- Fairness in Streaming Submodular Maximization over a Matroid Constraint Streaming submodular maximization is a natural model for the task of selecting a representative subset from a large-scale dataset. If datapoints have sensitive attributes such as gender or race, it becomes important to enforce fairness to avoid bias and discrimination. This has spurred significant interest in developing fair machine learning algorithms. Recently, such algorithms have been developed for monotone submodular maximization under a cardinality constraint. In this paper, we study the natural generalization of this problem to a matroid constraint. We give streaming algorithms as well as impossibility results that provide trade-offs between efficiency, quality and fairness. We validate our findings empirically on a range of well-known real-world applications: exemplar-based clustering, movie recommendation, and maximum coverage in social networks. 5 authors · May 24, 2023
- Streaming Submodular Maximization with Differential Privacy In this work, we study the problem of privately maximizing a submodular function in the streaming setting. Extensive work has been done on privately maximizing submodular functions in the general case when the function depends upon the private data of individuals. However, when the size of the data stream drawn from the domain of the objective function is large or arrives very fast, one must privately optimize the objective within the constraints of the streaming setting. We establish fundamental differentially private baselines for this problem and then derive better trade-offs between privacy and utility for the special case of decomposable submodular functions. A submodular function is decomposable when it can be written as a sum of submodular functions; this structure arises naturally when each summand function models the utility of an individual and the goal is to study the total utility of the whole population as in the well-known Combinatorial Public Projects Problem. Finally, we complement our theoretical analysis with experimental corroboration. 3 authors · Oct 25, 2022
- Fully Dynamic Submodular Maximization over Matroids Maximizing monotone submodular functions under a matroid constraint is a classic algorithmic problem with multiple applications in data mining and machine learning. We study this classic problem in the fully dynamic setting, where elements can be both inserted and deleted in real-time. Our main result is a randomized algorithm that maintains an efficient data structure with an O(k^2) amortized update time (in the number of additions and deletions) and yields a 4-approximate solution, where k is the rank of the matroid. 5 authors · May 31, 2023
- Bandit Multi-linear DR-Submodular Maximization and Its Applications on Adversarial Submodular Bandits We investigate the online bandit learning of the monotone multi-linear DR-submodular functions, designing the algorithm BanditMLSM that attains O(T^{2/3}log T) of (1-1/e)-regret. Then we reduce submodular bandit with partition matroid constraint and bandit sequential monotone maximization to the online bandit learning of the monotone multi-linear DR-submodular functions, attaining O(T^{2/3}log T) of (1-1/e)-regret in both problems, which improve the existing results. To the best of our knowledge, we are the first to give a sublinear regret algorithm for the submodular bandit with partition matroid constraint. A special case of this problem is studied by Streeter et al.(2009). They prove a O(T^{4/5}) (1-1/e)-regret upper bound. For the bandit sequential submodular maximization, the existing work proves an O(T^{2/3}) regret with a suboptimal 1/2 approximation ratio (Niazadeh et al. 2021). 5 authors · May 21, 2023
- Communication-Efficient Decentralized Online Continuous DR-Submodular Maximization Maximizing a monotone submodular function is a fundamental task in machine learning, economics, and statistics. In this paper, we present two communication-efficient decentralized online algorithms for the monotone continuous DR-submodular maximization problem, both of which reduce the number of per-function gradient evaluations and per-round communication complexity from T^{3/2} to 1. The first one, One-shot Decentralized Meta-Frank-Wolfe (Mono-DMFW), achieves a (1-1/e)-regret bound of O(T^{4/5}). As far as we know, this is the first one-shot and projection-free decentralized online algorithm for monotone continuous DR-submodular maximization. Next, inspired by the non-oblivious boosting function zhang2022boosting, we propose the Decentralized Online Boosting Gradient Ascent (DOBGA) algorithm, which attains a (1-1/e)-regret of O(T). To the best of our knowledge, this is the first result to obtain the optimal O(T) against a (1-1/e)-approximation with only one gradient inquiry for each local objective function per step. Finally, various experimental results confirm the effectiveness of the proposed methods. 6 authors · Aug 18, 2022
