Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeHUGSIM: A Real-Time, Photo-Realistic and Closed-Loop Simulator for Autonomous Driving
In the past few decades, autonomous driving algorithms have made significant progress in perception, planning, and control. However, evaluating individual components does not fully reflect the performance of entire systems, highlighting the need for more holistic assessment methods. This motivates the development of HUGSIM, a closed-loop, photo-realistic, and real-time simulator for evaluating autonomous driving algorithms. We achieve this by lifting captured 2D RGB images into the 3D space via 3D Gaussian Splatting, improving the rendering quality for closed-loop scenarios, and building the closed-loop environment. In terms of rendering, We tackle challenges of novel view synthesis in closed-loop scenarios, including viewpoint extrapolation and 360-degree vehicle rendering. Beyond novel view synthesis, HUGSIM further enables the full closed simulation loop, dynamically updating the ego and actor states and observations based on control commands. Moreover, HUGSIM offers a comprehensive benchmark across more than 70 sequences from KITTI-360, Waymo, nuScenes, and PandaSet, along with over 400 varying scenarios, providing a fair and realistic evaluation platform for existing autonomous driving algorithms. HUGSIM not only serves as an intuitive evaluation benchmark but also unlocks the potential for fine-tuning autonomous driving algorithms in a photorealistic closed-loop setting.
ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics
Physical simulators have been widely used in robot planning and control. Among them, differentiable simulators are particularly favored, as they can be incorporated into gradient-based optimization algorithms that are efficient in solving inverse problems such as optimal control and motion planning. Simulating deformable objects is, however, more challenging compared to rigid body dynamics. The underlying physical laws of deformable objects are more complex, and the resulting systems have orders of magnitude more degrees of freedom and therefore they are significantly more computationally expensive to simulate. Computing gradients with respect to physical design or controller parameters is typically even more computationally challenging. In this paper, we propose a real-time, differentiable hybrid Lagrangian-Eulerian physical simulator for deformable objects, ChainQueen, based on the Moving Least Squares Material Point Method (MLS-MPM). MLS-MPM can simulate deformable objects including contact and can be seamlessly incorporated into inference, control and co-design systems. We demonstrate that our simulator achieves high precision in both forward simulation and backward gradient computation. We have successfully employed it in a diverse set of control tasks for soft robots, including problems with nearly 3,000 decision variables.
Real-Time Execution of Action Chunking Flow Policies
Modern AI systems, especially those interacting with the physical world, increasingly require real-time performance. However, the high latency of state-of-the-art generalist models, including recent vision-language action models (VLAs), poses a significant challenge. While action chunking has enabled temporal consistency in high-frequency control tasks, it does not fully address the latency problem, leading to pauses or out-of-distribution jerky movements at chunk boundaries. This paper presents a novel inference-time algorithm that enables smooth asynchronous execution of action chunking policies. Our method, real-time chunking (RTC), is applicable to any diffusion- or flow-based VLA out of the box with no re-training. It generates the next action chunk while executing the current one, "freezing" actions guaranteed to execute and "inpainting" the rest. To test RTC, we introduce a new benchmark of 12 highly dynamic tasks in the Kinetix simulator, as well as evaluate 6 challenging real-world bimanual manipulation tasks. Results demonstrate that RTC is fast, performant, and uniquely robust to inference delay, significantly improving task throughput and enabling high success rates in precise tasks x2013 such as lighting a match x2013 even in the presence of significant latency. See https://pi.website/research/real_time_chunking for videos.
Select2Drive: Pragmatic Communications for Real-Time Collaborative Autonomous Driving
Vehicle-to-Everything communications-assisted Autonomous Driving (V2X-AD) has witnessed remarkable advancements in recent years, with pragmatic communications (PragComm) emerging as a promising paradigm for real-time collaboration among vehicles and other agents.Simultaneously, extensive research has explored the interplay between collaborative perception and decision-making in end-to-end driving frameworks.In this work, we revisit the collaborative driving problem and propose the Select2Drive framework to optimize the utilization of limited computational and communication resources.Particularly, to mitigate cumulative latency in perception and decision-making, Select2Drive introduces Distributed Predictive Perception (DPP) by formulating an active prediction paradigm and simplifies high-dimensional semantic feature prediction into computation cost-efficient, motion-aware reconstruction. Given the "less is more" principle that a broadened perceptual horizon possibly confuses the decision module rather than contributing to it, Select2Drive utilizes Area-of-Importance-based PragComm (APC) to prioritize the communications of critical regions, thus boosting both communication efficiency and decision-making efficacy. Empirical evaluations on the V2Xverse dataset and CARLA driving simulator demonstrate that Select2Drive achieves a 11.31% (resp. 7.69%) improvement in offline perception tasks under limited bandwidth (resp. pose error conditions). Moreover, it delivers at most 14.68% and 31.76% enhancement in closed-loop driving scores and route completion rates, particularly in scenarios characterized by dense traffic and high-speed dynamics.
Video2Game: Real-time, Interactive, Realistic and Browser-Compatible Environment from a Single Video
Creating high-quality and interactive virtual environments, such as games and simulators, often involves complex and costly manual modeling processes. In this paper, we present Video2Game, a novel approach that automatically converts videos of real-world scenes into realistic and interactive game environments. At the heart of our system are three core components:(i) a neural radiance fields (NeRF) module that effectively captures the geometry and visual appearance of the scene; (ii) a mesh module that distills the knowledge from NeRF for faster rendering; and (iii) a physics module that models the interactions and physical dynamics among the objects. By following the carefully designed pipeline, one can construct an interactable and actionable digital replica of the real world. We benchmark our system on both indoor and large-scale outdoor scenes. We show that we can not only produce highly-realistic renderings in real-time, but also build interactive games on top.
