model_b1_s256.rknn +3 -0
- model_b4_s256.rknn +3 -0
- model_b4_s512.rknn +3 -0
- models--cross-encoder--ms-marco-MiniLM-L12-v2/.no_exist/7b0235231ca2674cb8ca8f022859a6eba2b1c968/modules.json +0 -0
- rknn.json +358 -0
- rknn/model_o1.rknn +3 -0
- rknn/model_o2.rknn +3 -0
- rknn/model_o3.rknn +3 -0
- rknn/model_w8a8.rknn +3 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
model.rknn filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
model_b1_s256.rknn filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
model_b4_s256.rknn filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
model_b4_s512.rknn filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
rknn/model_o1.rknn filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
rknn/model_o2.rknn filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
rknn/model_o3.rknn filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
rknn/model_w8a8.rknn filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- sentence-transformers/natural-questions
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model: cross-encoder/ms-marco-MiniLM-L12-v2
|
| 8 |
+
pipeline_tag: text-ranking
|
| 9 |
+
library_name: rk-transformers
|
| 10 |
+
tags:
|
| 11 |
+
- transformers
|
| 12 |
+
- rknn
|
| 13 |
+
- rockchip
|
| 14 |
+
- npu
|
| 15 |
+
- rk-transformers
|
| 16 |
+
- rk3588
|
| 17 |
+
model_name: ms-marco-MiniLM-L12-v2
|
| 18 |
+
---
|
| 19 |
+
# ms-marco-MiniLM-L12-v2 (RKNN2)
|
| 20 |
+
|
| 21 |
+
> This is an RKNN-compatible version of the [cross-encoder/ms-marco-MiniLM-L12-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L12-v2) model. It has been optimized for Rockchip NPUs using the [rk-transformers](https://github.com/emapco/rk-transformers) library.
|
| 22 |
+
|
| 23 |
+
<details><summary>Click to see the RKNN model details and usage examples</summary>
|
| 24 |
+
|
| 25 |
+
## Model Details
|
| 26 |
+
|
| 27 |
+
- **Original Model:** [cross-encoder/ms-marco-MiniLM-L12-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L12-v2)
|
| 28 |
+
- **Target Platform:** rk3588
|
| 29 |
+
- **rknn-toolkit2 Version:** 2.3.2
|
| 30 |
+
- **rk-transformers Version:** 0.1.0
|
| 31 |
+
|
| 32 |
+
### Available Model Files
|
| 33 |
+
|
| 34 |
+
| Model File | Optimization Level | Quantization | File Size |
|
| 35 |
+
| :--------- | :----------------- | :----------- | :-------- |
|
| 36 |
+
| [model.rknn](./model.rknn) | 0 | float16 | 68.8 MB |
|
| 37 |
+
| [model_b1_s256.rknn](./model_b1_s256.rknn) | 0 | float16 | 67.0 MB |
|
| 38 |
+
| [model_b4_s256.rknn](./model_b4_s256.rknn) | 0 | float16 | 75.1 MB |
|
| 39 |
+
| [model_b4_s512.rknn](./model_b4_s512.rknn) | 0 | float16 | 81.7 MB |
|
| 40 |
+
| [rknn/model_o1.rknn](./rknn/model_o1.rknn) | 1 | float16 | 68.8 MB |
|
| 41 |
+
| [rknn/model_o2.rknn](./rknn/model_o2.rknn) | 2 | float16 | 68.8 MB |
|
| 42 |
+
| [rknn/model_o3.rknn](./rknn/model_o3.rknn) | 3 | float16 | 68.8 MB |
|
| 43 |
+
| [rknn/model_w8a8.rknn](./rknn/model_w8a8.rknn) | 0 | w8a8 | 36.5 MB |
|
| 44 |
+
|
| 45 |
+
## Usage
|
| 46 |
+
|
| 47 |
+
### Installation
|
| 48 |
+
|
| 49 |
+
Install `rk-transformers` to use this model:
|
| 50 |
+
|
| 51 |
+
```bash
|
| 52 |
+
pip install rk-transformers
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
#### RKTransformers API
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
from rktransformers import RKRTModelForSequenceClassification
|
| 59 |
+
from transformers import AutoTokenizer
|
| 60 |
+
|
| 61 |
+
# Load tokenizer and model
|
| 62 |
+
tokenizer = AutoTokenizer.from_pretrained("rk-transformers/ms-marco-MiniLM-L12-v2")
|
| 63 |
+
model = RKRTModelForSequenceClassification.from_pretrained(
|
| 64 |
+
"rk-transformers/ms-marco-MiniLM-L12-v2",
|
| 65 |
+
platform="rk3588",
|
| 66 |
+
core_mask="auto",
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Tokenize and run inference
|
| 70 |
+
inputs = tokenizer(
|
| 71 |
+
["Sample text for encoding"],
