Upload ONNX optimized RoBERTa model with quantization
Browse files- README.md +126 -0
- config.json +35 -0
- merges.txt +0 -0
- model.onnx +3 -0
- model_quantized.onnx +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.json +0 -0
README.md
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: multilingual
|
| 3 |
+
license: mit
|
| 4 |
+
tags:
|
| 5 |
+
- zero-shot-classification
|
| 6 |
+
- nli
|
| 7 |
+
- onnx
|
| 8 |
+
- optimized
|
| 9 |
+
- roberta
|
| 10 |
+
base_model: MoritzLaurer/roberta-base-zeroshot-v2.0-c
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# RoBERTa Base Zero-Shot Classification - ONNX
|
| 14 |
+
|
| 15 |
+
This is an ONNX-optimized version of [`MoritzLaurer/roberta-base-zeroshot-v2.0-c`](https://huggingface.co/MoritzLaurer/roberta-base-zeroshot-v2.0-c) for efficient inference.
|
| 16 |
+
|
| 17 |
+
## Model Description
|
| 18 |
+
|
| 19 |
+
This repository contains:
|
| 20 |
+
- **model.onnx**: Regular ONNX exported model
|
| 21 |
+
- **model_quantized.onnx**: INT8 dynamically quantized model for faster inference with minimal accuracy loss
|
| 22 |
+
|
| 23 |
+
The model is optimized for zero-shot classification tasks across multiple languages.
|
| 24 |
+
|
| 25 |
+
## Usage
|
| 26 |
+
|
| 27 |
+
### Zero-Shot Classification Pipeline (Recommended)
|
| 28 |
+
|
| 29 |
+
```python
|
| 30 |
+
from transformers import pipeline, AutoTokenizer
|
| 31 |
+
from optimum.onnxruntime import ORTModelForSequenceClassification
|
| 32 |
+
|
| 33 |
+
# Load the quantized model
|
| 34 |
+
model = ORTModelForSequenceClassification.from_pretrained(
|
| 35 |
+
"richardr1126/roberta-base-zeroshot-v2.0-c-ONNX",
|
| 36 |
+
file_name="model_quantized.onnx"
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 40 |
+
"richardr1126/roberta-base-zeroshot-v2.0-c-ONNX"
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# Patch the model's forward method to handle token_type_ids
|
| 44 |
+
original_forward = model.forward
|
| 45 |
+
def patched_forward(input_ids=None, attention_mask=None, token_type_ids=None, **kwargs):
|
| 46 |
+
return original_forward(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
|
| 47 |
+
model.forward = patched_forward
|
| 48 |
+
|
| 49 |
+
# Create zero-shot classification pipeline
|
| 50 |
+
classifier = pipeline(
|
| 51 |
+
"zero-shot-classification",
|
| 52 |
+
model=model,
|
| 53 |
+
tokenizer=tokenizer,
|
| 54 |
+
device=-1 # CPU inference
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# Define your labels
|
| 58 |
+
labels = ["politics", "technology", "sports", "entertainment", "business"]
|
| 59 |
+
|
| 60 |
+
# Classify text
|
| 61 |
+
text = "Apple announced their new AI chip with impressive performance gains."
|
| 62 |
+
result = classifier(
|
| 63 |
+
text,
|
| 64 |
+
candidate_labels=labels,
|
| 65 |
+
hypothesis_template="This text is about {{}}",
|
| 66 |
+
multi_label=True # Enable multi-label classification
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
print(f"Text: {{text}}")
|
| 70 |
+
for label, score in zip(result['labels'], result['scores']):
|
| 71 |
+
print(f" {{label}}: {{score:.2%}}")
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
### Using Regular ONNX Model
|
| 75 |
+
|
| 76 |
+
For the non-quantized model (larger but potentially slightly more accurate):
|
| 77 |
+
|
| 78 |
+
```python
|
| 79 |
+
model = ORTModelForSequenceClassification.from_pretrained(
|
| 80 |
+
"richardr1126/roberta-base-zeroshot-v2.0-c-ONNX",
|
| 81 |
+
file_name="model.onnx"
|
| 82 |
+
)
|
| 83 |
+
# ... rest of the code is the same
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
## Performance
|
| 87 |
+
|
| 88 |
+
The quantized model provides:
|
| 89 |
+
- **Faster inference**: ~2-3x speedup compared to PyTorch
|
| 90 |
+
- **Smaller size**: Reduced model size due to INT8 quantization
|
| 91 |
+
- **Maintained accuracy**: Minimal accuracy loss (<1%) compared to the original model
|
| 92 |
+
|
| 93 |
+
## Original Model
|
| 94 |
+
|
| 95 |
+
This is an optimized version of the original model:
|
| 96 |
+
- **Base Model**: [MoritzLaurer/roberta-base-zeroshot-v2.0-c](https://huggingface.co/MoritzLaurer/roberta-base-zeroshot-v2.0-c)