VECTOR: Velocity-Enhanced GRU Neural Network for Real-Time 3D UAV Trajectory Prediction
This paper tackles the challenge of real-time 3D trajectory prediction for UAVs, which is critical for applications such as aerial surveillance and defense. Existing prediction models that rely primarily on position data struggle with accuracy, especially when UAV movements fall outside the position domain used in training. Our research identifies a gap in utilizing velocity estimates, first-order dynamics, to better capture the dynamics and enhance prediction accuracy and generalizability in any position domain. To bridge this gap, we propose a new trajectory prediction method using Gated Recurrent Units (GRUs) within sequence-based neural networks. Unlike traditional methods that rely on RNNs or transformers, this approach forecasts future velocities and positions based on historical velocity data instead of positions. This is designed to enhance prediction accuracy and scalability, overcoming challenges faced by conventional models in handling complex UAV dynamics. The methodology employs both synthetic and real-world 3D UAV trajectory data, capturing a wide range of flight patterns, speeds, and agility. Synthetic data is generated using the Gazebo simulator and PX4 Autopilot, while real-world data comes from the UZH-FPV and Mid-Air drone racing datasets. The GRU-based models significantly outperform state-of-the-art RNN approaches, with a mean square error (MSE) as low as 2 x 10^-8. Overall, our findings confirm the effectiveness of incorporating velocity data in improving the accuracy of UAV trajectory predictions across both synthetic and real-world scenarios, in and out of position data distributions. Finally, we open-source our 5000 trajectories dataset and a ROS 2 package to facilitate the integration with existing ROS-based UAV systems.
The Matrix: Infinite-Horizon World Generation with Real-Time Moving Control
We present The Matrix, the first foundational realistic world simulator capable of generating continuous 720p high-fidelity real-scene video streams with real-time, responsive control in both first- and third-person perspectives, enabling immersive exploration of richly dynamic environments. Trained on limited supervised data from AAA games like Forza Horizon 5 and Cyberpunk 2077, complemented by large-scale unsupervised footage from real-world settings like Tokyo streets, The Matrix allows users to traverse diverse terrains -- deserts, grasslands, water bodies, and urban landscapes -- in continuous, uncut hour-long sequences. Operating at 16 FPS, the system supports real-time interactivity and demonstrates zero-shot generalization, translating virtual game environments to real-world contexts where collecting continuous movement data is often infeasible. For example, The Matrix can simulate a BMW X3 driving through an office setting--an environment present in neither gaming data nor real-world sources. This approach showcases the potential of AAA game data to advance robust world models, bridging the gap between simulations and real-world applications in scenarios with limited data.
PyTorchFire: A GPU-Accelerated Wildfire Simulator with Differentiable Cellular Automata
Accurate and rapid prediction of wildfire trends is crucial for effective management and mitigation. However, the stochastic nature of fire propagation poses significant challenges in developing reliable simulators. In this paper, we introduce PyTorchFire, an open-access, PyTorch-based software that leverages GPU acceleration. With our redesigned differentiable wildfire Cellular Automata (CA) model, we achieve millisecond-level computational efficiency, significantly outperforming traditional CPU-based wildfire simulators on real-world-scale fires at high resolution. Real-time parameter calibration is made possible through gradient descent on our model, aligning simulations closely with observed wildfire behavior both temporally and spatially, thereby enhancing the realism of the simulations. Our PyTorchFire simulator, combined with real-world environmental data, demonstrates superior generalizability compared to supervised learning surrogate models. Its ability to predict and calibrate wildfire behavior in real-time ensures accuracy, stability, and efficiency. PyTorchFire has the potential to revolutionize wildfire simulation, serving as a powerful tool for wildfire prediction and management.
CARLA2Real: a tool for reducing the sim2real gap in CARLA simulator
Simulators are indispensable for research in autonomous systems such as self-driving cars, autonomous robots and drones. Despite significant progress in various simulation aspects, such as graphical realism, an evident gap persists between the virtual and real-world environments. Since the ultimate goal is to deploy the autonomous systems in the real world, closing the sim2real gap is of utmost importance. In this paper, we employ a state-of-the-art approach to enhance the photorealism of simulated data, aligning them with the visual characteristics of real-world datasets. Based on this, we developed CARLA2Real, an easy-to-use, publicly available tool (plug-in) for the widely used and open-source CARLA simulator. This tool enhances the output of CARLA in near real-time, achieving a frame rate of 13 FPS, translating it to the visual style and realism of real-world datasets such as Cityscapes, KITTI, and Mapillary Vistas. By employing the proposed tool, we generated synthetic datasets from both the simulator and the enhancement model outputs, including their corresponding ground truth annotations for tasks related to autonomous driving. Then, we performed a number of experiments to evaluate the impact of the proposed approach on feature extraction and semantic segmentation methods when trained on the enhanced synthetic data. The results demonstrate that the sim2real gap is significant and can indeed be reduced by the introduced approach.
INSIGHT: Universal Neural Simulator for Analog Circuits Harnessing Autoregressive Transformers
Analog front-end design heavily relies on specialized human expertise and costly trial-and-error simulations, which motivated many prior works on analog design automation. However, efficient and effective exploration of the vast and complex design space remains constrained by the time-consuming nature of SPICE simulations, making effective design automation a challenging endeavor. In this paper, we introduce INSIGHT, a GPU-powered, technology-agnostic, effective universal neural simulator in the analog front-end design automation loop. INSIGHT accurately predicts the performance metrics of analog circuits across various technologies with just a few microseconds of inference time. Notably, its autoregressive capabilities enable INSIGHT to accurately predict simulation-costly critical transient specifications leveraging less expensive performance metric information. The low cost and high fidelity feature make INSIGHT a good substitute for standard simulators in analog front-end optimization frameworks. INSIGHT is compatible with any optimization framework, facilitating enhanced design space exploration for sample efficiency through sophisticated offline learning and adaptation techniques. Our experiments demonstrate that INSIGHT-M, a model-based batch reinforcement learning sizing framework with INSIGHT as the accurate surrogate, only requires < 20 real-time simulations with 100-1000x lower simulation costs and significant speedup over existing sizing methods.
A priori compression of convolutional neural networks for wave simulators
Convolutional neural networks are now seeing widespread use in a variety of fields, including image classification, facial and object recognition, medical imaging analysis, and many more. In addition, there are applications such as physics-informed simulators in which accurate forecasts in real time with a minimal lag are required. The present neural network designs include millions of parameters, which makes it difficult to install such complex models on devices that have limited memory. Compression techniques might be able to resolve these issues by decreasing the size of CNN models that are created by reducing the number of parameters that contribute to the complexity of the models. We propose a compressed tensor format of convolutional layer, a priori, before the training of the neural network. 3-way kernels or 2-way kernels in convolutional layers are replaced by one-way fiters. The overfitting phenomena will be reduced also. The time needed to make predictions or time required for training using the original Convolutional Neural Networks model would be cut significantly if there were fewer parameters to deal with. In this paper we present a method of a priori compressing convolutional neural networks for finite element (FE) predictions of physical data. Afterwards we validate our a priori compressed models on physical data from a FE model solving a 2D wave equation. We show that the proposed convolutinal compression technique achieves equivalent performance as classical convolutional layers with fewer trainable parameters and lower memory footprint.