|
| 72 |
+
padding="max_length",
|
| 73 |
+
max_length=512,
|
| 74 |
+
truncation=True,
|
| 75 |
+
return_tensors="np"
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
outputs = model(**inputs)
|
| 79 |
+
print(outputs.shape)
|
| 80 |
+
|
| 81 |
+
# Load specific optimized/quantized model file
|
| 82 |
+
model = RKRTModelForSequenceClassification.from_pretrained(
|
| 83 |
+
"rk-transformers/ms-marco-MiniLM-L12-v2",
|
| 84 |
+
platform="rk3588",
|
| 85 |
+
file_name="rknn/model_w8a8.rknn"
|
| 86 |
+
)
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
## Configuration
|
| 90 |
+
|
| 91 |
+
The full configuration for all exported RKNN models is available in the [rknn.json](./rknn.json) file.
|
| 92 |
+
|
| 93 |
+
</details>
|
| 94 |
+
# Cross-Encoder for MS Marco
|
| 95 |
+
|
| 96 |
+
This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task.
|
| 97 |
+
|
| 98 |
+
The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/cross_encoder/training/ms_marco)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
## Usage with SentenceTransformers
|
| 102 |
+
|
| 103 |
+
The usage is easy when you have [SentenceTransformers](https://www.sbert.net/) installed. Then you can use the pre-trained models like this:
|
| 104 |
+
```python
|
| 105 |
+
from sentence_transformers import CrossEncoder
|
| 106 |
+
|
| 107 |
+
model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L12-v2')
|
| 108 |
+
scores = model.predict([
|
| 109 |
+
("How many people live in Berlin?", "Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers."),
|
| 110 |
+
("How many people live in Berlin?", "Berlin is well known for its museums."),
|
| 111 |
+
])
|
| 112 |
+
print(scores)
|
| 113 |
+
# [ 9.218911 -4.0780287]
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
## Usage with Transformers
|
| 118 |
+
|
| 119 |
+
```python
|
| 120 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 121 |
+
import torch
|
| 122 |
+
|
| 123 |
+
model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/ms-marco-MiniLM-L12-v2')
|
| 124 |
+
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/ms-marco-MiniLM-L12-v2')
|
| 125 |
+
|
| 126 |
+
features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
|
| 127 |
+
|
| 128 |
+
model.eval()
|
| 129 |
+
with torch.no_grad():
|
| 130 |
+
scores = model(**features).logits
|
| 131 |
+
print(scores)
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
## Performance
|
| 137 |
+
In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset.
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
| Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec |
|
| 141 |
+
| ------------- |:-------------| -----| --- |
|
| 142 |
+
| **Version 2 models** | | |
|
| 143 |
+
| cross-encoder/ms-marco-TinyBERT-L2-v2 | 69.84 | 32.56 | 9000
|
| 144 |
+
| cross-encoder/ms-marco-MiniLM-L2-v2 | 71.01 | 34.85 | 4100
|
| 145 |
+
| cross-encoder/ms-marco-MiniLM-L4-v2 | 73.04 | 37.70 | 2500
|
| 146 |
+
| cross-encoder/ms-marco-MiniLM-L6-v2 | 74.30 | 39.01 | 1800
|
| 147 |
+
| cross-encoder/ms-marco-MiniLM-L12-v2 | 74.31 | 39.02 | 960
|
| 148 |
+
| **Version 1 models** | | |
|
| 149 |
+
| cross-encoder/ms-marco-TinyBERT-L2 | 67.43 | 30.15 | 9000
|
| 150 |
+
| cross-encoder/ms-marco-TinyBERT-L4 | 68.09 | 34.50 | 2900
|
| 151 |
+
| cross-encoder/ms-marco-TinyBERT-L6 | 69.57 | 36.13 | 680
|
| 152 |
+
| cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340
|
| 153 |
+
| **Other models** | | |
|
| 154 |
+
| nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900
|
| 155 |
+
| nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340
|
| 156 |
+
| nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100
|
| 157 |
+
| Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340
|
| 158 |
+
| amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330
|
| 159 |
+
| sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720
|
| 160 |
+
|
| 161 |
+
Note: Runtime was computed on a V100 GPU.