- Dynamic Constrained Submodular Optimization with Polylogarithmic Update Time Maximizing a monotone submodular function under cardinality constraint k is a core problem in machine learning and database with many basic applications, including video and data summarization, recommendation systems, feature extraction, exemplar clustering, and coverage problems. We study this classic problem in the fully dynamic model where a stream of insertions and deletions of elements of an underlying ground set is given and the goal is to maintain an approximate solution using a fast update time. A recent paper at NeurIPS'20 by Lattanzi, Mitrovic, Norouzi{-}Fard, Tarnawski, Zadimoghaddam claims to obtain a dynamic algorithm for this problem with a 1{2} -epsilon approximation ratio and a query complexity bounded by poly(log(n),log(k),epsilon^{-1}). However, as we explain in this paper, the analysis has some important gaps. Having a dynamic algorithm for the problem with polylogarithmic update time is even more important in light of a recent result by Chen and Peng at STOC'22 who show a matching lower bound for the problem -- any randomized algorithm with a 1{2}+epsilon approximation ratio must have an amortized query complexity that is polynomial in n. In this paper, we develop a simpler algorithm for the problem that maintains a (1{2}-epsilon)-approximate solution for submodular maximization under cardinality constraint k using a polylogarithmic amortized update time. 6 authors · May 24, 2023
- Exploiting Structure of Uncertainty for Efficient Matroid Semi-Bandits We improve the efficiency of algorithms for stochastic combinatorial semi-bandits. In most interesting problems, state-of-the-art algorithms take advantage of structural properties of rewards, such as independence. However, while being optimal in terms of asymptotic regret, these algorithms are inefficient. In our paper, we first reduce their implementation to a specific submodular maximization. Then, in case of matroid constraints, we design adapted approximation routines, thereby providing the first efficient algorithms that rely on reward structure to improve regret bound. In particular, we improve the state-of-the-art efficient gap-free regret bound by a factor m/log m, where m is the maximum action size. Finally, we show how our improvement translates to more general budgeted combinatorial semi-bandits. 3 authors · Feb 11, 2019
- A Framework for Adapting Offline Algorithms to Solve Combinatorial Multi-Armed Bandit Problems with Bandit Feedback We investigate the problem of stochastic, combinatorial multi-armed bandits where the learner only has access to bandit feedback and the reward function can be non-linear. We provide a general framework for adapting discrete offline approximation algorithms into sublinear alpha-regret methods that only require bandit feedback, achieving Oleft(T^2{3}log(T)^1{3}right) expected cumulative alpha-regret dependence on the horizon T. The framework only requires the offline algorithms to be robust to small errors in function evaluation. The adaptation procedure does not even require explicit knowledge of the offline approximation algorithm -- the offline algorithm can be used as black box subroutine. To demonstrate the utility of the proposed framework, the proposed framework is applied to multiple problems in submodular maximization, adapting approximation algorithms for cardinality and for knapsack constraints. The new CMAB algorithms for knapsack constraints outperform a full-bandit method developed for the adversarial setting in experiments with real-world data. 5 authors · Jan 30, 2023
- Submodular Order Functions and Assortment Optimization We define a new class of set functions that in addition to being monotone and subadditive, also admit a very limited form of submodularity defined over a permutation of the ground set. We refer to this permutation as a submodular order. This class of functions includes monotone submodular functions as a sub-family. To understand the importance of this structure in optimization problems we consider the problem of maximizing function value under various types of constraints. To demonstrate the modeling power of submodular order functions we show applications in two different settings. First, we apply our results to the extensively studied problem of assortment optimization. While the objectives in assortment optimization are known to be non-submodular (and non-monotone) even for simple choice models, we show that they are compatible with the notion of submodular order. Consequently, we obtain new and in some cases the first constant factor guarantee for constrained assortment optimization in fundamental choice models. As a second application of submodular order functions, we show an intriguing connection to the maximization of monotone submodular functions in the streaming model. We recover some best known guarantees for this problem as a corollary of our results. 1 authors · Jul 6, 2021