Bubbles in a box: Eliminating edge nucleation in cold-atom simulators of vacuum decay
The decay of metastable 'false vacuum' states via bubble nucleation plays a crucial role in many cosmological scenarios. Cold-atom analog experiments will soon provide the first empirical probes of this process, with potentially far-reaching implications for early-Universe cosmology and high-energy physics. However, an inevitable difference between these analog systems and the early Universe is that the former have a boundary. We show, using a combination of Euclidean calculations and real-time lattice simulations, that these boundaries generically cause rapid bubble nucleation on the edge of the experiment, obscuring the bulk nucleation that is relevant for cosmology. We demonstrate that implementing a high-density 'trench' region at the boundary completely eliminates this problem, and recovers the desired cosmological behavior. Our findings are relevant for ongoing efforts to probe vacuum decay in the laboratory, providing a practical solution to a key experimental obstacle.
Re$^3$Sim: Generating High-Fidelity Simulation Data via 3D-Photorealistic Real-to-Sim for Robotic Manipulation
Real-world data collection for robotics is costly and resource-intensive, requiring skilled operators and expensive hardware. Simulations offer a scalable alternative but often fail to achieve sim-to-real generalization due to geometric and visual gaps. To address these challenges, we propose a 3D-photorealistic real-to-sim system, namely, RE^3SIM, addressing geometric and visual sim-to-real gaps. RE^3SIM employs advanced 3D reconstruction and neural rendering techniques to faithfully recreate real-world scenarios, enabling real-time rendering of simulated cross-view cameras within a physics-based simulator. By utilizing privileged information to collect expert demonstrations efficiently in simulation, and train robot policies with imitation learning, we validate the effectiveness of the real-to-sim-to-real pipeline across various manipulation task scenarios. Notably, with only simulated data, we can achieve zero-shot sim-to-real transfer with an average success rate exceeding 58%. To push the limit of real-to-sim, we further generate a large-scale simulation dataset, demonstrating how a robust policy can be built from simulation data that generalizes across various objects. Codes and demos are available at: http://xshenhan.github.io/Re3Sim/.
Physics-based Motion Retargeting from Sparse Inputs
Avatars are important to create interactive and immersive experiences in virtual worlds. One challenge in animating these characters to mimic a user's motion is that commercial AR/VR products consist only of a headset and controllers, providing very limited sensor data of the user's pose. Another challenge is that an avatar might have a different skeleton structure than a human and the mapping between them is unclear. In this work we address both of these challenges. We introduce a method to retarget motions in real-time from sparse human sensor data to characters of various morphologies. Our method uses reinforcement learning to train a policy to control characters in a physics simulator. We only require human motion capture data for training, without relying on artist-generated animations for each avatar. This allows us to use large motion capture datasets to train general policies that can track unseen users from real and sparse data in real-time. We demonstrate the feasibility of our approach on three characters with different skeleton structure: a dinosaur, a mouse-like creature and a human. We show that the avatar poses often match the user surprisingly well, despite having no sensor information of the lower body available. We discuss and ablate the important components in our framework, specifically the kinematic retargeting step, the imitation, contact and action reward as well as our asymmetric actor-critic observations. We further explore the robustness of our method in a variety of settings including unbalancing, dancing and sports motions.
Seed3D 1.0: From Images to High-Fidelity Simulation-Ready 3D Assets
Developing embodied AI agents requires scalable training environments that balance content diversity with physics accuracy. World simulators provide such environments but face distinct limitations: video-based methods generate diverse content but lack real-time physics feedback for interactive learning, while physics-based engines provide accurate dynamics but face scalability limitations from costly manual asset creation. We present Seed3D 1.0, a foundation model that generates simulation-ready 3D assets from single images, addressing the scalability challenge while maintaining physics rigor. Unlike existing 3D generation models, our system produces assets with accurate geometry, well-aligned textures, and realistic physically-based materials. These assets can be directly integrated into physics engines with minimal configuration, enabling deployment in robotic manipulation and simulation training. Beyond individual objects, the system scales to complete scene generation through assembling objects into coherent environments. By enabling scalable simulation-ready content creation, Seed3D 1.0 provides a foundation for advancing physics-based world simulators. Seed3D 1.0 is now available on https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?modelId=doubao-seed3d-1-0-250928&tab=Gen3D
CARIL: Confidence-Aware Regression in Imitation Learning for Autonomous Driving
End-to-end vision-based imitation learning has demonstrated promising results in autonomous driving by learning control commands directly from expert demonstrations. However, traditional approaches rely on either regressionbased models, which provide precise control but lack confidence estimation, or classification-based models, which offer confidence scores but suffer from reduced precision due to discretization. This limitation makes it challenging to quantify the reliability of predicted actions and apply corrections when necessary. In this work, we introduce a dual-head neural network architecture that integrates both regression and classification heads to improve decision reliability in imitation learning. The regression head predicts continuous driving actions, while the classification head estimates confidence, enabling a correction mechanism that adjusts actions in low-confidence scenarios, enhancing driving stability. We evaluate our approach in a closed-loop setting within the CARLA simulator, demonstrating its ability to detect uncertain actions, estimate confidence, and apply real-time corrections. Experimental results show that our method reduces lane deviation and improves trajectory accuracy by up to 50%, outperforming conventional regression-only models. These findings highlight the potential of classification-guided confidence estimation in enhancing the robustness of vision-based imitation learning for autonomous driving. The source code is available at https://github.com/ElaheDlv/Confidence_Aware_IL.
Habitat 2.0: Training Home Assistants to Rearrange their Habitat
We introduce Habitat 2.0 (H2.0), a simulation platform for training virtual robots in interactive 3D environments and complex physics-enabled scenarios. We make comprehensive contributions to all levels of the embodied AI stack - data, simulation, and benchmark tasks. Specifically, we present: (i) ReplicaCAD: an artist-authored, annotated, reconfigurable 3D dataset of apartments (matching real spaces) with articulated objects (e.g. cabinets and drawers that can open/close); (ii) H2.0: a high-performance physics-enabled 3D simulator with speeds exceeding 25,000 simulation steps per second (850x real-time) on an 8-GPU node, representing 100x speed-ups over prior work; and, (iii) Home Assistant Benchmark (HAB): a suite of common tasks for assistive robots (tidy the house, prepare groceries, set the table) that test a range of mobile manipulation capabilities. These large-scale engineering contributions allow us to systematically compare deep reinforcement learning (RL) at scale and classical sense-plan-act (SPA) pipelines in long-horizon structured tasks, with an emphasis on generalization to new objects, receptacles, and layouts. We find that (1) flat RL policies struggle on HAB compared to hierarchical ones; (2) a hierarchy with independent skills suffers from 'hand-off problems', and (3) SPA pipelines are more brittle than RL policies.