|
config.json
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertForSequenceClassification"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"gradient_checkpointing": false,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 384,
|
| 11 |
+
"id2label": {
|
| 12 |
+
"0": "LABEL_0"
|
| 13 |
+
},
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 1536,
|
| 16 |
+
"label2id": {
|
| 17 |
+
"LABEL_0": 0
|
| 18 |
+
},
|
| 19 |
+
"layer_norm_eps": 1e-12,
|
| 20 |
+
"max_position_embeddings": 512,
|
| 21 |
+
"model_type": "bert",
|
| 22 |
+
"num_attention_heads": 12,
|
| 23 |
+
"num_hidden_layers": 12,
|
| 24 |
+
"pad_token_id": 0,
|
| 25 |
+
"position_embedding_type": "absolute",
|
| 26 |
+
"sbert_ce_default_activation_function": "torch.nn.modules.linear.Identity",
|
| 27 |
+
"torch_dtype": "float32",
|
| 28 |
+
"transformers_version": "4.55.4",
|
| 29 |
+
"type_vocab_size": 2,
|
| 30 |
+
"use_cache": true,
|
| 31 |
+
"vocab_size": 30522
|
| 32 |
+
}
|
model.rknn
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4bada98d5ef1f57199733bceeb9b348a061eb17b77e444b68cca1557ef64b52b
|
| 3 |
+
size 72099070
|
model_b1_s256.rknn
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:33291ae8d7d9e04ae32a1c10cb9de3bde30719f33061b48705b223a006a54551
|
| 3 |
+
size 70270718
|
model_b4_s256.rknn
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:872b6e2550a0cd9ed4de28fc86d62b3af6227fdae378f84df5fddb32334d5724
|
| 3 |
+
size 78763262
|
model_b4_s512.rknn
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c640bce5951ca71d22756d003eaccac10159d40e489f15b170c2c781a88fd916
|
| 3 |
+
size 85670846
|
models--cross-encoder--ms-marco-MiniLM-L12-v2/.no_exist/7b0235231ca2674cb8ca8f022859a6eba2b1c968/modules.json
ADDED
|
File without changes
|
rknn.json
ADDED
|
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_b1_s256.rknn": {
|
| 3 |
+
"rktransformers_version": "0.1.0",
|
| 4 |
+
"model_input_names": [
|
| 5 |
+
"input_ids",
|
| 6 |
+
"attention_mask",
|
| 7 |
+
"token_type_ids"
|
| 8 |
+
],
|
| 9 |
+
"batch_size": 1,
|
| 10 |
+
"max_seq_length": 256,
|
| 11 |
+
"float_dtype": "float16",
|
| 12 |
+
"target_platform": "rk3588",
|
| 13 |
+
"single_core_mode": false,
|
| 14 |
+
"mean_values": null,
|
| 15 |
+
"std_values": null,
|
| 16 |
+
"custom_string": null,
|
| 17 |
+
"inputs_yuv_fmt": null,
|
| 18 |
+
"dynamic_input": null,
|
| 19 |
+
"opset": 19,
|
| 20 |
+
"task": "sequence-classification",
|
| 21 |
+
"quantization": {
|
| 22 |
+
"do_quantization": false,
|
| 23 |
+
"dataset_name": null,
|
| 24 |
+
"dataset_subset": null,
|
| 25 |
+
"dataset_size": 128,
|
| 26 |
+
"dataset_split": null,
|
| 27 |
+
"dataset_columns": null,
|
| 28 |
+
"quantized_dtype": "w8a8",
|
| 29 |
+
"quantized_algorithm": "normal",
|
| 30 |
+
"quantized_method": "channel",
|
| 31 |
+
"quantized_hybrid_level": 0,
|
| 32 |
+
"quant_img_RGB2BGR": false,
|
| 33 |
+
"auto_hybrid_cos_thresh": 0.98,
|
| 34 |
+