- MILO: Model-Agnostic Subset Selection Framework for Efficient Model Training and Tuning Training deep networks and tuning hyperparameters on large datasets is computationally intensive. One of the primary research directions for efficient training is to reduce training costs by selecting well-generalizable subsets of training data. Compared to simple adaptive random subset selection baselines, existing intelligent subset selection approaches are not competitive due to the time-consuming subset selection step, which involves computing model-dependent gradients and feature embeddings and applies greedy maximization of submodular objectives. Our key insight is that removing the reliance on downstream model parameters enables subset selection as a pre-processing step and enables one to train multiple models at no additional cost. In this work, we propose MILO, a model-agnostic subset selection framework that decouples the subset selection from model training while enabling superior model convergence and performance by using an easy-to-hard curriculum. Our empirical results indicate that MILO can train models 3times - 10 times faster and tune hyperparameters 20times - 75 times faster than full-dataset training or tuning without compromising performance. 6 authors · Jan 30, 2023
- Submodular Reinforcement Learning In reinforcement learning (RL), rewards of states are typically considered additive, and following the Markov assumption, they are independent of states visited previously. In many important applications, such as coverage control, experiment design and informative path planning, rewards naturally have diminishing returns, i.e., their value decreases in light of similar states visited previously. To tackle this, we propose submodular RL (SubRL), a paradigm which seeks to optimize more general, non-additive (and history-dependent) rewards modelled via submodular set functions which capture diminishing returns. Unfortunately, in general, even in tabular settings, we show that the resulting optimization problem is hard to approximate. On the other hand, motivated by the success of greedy algorithms in classical submodular optimization, we propose SubPO, a simple policy gradient-based algorithm for SubRL that handles non-additive rewards by greedily maximizing marginal gains. Indeed, under some assumptions on the underlying Markov Decision Process (MDP), SubPO recovers optimal constant factor approximations of submodular bandits. Moreover, we derive a natural policy gradient approach for locally optimizing SubRL instances even in large state- and action- spaces. We showcase the versatility of our approach by applying SubPO to several applications, such as biodiversity monitoring, Bayesian experiment design, informative path planning, and coverage maximization. Our results demonstrate sample efficiency, as well as scalability to high-dimensional state-action spaces. 4 authors · Jul 25, 2023
- CURLS: Causal Rule Learning for Subgroups with Significant Treatment Effect In causal inference, estimating heterogeneous treatment effects (HTE) is critical for identifying how different subgroups respond to interventions, with broad applications in fields such as precision medicine and personalized advertising. Although HTE estimation methods aim to improve accuracy, how to provide explicit subgroup descriptions remains unclear, hindering data interpretation and strategic intervention management. In this paper, we propose CURLS, a novel rule learning method leveraging HTE, which can effectively describe subgroups with significant treatment effects. Specifically, we frame causal rule learning as a discrete optimization problem, finely balancing treatment effect with variance and considering the rule interpretability. We design an iterative procedure based on the minorize-maximization algorithm and solve a submodular lower bound as an approximation for the original. Quantitative experiments and qualitative case studies verify that compared with state-of-the-art methods, CURLS can find subgroups where the estimated and true effects are 16.1% and 13.8% higher and the variance is 12.0% smaller, while maintaining similar or better estimation accuracy and rule interpretability. Code is available at https://osf.io/zwp2k/. 6 authors · Jul 1, 2024
- Difference of Submodular Minimization via DC Programming Minimizing the difference of two submodular (DS) functions is a problem that naturally occurs in various machine learning problems. Although it is well known that a DS problem can be equivalently formulated as the minimization of the difference of two convex (DC) functions, existing algorithms do not fully exploit this connection. A classical algorithm for DC problems is called the DC algorithm (DCA). We introduce variants of DCA and its complete form (CDCA) that we apply to the DC program corresponding to DS minimization. We extend existing convergence properties of DCA, and connect them to convergence properties on the DS problem. Our results on DCA match the theoretical guarantees satisfied by existing DS algorithms, while providing a more complete characterization of convergence properties. In the case of CDCA, we obtain a stronger local minimality guarantee. Our numerical results show that our proposed algorithms outperform existing baselines on two applications: speech corpus selection and feature selection. 3 authors · May 18, 2023