SEAL: Suite for Evaluating API-use of LLMs
Large language models (LLMs) have limitations in handling tasks that require real-time access to external APIs. While several benchmarks like ToolBench and APIGen have been developed to assess LLMs' API-use capabilities, they often suffer from issues such as lack of generalizability, limited multi-step reasoning coverage, and instability due to real-time API fluctuations. In this paper, we introduce SEAL, an end-to-end testbed designed to evaluate LLMs in real-world API usage. SEAL standardizes existing benchmarks, integrates an agent system for testing API retrieval and planning, and addresses the instability of real-time APIs by introducing a GPT-4-powered API simulator with caching for deterministic evaluations. Our testbed provides a comprehensive evaluation pipeline that covers API retrieval, API calls, and final responses, offering a reliable framework for structured performance comparison in diverse real-world scenarios. SEAL is publicly available, with ongoing updates for new benchmarks.
Refine and Imitate: Reducing Repetition and Inconsistency in Persuasion Dialogues via Reinforcement Learning and Human Demonstration
Persuasion dialogue systems reflect the machine's ability to make strategic moves beyond verbal communication, and therefore differentiate themselves from task-oriented or open-domain dialogue systems and have their own unique values. However, the repetition and inconsistency problems still persist in dialogue response generation and could substantially impact user experience and impede the persuasion outcome. Besides, although reinforcement learning (RL) approaches have achieved big success in strategic tasks such as games, they require a sophisticated user simulator to provide real-time feedback to the dialogue system, which limits the application of RL on persuasion dialogues. To address these issues towards a better persuasion dialogue system, we apply RL to refine a language model baseline without user simulators, and distill sentence-level information about repetition, inconsistency, and task relevance through rewards. Moreover, to better accomplish the persuasion task, the model learns from human demonstration to imitate human persuasion behavior and selects the most persuasive responses. Experiments show that our model outperforms previous state-of-the-art dialogue models on both automatic metrics and human evaluation results on a donation persuasion task, and generates more diverse, consistent and persuasive conversations according to the user feedback.
NEXUS: Network Exploration for eXploiting Unsafe Sequences in Multi-Turn LLM Jailbreaks
Large Language Models (LLMs) have revolutionized natural language processing but remain vulnerable to jailbreak attacks, especially multi-turn jailbreaks that distribute malicious intent across benign exchanges and bypass alignment mechanisms. Existing approaches often explore the adversarial space poorly, rely on hand-crafted heuristics, or lack systematic query refinement. We present NEXUS (Network Exploration for eXploiting Unsafe Sequences), a modular framework for constructing, refining, and executing optimized multi-turn attacks. NEXUS comprises: (1) ThoughtNet, which hierarchically expands a harmful intent into a structured semantic network of topics, entities, and query chains; (2) a feedback-driven Simulator that iteratively refines and prunes these chains through attacker-victim-judge LLM collaboration using harmfulness and semantic-similarity benchmarks; and (3) a Network Traverser that adaptively navigates the refined query space for real-time attacks. This pipeline uncovers stealthy, high-success adversarial paths across LLMs. On several closed-source and open-source LLMs, NEXUS increases attack success rate by 2.1% to 19.4% over prior methods. Code: https://github.com/inspire-lab/NEXUS
MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators
Recent advances in Text-to-Video generation (T2V) have achieved remarkable success in synthesizing high-quality general videos from textual descriptions. A largely overlooked problem in T2V is that existing models have not adequately encoded physical knowledge of the real world, thus generated videos tend to have limited motion and poor variations. In this paper, we propose MagicTime, a metamorphic time-lapse video generation model, which learns real-world physics knowledge from time-lapse videos and implements metamorphic generation. First, we design a MagicAdapter scheme to decouple spatial and temporal training, encode more physical knowledge from metamorphic videos, and transform pre-trained T2V models to generate metamorphic videos. Second, we introduce a Dynamic Frames Extraction strategy to adapt to metamorphic time-lapse videos, which have a wider variation range and cover dramatic object metamorphic processes, thus embodying more physical knowledge than general videos. Finally, we introduce a Magic Text-Encoder to improve the understanding of metamorphic video prompts. Furthermore, we create a time-lapse video-text dataset called ChronoMagic, specifically curated to unlock the metamorphic video generation ability. Extensive experiments demonstrate the superiority and effectiveness of MagicTime for generating high-quality and dynamic metamorphic videos, suggesting time-lapse video generation is a promising path toward building metamorphic simulators of the physical world.
IRASim: Learning Interactive Real-Robot Action Simulators
Scalable robot learning in the real world is limited by the cost and safety issues of real robots. In addition, rolling out robot trajectories in the real world can be time-consuming and labor-intensive. In this paper, we propose to learn an interactive real-robot action simulator as an alternative. We introduce a novel method, IRASim, which leverages the power of generative models to generate extremely realistic videos of a robot arm that executes a given action trajectory, starting from an initial given frame. To validate the effectiveness of our method, we create a new benchmark, IRASim Benchmark, based on three real-robot datasets and perform extensive experiments on the benchmark. Results show that IRASim outperforms all the baseline methods and is more preferable in human evaluations. We hope that IRASim can serve as an effective and scalable approach to enhance robot learning in the real world. To promote research for generative real-robot action simulators, we open-source code, benchmark, and checkpoints at https: //gen-irasim.github.io.
OASim: an Open and Adaptive Simulator based on Neural Rendering for Autonomous Driving
With deep learning and computer vision technology development, autonomous driving provides new solutions to improve traffic safety and efficiency. The importance of building high-quality datasets is self-evident, especially with the rise of end-to-end autonomous driving algorithms in recent years. Data plays a core role in the algorithm closed-loop system. However, collecting real-world data is expensive, time-consuming, and unsafe. With the development of implicit rendering technology and in-depth research on using generative models to produce data at scale, we propose OASim, an open and adaptive simulator and autonomous driving data generator based on implicit neural rendering. It has the following characteristics: (1) High-quality scene reconstruction through neural implicit surface reconstruction technology. (2) Trajectory editing of the ego vehicle and participating vehicles. (3) Rich vehicle model library that can be freely selected and inserted into the scene. (4) Rich sensors model library where you can select specified sensors to generate data. (5) A highly customizable data generation system can generate data according to user needs. We demonstrate the high quality and fidelity of the generated data through perception performance evaluation on the Carla simulator and real-world data acquisition. Code is available at https://github.com/PJLab-ADG/OASim.