"auto_hybrid_euc_thresh": null
|
| 35 |
+
},
|
| 36 |
+
"optimization": {
|
| 37 |
+
"optimization_level": 0,
|
| 38 |
+
"enable_flash_attention": true,
|
| 39 |
+
"remove_weight": false,
|
| 40 |
+
"compress_weight": false,
|
| 41 |
+
"remove_reshape": false,
|
| 42 |
+
"sparse_infer": false,
|
| 43 |
+
"model_pruning": false
|
| 44 |
+
}
|
| 45 |
+
},
|
| 46 |
+
"model_b4_s256.rknn": {
|
| 47 |
+
"rktransformers_version": "0.1.0",
|
| 48 |
+
"model_input_names": [
|
| 49 |
+
"input_ids",
|
| 50 |
+
"attention_mask",
|
| 51 |
+
"token_type_ids"
|
| 52 |
+
],
|
| 53 |
+
"batch_size": 4,
|
| 54 |
+
"max_seq_length": 256,
|
| 55 |
+
"float_dtype": "float16",
|
| 56 |
+
"target_platform": "rk3588",
|
| 57 |
+
"single_core_mode": false,
|
| 58 |
+
"mean_values": null,
|
| 59 |
+
"std_values": null,
|
| 60 |
+
"custom_string": null,
|
| 61 |
+
"inputs_yuv_fmt": null,
|
| 62 |
+
"dynamic_input": null,
|
| 63 |
+
"opset": 19,
|
| 64 |
+
"task": "sequence-classification",
|
| 65 |
+
"quantization": {
|
| 66 |
+
"do_quantization": false,
|
| 67 |
+
"dataset_name": null,
|
| 68 |
+
"dataset_subset": null,
|
| 69 |
+
"dataset_size": 128,
|
| 70 |
+
"dataset_split": null,
|
| 71 |
+
"dataset_columns": null,
|
| 72 |
+
"quantized_dtype": "w8a8",
|
| 73 |
+
"quantized_algorithm": "normal",
|
| 74 |
+
"quantized_method": "channel",
|
| 75 |
+
"quantized_hybrid_level": 0,
|
| 76 |
+
"quant_img_RGB2BGR": false,
|
| 77 |
+
"auto_hybrid_cos_thresh": 0.98,
|
| 78 |
+
"auto_hybrid_euc_thresh": null
|
| 79 |
+
},
|
| 80 |
+
"optimization": {
|
| 81 |
+
"optimization_level": 0,
|
| 82 |
+
"enable_flash_attention": true,
|
| 83 |
+
"remove_weight": false,
|
| 84 |
+
"compress_weight": false,
|
| 85 |
+
"remove_reshape": false,
|
| 86 |
+
"sparse_infer": false,
|
| 87 |
+
"model_pruning": false
|
| 88 |
+
}
|
| 89 |
+
},
|
| 90 |
+
"model.rknn": {
|
| 91 |
+
"rktransformers_version": "0.1.0",
|
| 92 |
+
"model_input_names": [
|
| 93 |
+
"input_ids",
|
| 94 |
+
"attention_mask",
|
| 95 |
+
"token_type_ids"
|
| 96 |
+
],
|
| 97 |
+
"batch_size": 1,
|
| 98 |
+
"max_seq_length": 512,
|
| 99 |
+
"float_dtype": "float16",
|
| 100 |
+
"target_platform": "rk3588",
|
| 101 |
+
"single_core_mode": false,
|
| 102 |
+
"mean_values": null,
|
| 103 |
+
"std_values": null,
|
| 104 |
+
"custom_string": null,
|
| 105 |
+
"inputs_yuv_fmt": null,
|
| 106 |
+
"dynamic_input": null,
|
| 107 |
+
"opset": 19,
|
| 108 |
+
"task": "sequence-classification",
|
| 109 |
+
"quantization": {
|
| 110 |
+
"do_quantization": false,
|
| 111 |
+
"dataset_name": null,
|
| 112 |
+
"dataset_subset": null,
|
| 113 |
+
"dataset_size": 128,
|
| 114 |
+
"dataset_split": null,
|
| 115 |
+
"dataset_columns": null,
|
| 116 |
+
"quantized_dtype": "w8a8",
|
| 117 |
+
"quantized_algorithm": "normal",
|
| 118 |
+
"quantized_method": "channel",
|
| 119 |
+
"quantized_hybrid_level": 0,
|
| 120 |
+
"quant_img_RGB2BGR": false,
|
| 121 |
+
"auto_hybrid_cos_thresh": 0.98,