|
| 97 |
+
- **Architecture**: RoBERTa-base
|
| 98 |
+
- **Task**: Zero-shot classification / NLI
|
| 99 |
+
|
| 100 |
+
## Optimization Details
|
| 101 |
+
|
| 102 |
+
- **Export**: Converted from PyTorch to ONNX format
|
| 103 |
+
- **Quantization**: Dynamic quantization with INT8 weights
|
| 104 |
+
- **Framework**: ONNX Runtime with Optimum
|
| 105 |
+
|
| 106 |
+
## License
|
| 107 |
+
|
| 108 |
+
Same as the base model - MIT License
|
| 109 |
+
|
| 110 |
+
## Citation
|
| 111 |
+
|
| 112 |
+
If you use this model, please cite the original model:
|
| 113 |
+
|
| 114 |
+
```bibtex
|
| 115 |
+
@misc{laurer2022roberta,
|
| 116 |
+
author = {Laurer, Moritz and Atteveldt, Wouter van and Casas, Andreu Salleras and Welbers, Kasper},
|
| 117 |
+
title = {RoBERTa Base Zero-Shot Classification},
|
| 118 |
+
year = {2022},
|
| 119 |
+
publisher = {Hugging Face},
|
| 120 |
+
url = {https://huggingface.co/MoritzLaurer/roberta-base-zeroshot-v2.0-c}
|
| 121 |
+
}
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
## Acknowledgments
|
| 125 |
+
|
| 126 |
+
This ONNX optimization was created for efficient deployment in production environments. Special thanks to the original model authors and the Hugging Face Optimum team.
|
config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"RobertaForSequenceClassification"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"dtype": "float32",
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 768,
|
| 13 |
+
"id2label": {
|
| 14 |
+
"0": "entailment",
|
| 15 |
+
"1": "not_entailment"
|
| 16 |
+
},
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 3072,
|
| 19 |
+
"label2id": {
|
| 20 |
+
"entailment": 0,
|
| 21 |
+
"not_entailment": 1
|
| 22 |
+
},
|
| 23 |
+
"layer_norm_eps": 1e-05,
|
| 24 |
+
"max_position_embeddings": 514,
|
| 25 |
+
"model_type": "roberta",
|
| 26 |
+
"num_attention_heads": 12,
|
| 27 |
+
"num_hidden_layers": 12,
|
| 28 |
+
"pad_token_id": 1,
|
| 29 |
+
"position_embedding_type": "absolute",
|
| 30 |
+
"problem_type": "single_label_classification",
|
| 31 |
+
"transformers_version": "4.57.0",
|
| 32 |
+
"type_vocab_size": 1,
|
| 33 |
+
"use_cache": true,
|
| 34 |
+
"vocab_size": 50265
|
| 35 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1c86404e38b23c4ed1e79036708604db181834b165e5570ca572cf8dc50ffe44
|
| 3 |
+
size 498861240
|
model_quantized.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9d7e55d54a3634a6768742ed543f8a7ebdbbfbc8ef658ce65f5b306503331471
|
| 3 |
+
size 125494716
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": true,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": true,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": true,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": true,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": true,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": "<s>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": true,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"1": {
|
| 13 |
+
"content": "<pad>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": true,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"2": {
|
| 21 |
+
"content": "</s>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": true,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"content": "<unk>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": true,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"50264": {
|
| 37 |
+
"content": "<mask>",
|
| 38 |
+
"lstrip": true,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
}
|
| 44 |
+
},
|
| 45 |
+
"bos_token": "<s>",
|
| 46 |
+
"clean_up_tokenization_spaces": true,
|
| 47 |
+
"cls_token": "<s>",
|
| 48 |
+
"eos_token": "</s>",
|
| 49 |
+
"errors": "replace",
|
| 50 |
+
"extra_special_tokens": {},
|
| 51 |
+
"mask_token": "<mask>",
|
| 52 |
+
"model_max_length": 512,
|
| 53 |
+
"pad_token": "<pad>",
|
| 54 |
+
"sep_token": "</s>",
|
| 55 |
+
"tokenizer_class": "RobertaTokenizer",
|
| 56 |
+
"trim_offsets": true,
|
| 57 |
+
"unk_token": "<unk>"
|
| 58 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|