Enhancing Vision-Language Model Training with Reinforcement Learning in Synthetic Worlds for Real-World Success
Interactive multimodal agents must convert raw visual observations into coherent sequences of language-conditioned actions -- a capability that current vision-language models (VLMs) still lack. Earlier reinforcement-learning (RL) efforts could, in principle, endow VLMs with such skills, but they have seldom tested whether the learned behaviours generalize beyond their training simulators, and they depend either on brittle hyperparameter tuning or on dense-reward environments with low state variability. We introduce Vision-Language Decoupled Actor-Critic (VL-DAC), a lightweight, hyperparameter-free RL algorithm. VL-DAC applies PPO updates to action tokens while learning value only at the environment-step level: an arrangement, to our knowledge, not previously explored for large VLMs or LLMs. This simple decoupling removes unstable weighting terms and yields faster, more reliable convergence. Training a single VLM with VL-DAC in one inexpensive simulator at a time (MiniWorld, Gym-Cards, ALFWorld, or WebShop) already produces policies that generalize widely: +50\% relative on BALROG (game-centric agentic control), +5\% relative on the hardest part of VSI-Bench (spatial planning), and +2\% on VisualWebBench (web navigation), all without degrading general image understanding accuracy. These results provide the first evidence that a simple RL algorithm can train VLMs entirely in cheap synthetic worlds while delivering measurable gains on real-image agentic, spatial-reasoning, and web-navigation benchmarks.
Benchmarking the Sim-to-Real Gap in Cloth Manipulation
Realistic physics engines play a crucial role for learning to manipulate deformable objects such as garments in simulation. By doing so, researchers can circumvent challenges such as sensing the deformation of the object in the realworld. In spite of the extensive use of simulations for this task, few works have evaluated the reality gap between deformable object simulators and real-world data. We present a benchmark dataset to evaluate the sim-to-real gap in cloth manipulation. The dataset is collected by performing a dynamic as well as a quasi-static cloth manipulation task involving contact with a rigid table. We use the dataset to evaluate the reality gap, computational time, and simulation stability of four popular deformable object simulators: MuJoCo, Bullet, Flex, and SOFA. Additionally, we discuss the benefits and drawbacks of each simulator. The benchmark dataset is open-source. Supplementary material, videos, and code, can be found at https://sites.google.com/view/cloth-sim2real-benchmark.
A Survey of Robotic Navigation and Manipulation with Physics Simulators in the Era of Embodied AI
Navigation and manipulation are core capabilities in Embodied AI, yet training agents with these capabilities in the real world faces high costs and time complexity. Therefore, sim-to-real transfer has emerged as a key approach, yet the sim-to-real gap persists. This survey examines how physics simulators address this gap by analyzing their properties overlooked in previous surveys. We also analyze their features for navigation and manipulation tasks, along with hardware requirements. Additionally, we offer a resource with benchmark datasets, metrics, simulation platforms, and cutting-edge methods-such as world models and geometric equivariance-to help researchers select suitable tools while accounting for hardware constraints.
Diffusion Generative Inverse Design
Inverse design refers to the problem of optimizing the input of an objective function in order to enact a target outcome. For many real-world engineering problems, the objective function takes the form of a simulator that predicts how the system state will evolve over time, and the design challenge is to optimize the initial conditions that lead to a target outcome. Recent developments in learned simulation have shown that graph neural networks (GNNs) can be used for accurate, efficient, differentiable estimation of simulator dynamics, and support high-quality design optimization with gradient- or sampling-based optimization procedures. However, optimizing designs from scratch requires many expensive model queries, and these procedures exhibit basic failures on either non-convex or high-dimensional problems.In this work, we show how denoising diffusion models (DDMs) can be used to solve inverse design problems efficiently and propose a particle sampling algorithm for further improving their efficiency. We perform experiments on a number of fluid dynamics design challenges, and find that our approach substantially reduces the number of calls to the simulator compared to standard techniques.
Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection
Automatic detection and prevention of open-set failures are crucial in closed-loop robotic systems. Recent studies often struggle to simultaneously identify unexpected failures reactively after they occur and prevent foreseeable ones proactively. To this end, we propose Code-as-Monitor (CaM), a novel paradigm leveraging the vision-language model (VLM) for both open-set reactive and proactive failure detection. The core of our method is to formulate both tasks as a unified set of spatio-temporal constraint satisfaction problems and use VLM-generated code to evaluate them for real-time monitoring. To enhance the accuracy and efficiency of monitoring, we further introduce constraint elements that abstract constraint-related entities or their parts into compact geometric elements. This approach offers greater generality, simplifies tracking, and facilitates constraint-aware visual programming by leveraging these elements as visual prompts. Experiments show that CaM achieves a 28.7% higher success rate and reduces execution time by 31.8% under severe disturbances compared to baselines across three simulators and a real-world setting. Moreover, CaM can be integrated with open-loop control policies to form closed-loop systems, enabling long-horizon tasks in cluttered scenes with dynamic environments.