|
| 122 |
+
"auto_hybrid_euc_thresh": null
|
| 123 |
+
},
|
| 124 |
+
"optimization": {
|
| 125 |
+
"optimization_level": 0,
|
| 126 |
+
"enable_flash_attention": true,
|
| 127 |
+
"remove_weight": false,
|
| 128 |
+
"compress_weight": false,
|
| 129 |
+
"remove_reshape": false,
|
| 130 |
+
"sparse_infer": false,
|
| 131 |
+
"model_pruning": false
|
| 132 |
+
}
|
| 133 |
+
},
|
| 134 |
+
"model_b4_s512.rknn": {
|
| 135 |
+
"rktransformers_version": "0.1.0",
|
| 136 |
+
"model_input_names": [
|
| 137 |
+
"input_ids",
|
| 138 |
+
"attention_mask",
|
| 139 |
+
"token_type_ids"
|
| 140 |
+
],
|
| 141 |
+
"batch_size": 4,
|
| 142 |
+
"max_seq_length": 512,
|
| 143 |
+
"float_dtype": "float16",
|
| 144 |
+
"target_platform": "rk3588",
|
| 145 |
+
"single_core_mode": false,
|
| 146 |
+
"mean_values": null,
|
| 147 |
+
"std_values": null,
|
| 148 |
+
"custom_string": null,
|
| 149 |
+
"inputs_yuv_fmt": null,
|
| 150 |
+
"dynamic_input": null,
|
| 151 |
+
"opset": 19,
|
| 152 |
+
"task": "sequence-classification",
|
| 153 |
+
"quantization": {
|
| 154 |
+
"do_quantization": false,
|
| 155 |
+
"dataset_name": null,
|
| 156 |
+
"dataset_subset": null,
|
| 157 |
+
"dataset_size": 128,
|
| 158 |
+
"dataset_split": null,
|
| 159 |
+
"dataset_columns": null,
|
| 160 |
+
"quantized_dtype": "w8a8",
|
| 161 |
+
"quantized_algorithm": "normal",
|
| 162 |
+
"quantized_method": "channel",
|
| 163 |
+
"quantized_hybrid_level": 0,
|
| 164 |
+
"quant_img_RGB2BGR": false,
|
| 165 |
+
"auto_hybrid_cos_thresh": 0.98,
|
| 166 |
+
"auto_hybrid_euc_thresh": null
|
| 167 |
+
},
|
| 168 |
+
"optimization": {
|
| 169 |
+
"optimization_level": 0,
|
| 170 |
+
"enable_flash_attention": true,
|
| 171 |
+
"remove_weight": false,
|
| 172 |
+
"compress_weight": false,
|
| 173 |
+
"remove_reshape": false,
|
| 174 |
+
"sparse_infer": false,
|
| 175 |
+
"model_pruning": false
|
| 176 |
+
}
|
| 177 |
+
},
|
| 178 |
+
"rknn/model_o1.rknn": {
|
| 179 |
+
"rktransformers_version": "0.1.0",
|
| 180 |
+
"model_input_names": [
|
| 181 |
+
"input_ids",
|
| 182 |
+
"attention_mask",
|
| 183 |
+
"token_type_ids"
|
| 184 |
+
],
|
| 185 |
+
"batch_size": 1,
|
| 186 |
+
"max_seq_length": 512,
|
| 187 |
+
"float_dtype": "float16",
|
| 188 |
+
"target_platform": "rk3588",
|
| 189 |
+
"single_core_mode": false,
|
| 190 |
+
"mean_values": null,
|
| 191 |
+
"std_values": null,
|
| 192 |
+
"custom_string": null,
|
| 193 |
+
"inputs_yuv_fmt": null,
|
| 194 |
+
"dynamic_input": null,
|
| 195 |
+
"opset": 19,
|
| 196 |
+
"task": "sequence-classification",
|
| 197 |
+
"quantization": {
|
| 198 |
+
"do_quantization": false,
|
| 199 |
+
"dataset_name": null,
|
| 200 |
+
"dataset_subset": null,
|
| 201 |
+
"dataset_size": 128,
|
| 202 |
+
"dataset_split": null,
|
| 203 |
+
"dataset_columns": null,
|
| 204 |
+
"quantized_dtype": "w8a8",
|
| 205 |
+
"quantized_algorithm": "normal",
|
| 206 |
+
"quantized_method": "channel",
|
| 207 |
+
"quantized_hybrid_level": 0,
|
| 208 |
+
"quant_img_RGB2BGR": false,
|
| 209 |
+
"auto_hybrid_cos_thresh": 0.98,
|
| 210 |
+
"auto_hybrid_euc_thresh": null
|
| 211 |
+
},
|
| 212 |
+
"optimization": {
|
| 213 |
+
"optimization_level": 1,
|
| 214 |
+
"enable_flash_attention": true,
|
| 215 |
+
"remove_weight": false,
|
| 216 |
+
"compress_weight": false,
|
| 217 |
+
"remove_reshape": false,
|
| 218 |
+
"sparse_infer": false,
|
| 219 |
+
"model_pruning": false
|
| 220 |
+
}
|
| 221 |
+
},
|
| 222 |
+
"rknn/model_o2.rknn": {
|
| 223 |
+
"rktransformers_version": "0.1.0",
|
| 224 |
+
"model_input_names": [
|
| 225 |
+
"input_ids",
|
| 226 |
+
"attention_mask",
|
| 227 |
+
"token_type_ids"
|
| 228 |
+
],
|
| 229 |
+
"batch_size": 1,
|
| 230 |
+
"max_seq_length": 512,
|
| 231 |
+
"float_dtype": "float16",
|
| 232 |
+
"target_platform": "rk3588",
|
| 233 |
+
"single_core_mode": false,
|
| 234 |
+
"mean_values": null,
|
| 235 |
+
"std_values": null,
|
| 236 |
+
"custom_string": null,
|
| 237 |
+
"inputs_yuv_fmt": null,
|
| 238 |
+
"dynamic_input": null,
|
| 239 |
+
"opset": 19,
|
| 240 |
+
"task": "sequence-classification",
|
| 241 |
+
"quantization": {
|
| 242 |
+
"do_quantization": false,
|
| 243 |
+
"dataset_name": null,
|
| 244 |
+
"dataset_subset": null,
|
| 245 |
+
"dataset_size": 128,
|
| 246 |
+
"dataset_split": null,
|
| 247 |
+
"dataset_columns": null,
|
| 248 |
+
"quantized_dtype": "w8a8",
|
| 249 |
+
"quantized_algorithm": "normal",
|
| 250 |
+
"quantized_method": "channel",
|
| 251 |
+
"quantized_hybrid_level": 0,
|
| 252 |
+
"quant_img_RGB2BGR": false,
|
| 253 |
+
"auto_hybrid_cos_thresh": 0.98,
|
| 254 |
+
"auto_hybrid_euc_thresh": null
|
| 255 |
+
},
|
| 256 |
+
"optimization": {
|
| 257 |
+
"optimization_level": 2,
|
| 258 |
+
"enable_flash_attention": true,
|
| 259 |
+
"remove_weight": false,
|
| 260 |
+
"compress_weight": false,
|
| 261 |
+
"remove_reshape": false,
|
| 262 |
+
"sparse_infer": false,
|
| 263 |
+
"model_pruning": false
|
| 264 |
+
}
|
| 265 |
+
},
|
| 266 |
+
"rknn/model_o3.rknn": {
|
| 267 |
+
"rktransformers_version": "0.1.0",
|
| 268 |
+
"model_input_names": [
|
| 269 |
+
"input_ids",
|
| 270 |
+
"attention_mask",
|
| 271 |
+
"token_type_ids"
|
| 272 |
+
],
|
| 273 |
+
"batch_size": 1,
|
| 274 |
+
"max_seq_length": 512,
|
| 275 |
+
"float_dtype": "float16",
|
| 276 |
+
"target_platform": "rk3588",
|
| 277 |
+
"single_core_mode": false,
|
| 278 |
+
"mean_values": null,
|
| 279 |
+
"std_values": null,
|
| 280 |
+
"custom_string": null,
|
| 281 |
+
"inputs_yuv_fmt": null,
|
| 282 |
+
"dynamic_input": null,
|
| 283 |
+
"opset": 19,
|
| 284 |
+
"task": "sequence-classification",
|
| 285 |
+
"quantization": {
|
| 286 |
+
"do_quantization": false,
|
| 287 |
+
"dataset_name": null,
|
| 288 |
+
"dataset_subset": null,
|
| 289 |
+
"dataset_size": 128,
|
| 290 |
+
"dataset_split": null,
|
| 291 |
+
"dataset_columns": null,
|
| 292 |
+
"quantized_dtype": "w8a8",