Introducing SSBD+ Dataset with a Convolutional Pipeline for detecting Self-Stimulatory Behaviours in Children using raw videos
Conventionally, evaluation for the diagnosis of Autism spectrum disorder is done by a trained specialist through questionnaire-based formal assessments and by observation of behavioral cues under various settings to capture the early warning signs of autism. These evaluation techniques are highly subjective and their accuracy relies on the experience of the specialist. In this regard, machine learning-based methods for automated capturing of early signs of autism from the recorded videos of the children is a promising alternative. In this paper, the authors propose a novel pipelined deep learning architecture to detect certain self-stimulatory behaviors that help in the diagnosis of autism spectrum disorder (ASD). The authors also supplement their tool with an augmented version of the Self Stimulatory Behavior Dataset (SSBD) and also propose a new label in SSBD Action detection: no-class. The deep learning model with the new dataset is made freely available for easy adoption to the researchers and developers community. An overall accuracy of around 81% was achieved from the proposed pipeline model that is targeted for real-time and hands-free automated diagnosis. All of the source code, data, licenses of use, and other relevant material is made freely available in https://github.com/sarl-iiitb/
NeuralDEM -- Real-time Simulation of Industrial Particulate Flows
Advancements in computing power have made it possible to numerically simulate large-scale fluid-mechanical and/or particulate systems, many of which are integral to core industrial processes. Among the different numerical methods available, the discrete element method (DEM) provides one of the most accurate representations of a wide range of physical systems involving granular and discontinuous materials. Consequently, DEM has become a widely accepted approach for tackling engineering problems connected to granular flows and powder mechanics. Additionally, DEM can be integrated with grid-based computational fluid dynamics (CFD) methods, enabling the simulation of chemical processes taking place, e.g., in fluidized beds. However, DEM is computationally intensive because of the intrinsic multiscale nature of particulate systems, restricting simulation duration or number of particles. Towards this end, NeuralDEM presents an end-to-end approach to replace slow numerical DEM routines with fast, adaptable deep learning surrogates. NeuralDEM is capable of picturing long-term transport processes across different regimes using macroscopic observables without any reference to microscopic model parameters. First, NeuralDEM treats the Lagrangian discretization of DEM as an underlying continuous field, while simultaneously modeling macroscopic behavior directly as additional auxiliary fields. Second, NeuralDEM introduces multi-branch neural operators scalable to real-time modeling of industrially-sized scenarios - from slow and pseudo-steady to fast and transient. Such scenarios have previously posed insurmountable challenges for deep learning models. Notably, NeuralDEM faithfully models coupled CFD-DEM fluidized bed reactors of 160k CFD cells and 500k DEM particles for trajectories of 28s. NeuralDEM will open many new doors to advanced engineering and much faster process cycles.
Perpetual Humanoid Control for Real-time Simulated Avatars
We present a physics-based humanoid controller that achieves high-fidelity motion imitation and fault-tolerant behavior in the presence of noisy input (e.g. pose estimates from video or generated from language) and unexpected falls. Our controller scales up to learning ten thousand motion clips without using any external stabilizing forces and learns to naturally recover from fail-state. Given reference motion, our controller can perpetually control simulated avatars without requiring resets. At its core, we propose the progressive multiplicative control policy (PMCP), which dynamically allocates new network capacity to learn harder and harder motion sequences. PMCP allows efficient scaling for learning from large-scale motion databases and adding new tasks, such as fail-state recovery, without catastrophic forgetting. We demonstrate the effectiveness of our controller by using it to imitate noisy poses from video-based pose estimators and language-based motion generators in a live and real-time multi-person avatar use case.
Hybrid Neural-MPM for Interactive Fluid Simulations in Real-Time
We propose a neural physics system for real-time, interactive fluid simulations. Traditional physics-based methods, while accurate, are computationally intensive and suffer from latency issues. Recent machine-learning methods reduce computational costs while preserving fidelity; yet most still fail to satisfy the latency constraints for real-time use and lack support for interactive applications. To bridge this gap, we introduce a novel hybrid method that integrates numerical simulation, neural physics, and generative control. Our neural physics jointly pursues low-latency simulation and high physical fidelity by employing a fallback safeguard to classical numerical solvers. Furthermore, we develop a diffusion-based controller that is trained using a reverse modeling strategy to generate external dynamic force fields for fluid manipulation. Our system demonstrates robust performance across diverse 2D/3D scenarios, material types, and obstacle interactions, achieving real-time simulations at high frame rates (11~29% latency) while enabling fluid control guided by user-friendly freehand sketches. We present a significant step towards practical, controllable, and physically plausible fluid simulations for real-time interactive applications. We promise to release both models and data upon acceptance.
SonoGym: High Performance Simulation for Challenging Surgical Tasks with Robotic Ultrasound
Ultrasound (US) is a widely used medical imaging modality due to its real-time capabilities, non-invasive nature, and cost-effectiveness. Robotic ultrasound can further enhance its utility by reducing operator dependence and improving access to complex anatomical regions. For this, while deep reinforcement learning (DRL) and imitation learning (IL) have shown potential for autonomous navigation, their use in complex surgical tasks such as anatomy reconstruction and surgical guidance remains limited -- largely due to the lack of realistic and efficient simulation environments tailored to these tasks. We introduce SonoGym, a scalable simulation platform for complex robotic ultrasound tasks that enables parallel simulation across tens to hundreds of environments. Our framework supports realistic and real-time simulation of US data from CT-derived 3D models of the anatomy through both a physics-based and a generative modeling approach. Sonogym enables the training of DRL and recent IL agents (vision transformers and diffusion policies) for relevant tasks in robotic orthopedic surgery by integrating common robotic platforms and orthopedic end effectors. We further incorporate submodular DRL -- a recent method that handles history-dependent rewards -- for anatomy reconstruction and safe reinforcement learning for surgery. Our results demonstrate successful policy learning across a range of scenarios, while also highlighting the limitations of current methods in clinically relevant environments. We believe our simulation can facilitate research in robot learning approaches for such challenging robotic surgery applications. Dataset, codes, and videos are publicly available at https://sonogym.github.io/.
PhysTwin: Physics-Informed Reconstruction and Simulation of Deformable Objects from Videos
Creating a physical digital twin of a real-world object has immense potential in robotics, content creation, and XR. In this paper, we present PhysTwin, a novel framework that uses sparse videos of dynamic objects under interaction to produce a photo- and physically realistic, real-time interactive virtual replica. Our approach centers on two key components: (1) a physics-informed representation that combines spring-mass models for realistic physical simulation, generative shape models for geometry, and Gaussian splats for rendering; and (2) a novel multi-stage, optimization-based inverse modeling framework that reconstructs complete geometry, infers dense physical properties, and replicates realistic appearance from videos. Our method integrates an inverse physics framework with visual perception cues, enabling high-fidelity reconstruction even from partial, occluded, and limited viewpoints. PhysTwin supports modeling various deformable objects, including ropes, stuffed animals, cloth, and delivery packages. Experiments show that PhysTwin outperforms competing methods in reconstruction, rendering, future prediction, and simulation under novel interactions. We further demonstrate its applications in interactive real-time simulation and model-based robotic motion planning.