|
| 293 |
+
"quantized_algorithm": "normal",
|
| 294 |
+
"quantized_method": "channel",
|
| 295 |
+
"quantized_hybrid_level": 0,
|
| 296 |
+
"quant_img_RGB2BGR": false,
|
| 297 |
+
"auto_hybrid_cos_thresh": 0.98,
|
| 298 |
+
"auto_hybrid_euc_thresh": null
|
| 299 |
+
},
|
| 300 |
+
"optimization": {
|
| 301 |
+
"optimization_level": 3,
|
| 302 |
+
"enable_flash_attention": true,
|
| 303 |
+
"remove_weight": false,
|
| 304 |
+
"compress_weight": false,
|
| 305 |
+
"remove_reshape": false,
|
| 306 |
+
"sparse_infer": false,
|
| 307 |
+
"model_pruning": false
|
| 308 |
+
}
|
| 309 |
+
},
|
| 310 |
+
"rknn/model_w8a8.rknn": {
|
| 311 |
+
"rktransformers_version": "0.1.0",
|
| 312 |
+
"model_input_names": [
|
| 313 |
+
"input_ids",
|
| 314 |
+
"attention_mask",
|
| 315 |
+
"token_type_ids"
|
| 316 |
+
],
|
| 317 |
+
"batch_size": 1,
|
| 318 |
+
"max_seq_length": 512,
|
| 319 |
+
"float_dtype": "float16",
|
| 320 |
+
"target_platform": "rk3588",
|
| 321 |
+
"single_core_mode": false,
|
| 322 |
+
"mean_values": null,
|
| 323 |
+
"std_values": null,
|
| 324 |
+
"custom_string": null,
|
| 325 |
+
"inputs_yuv_fmt": null,
|
| 326 |
+
"dynamic_input": null,
|
| 327 |
+
"opset": 19,
|
| 328 |
+
"task": "sequence-classification",
|
| 329 |
+
"quantization": {
|
| 330 |
+
"do_quantization": true,
|
| 331 |
+
"dataset_name": "sentence-transformers/natural-questions",
|
| 332 |
+
"dataset_subset": null,
|
| 333 |
+
"dataset_size": 1024,
|
| 334 |
+
"dataset_split": [
|
| 335 |
+
"train"
|
| 336 |
+
],
|
| 337 |
+
"dataset_columns": [
|
| 338 |
+
"answer"
|
| 339 |
+
],
|
| 340 |
+
"quantized_dtype": "w8a8",
|
| 341 |
+
"quantized_algorithm": "normal",
|
| 342 |
+
"quantized_method": "channel",
|
| 343 |
+
"quantized_hybrid_level": 0,
|
| 344 |
+
"quant_img_RGB2BGR": false,
|
| 345 |
+
"auto_hybrid_cos_thresh": 0.98,
|
| 346 |
+
"auto_hybrid_euc_thresh": null
|
| 347 |
+
},
|
| 348 |
+
"optimization": {
|
| 349 |
+
"optimization_level": 0,
|
| 350 |
+
"enable_flash_attention": true,
|
| 351 |
+
"remove_weight": false,
|
| 352 |
+
"compress_weight": false,
|
| 353 |
+
"remove_reshape": false,
|
| 354 |
+
"sparse_infer": false,
|
| 355 |
+
"model_pruning": false
|
| 356 |
+
}
|
| 357 |
+
}
|
| 358 |
+
}
|
rknn/model_o1.rknn
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6d90dcbea5b184df2830e4a9a84c0135d335df1b43b4c8b2e36ba26d4f654016
|
| 3 |
+
size 72099070
|
rknn/model_o2.rknn
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b0813cfb3c5bdbab369477ee781addd58a069246ac34b71b6e8c38255070aeb
|
| 3 |
+
size 72099070
|
rknn/model_o3.rknn
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cd402bb19ef3b0a952eafa820aa6b2c9c369668256334b6ec314e7e7436c86ae
|
| 3 |
+
size 72099070
|
rknn/model_w8a8.rknn
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5f39839582190c0b2e6f0c260994f946c8ea973ccc456635111e721f1e6e6843
|
| 3 |
+
size 38286411
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|