Synthetic Patients: Simulating Difficult Conversations with Multimodal Generative AI for Medical Education
Problem: Effective patient-centered communication is a core competency for physicians. However, both seasoned providers and medical trainees report decreased confidence in leading conversations on sensitive topics such as goals of care or end-of-life discussions. The significant administrative burden and the resources required to provide dedicated training in leading difficult conversations has been a long-standing problem in medical education. Approach: In this work, we present a novel educational tool designed to facilitate interactive, real-time simulations of difficult conversations in a video-based format through the use of multimodal generative artificial intelligence (AI). Leveraging recent advances in language modeling, computer vision, and generative audio, this tool creates realistic, interactive scenarios with avatars, or "synthetic patients." These synthetic patients interact with users throughout various stages of medical care using a custom-built video chat application, offering learners the chance to practice conversations with patients from diverse belief systems, personalities, and ethnic backgrounds. Outcomes: While the development of this platform demanded substantial upfront investment in labor, it offers a highly-realistic simulation experience with minimal financial investment. For medical trainees, this educational tool can be implemented within programs to simulate patient-provider conversations and can be incorporated into existing palliative care curriculum to provide a scalable, high-fidelity simulation environment for mastering difficult conversations. Next Steps: Future developments will explore enhancing the authenticity of these encounters by working with patients to incorporate their histories and personalities, as well as employing the use of AI-generated evaluations to offer immediate, constructive feedback to learners post-simulation.
An Efficient Graph-Transformer Operator for Learning Physical Dynamics with Manifolds Embedding
Accurate and efficient physical simulations are essential in science and engineering, yet traditional numerical solvers face significant challenges in computational cost when handling simulations across dynamic scenarios involving complex geometries, varying boundary/initial conditions, and diverse physical parameters. While deep learning offers promising alternatives, existing methods often struggle with flexibility and generalization, particularly on unstructured meshes, which significantly limits their practical applicability. To address these challenges, we propose PhysGTO, an efficient Graph-Transformer Operator for learning physical dynamics through explicit manifold embeddings in both physical and latent spaces. In the physical space, the proposed Unified Graph Embedding module aligns node-level conditions and constructs sparse yet structure-preserving graph connectivity to process heterogeneous inputs. In the latent space, PhysGTO integrates a lightweight flux-oriented message-passing scheme with projection-inspired attention to capture local and global dependencies, facilitating multilevel interactions among complex physical correlations. This design ensures linear complexity relative to the number of mesh points, reducing both the number of trainable parameters and computational costs in terms of floating-point operations (FLOPs), and thereby allowing efficient inference in real-time applications. We introduce a comprehensive benchmark spanning eleven datasets, covering problems with unstructured meshes, transient flow dynamics, and large-scale 3D geometries. PhysGTO consistently achieves state-of-the-art accuracy while significantly reducing computational costs, demonstrating superior flexibility, scalability, and generalization in a wide range of simulation tasks.
JGHand: Joint-Driven Animatable Hand Avater via 3D Gaussian Splatting
Since hands are the primary interface in daily interactions, modeling high-quality digital human hands and rendering realistic images is a critical research problem. Furthermore, considering the requirements of interactive and rendering applications, it is essential to achieve real-time rendering and driveability of the digital model without compromising rendering quality. Thus, we propose Jointly 3D Gaussian Hand (JGHand), a novel joint-driven 3D Gaussian Splatting (3DGS)-based hand representation that renders high-fidelity hand images in real-time for various poses and characters. Distinct from existing articulated neural rendering techniques, we introduce a differentiable process for spatial transformations based on 3D key points. This process supports deformations from the canonical template to a mesh with arbitrary bone lengths and poses. Additionally, we propose a real-time shadow simulation method based on per-pixel depth to simulate self-occlusion shadows caused by finger movements. Finally, we embed the hand prior and propose an animatable 3DGS representation of the hand driven solely by 3D key points. We validate the effectiveness of each component of our approach through comprehensive ablation studies. Experimental results on public datasets demonstrate that JGHand achieves real-time rendering speeds with enhanced quality, surpassing state-of-the-art methods.
Cosmos-Transfer1: Conditional World Generation with Adaptive Multimodal Control
We introduce Cosmos-Transfer, a conditional world generation model that can generate world simulations based on multiple spatial control inputs of various modalities such as segmentation, depth, and edge. In the design, the spatial conditional scheme is adaptive and customizable. It allows weighting different conditional inputs differently at different spatial locations. This enables highly controllable world generation and finds use in various world-to-world transfer use cases, including Sim2Real. We conduct extensive evaluations to analyze the proposed model and demonstrate its applications for Physical AI, including robotics Sim2Real and autonomous vehicle data enrichment. We further demonstrate an inference scaling strategy to achieve real-time world generation with an NVIDIA GB200 NVL72 rack. To help accelerate research development in the field, we open-source our models and code at https://github.com/nvidia-cosmos/cosmos-transfer1.
Digital Twins: State of the Art Theory and Practice, Challenges, and Open Research Questions
Digital Twin was introduced over a decade ago, as an innovative all-encompassing tool, with perceived benefits including real-time monitoring, simulation and forecasting. However, the theoretical framework and practical implementations of digital twins (DT) are still far from this vision. Although successful implementations exist, sufficient implementation details are not publicly available, therefore it is difficult to assess their effectiveness, draw comparisons and jointly advance the DT methodology. This work explores the various DT features and current approaches, the shortcomings and reasons behind the delay in the implementation and adoption of digital twin. Advancements in machine learning, internet of things and big data have contributed hugely to the improvements in DT with regards to its real-time monitoring and forecasting properties. Despite this progress and individual company-based efforts, certain research gaps exist in the field, which have caused delay in the widespread adoption of this concept. We reviewed relevant works and identified that the major reasons for this delay are the lack of a universal reference framework, domain dependence, security concerns of shared data, reliance of digital twin on other technologies, and lack of quantitative metrics. We define the necessary components of a digital twin required for a universal reference framework, which also validate its uniqueness as a concept compared to similar concepts like simulation, autonomous systems, etc. This work further assesses the digital twin applications in different domains and the current state of machine learning and big data in it. It thus answers and identifies novel research questions, both of which will help to better understand and advance the theory and practice of digital twins.
MotionStream: Real-Time Video Generation with Interactive Motion Controls
Current motion-conditioned video generation methods suffer from prohibitive latency (minutes per video) and non-causal processing that prevents real-time interaction. We present MotionStream, enabling sub-second latency with up to 29 FPS streaming generation on a single GPU. Our approach begins by augmenting a text-to-video model with motion control, which generates high-quality videos that adhere to the global text prompt and local motion guidance, but does not perform inference on the fly. As such, we distill this bidirectional teacher into a causal student through Self Forcing with Distribution Matching Distillation, enabling real-time streaming inference. Several key challenges arise when generating videos of long, potentially infinite time-horizons: (1) bridging the domain gap from training on finite length and extrapolating to infinite horizons, (2) sustaining high quality by preventing error accumulation, and (3) maintaining fast inference, without incurring growth in computational cost due to increasing context windows. A key to our approach is introducing carefully designed sliding-window causal attention, combined with attention sinks. By incorporating self-rollout with attention sinks and KV cache rolling during training, we properly simulate inference-time extrapolations with a fixed context window, enabling constant-speed generation of arbitrarily long videos. Our models achieve state-of-the-art results in motion following and video quality while being two orders of magnitude faster, uniquely enabling infinite-length streaming. With MotionStream, users can paint trajectories, control cameras, or transfer motion, and see results unfold in real-time, delivering a truly interactive experience.
CUDA-L2: Surpassing cuBLAS Performance for Matrix Multiplication through Reinforcement Learning
In this paper, we propose CUDA-L2, a system that combines large language models (LLMs) and reinforcement learning (RL) to automatically optimize Half-precision General Matrix Multiply (HGEMM) CUDA kernels. Using CUDA execution speed as the RL reward, CUDA-L2 automatically optimizes HGEMM kernels across 1,000 configurations. CUDA-L2 systematically outperforms major matmul baselines to date, from the widely-used {\it torch.matmul} to state-of-the-art Nvidia's closed-source libraries, i.e., {\it cuBLAS}, {\it cuBLASLt}. In offline mode, where kernels are executed consecutively without time intervals, CUDA-L2 yields +22.0\% over {\it torch.matmul} on average; +19.2\% over {\it cuBLAS} using the optimal layout configuration (normal-normal NN and transposed-normal TN); +16.8\% over {\it cuBLASLt-heuristic}, which queries {\it cuBLASLt} library and selects the algorithm based on the heuristic's suggestion; and +11.4\% over the most competitive {\it cuBLASLt-AutoTuning} model, which selects the fastest algorithm from up to 100 candidates from {\it cuBLASLt}'s suggestions. In server mode, where kernels are executed at random intervals simulating real-time inference, the speedups further increase to +28.7\%, +26.0\%, +22.4\%, and +15.9\% for {\it torch.matmul}, {\it cuBLAS}, {\it cuBLASLt-heuristic}, and {\it cuBLASLt-AutoTuning} respectively. CUDA-L2 shows that even the most performance-critical, heavily-optimized kernels like HGEMM can be improved through LLM-guided RL automation by systematically exploring configuration spaces at scales impractical for humans. Project and code can be found at github.com/deepreinforce-ai/CUDA-L2
Multi-Agent Stock Prediction Systems: Machine Learning Models, Simulations, and Real-Time Trading Strategies
This paper presents a comprehensive study on stock price prediction, leveragingadvanced machine learning (ML) and deep learning (DL) techniques to improve financial forecasting accuracy. The research evaluates the performance of various recurrent neural network (RNN) architectures, including Long Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRU), and attention-based models. These models are assessed for their ability to capture complex temporal dependencies inherent in stock market data. Our findings show that attention-based models outperform other architectures, achieving the highest accuracy by capturing both short and long-term dependencies. This study contributes valuable insights into AI-driven financial forecasting, offering practical guidance for developing more accurate and efficient trading systems.
Real-Time User-Guided Image Colorization with Learned Deep Priors
We propose a deep learning approach for user-guided image colorization. The system directly maps a grayscale image, along with sparse, local user "hints" to an output colorization with a Convolutional Neural Network (CNN). Rather than using hand-defined rules, the network propagates user edits by fusing low-level cues along with high-level semantic information, learned from large-scale data. We train on a million images, with simulated user inputs. To guide the user towards efficient input selection, the system recommends likely colors based on the input image and current user inputs. The colorization is performed in a single feed-forward pass, enabling real-time use. Even with randomly simulated user inputs, we show that the proposed system helps novice users quickly create realistic colorizations, and offers large improvements in colorization quality with just a minute of use. In addition, we demonstrate that the framework can incorporate other user "hints" to the desired colorization, showing an application to color histogram transfer. Our code and models are available at https://richzhang.github.io/ideepcolor.
Real-Time Iteration Scheme for Diffusion Policy
Diffusion Policies have demonstrated impressive performance in robotic manipulation tasks. However, their long inference time, resulting from an extensive iterative denoising process, and the need to execute an action chunk before the next prediction to maintain consistent actions limit their applicability to latency-critical tasks or simple tasks with a short cycle time. While recent methods explored distillation or alternative policy structures to accelerate inference, these often demand additional training, which can be resource-intensive for large robotic models. In this paper, we introduce a novel approach inspired by the Real-Time Iteration (RTI) Scheme, a method from optimal control that accelerates optimization by leveraging solutions from previous time steps as initial guesses for subsequent iterations. We explore the application of this scheme in diffusion inference and propose a scaling-based method to effectively handle discrete actions, such as grasping, in robotic manipulation. The proposed scheme significantly reduces runtime computational costs without the need for distillation or policy redesign. This enables a seamless integration into many pre-trained diffusion-based models, in particular, to resource-demanding large models. We also provide theoretical conditions for the contractivity which could be useful for estimating the initial denoising step. Quantitative results from extensive simulation experiments show a substantial reduction in inference time, with comparable overall performance compared with Diffusion Policy using full-step denoising. Our project page with additional resources is available at: https://rti-dp.github.io/.
Real-Time Prediction of Gas Flow Dynamics in Diesel Engines using a Deep Neural Operator Framework
We develop a data-driven deep neural operator framework to approximate multiple output states for a diesel engine and generate real-time predictions with reasonable accuracy. As emission norms become more stringent, the need for fast and accurate models that enable analysis of system behavior have become an essential requirement for system development. The fast transient processes involved in the operation of a combustion engine make it difficult to develop accurate physics-based models for such systems. As an alternative to physics based models, we develop an operator-based regression model (DeepONet) to learn the relevant output states for a mean-value gas flow engine model using the engine operating conditions as input variables. We have adopted a mean-value model as a benchmark for comparison, simulated using Simulink. The developed approach necessitates using the initial conditions of the output states to predict the accurate sequence over the temporal domain. To this end, a sequence-to-sequence approach is embedded into the proposed framework. The accuracy of the model is evaluated by comparing the prediction output to ground truth generated from Simulink model. The maximum mathcal L_2 relative error observed was approximately 6.5%. The sensitivity of the DeepONet model is evaluated under simulated noise conditions and the model shows relatively low sensitivity to noise. The uncertainty in model prediction is further assessed by using a mean ensemble approach. The worst-case error at the (mu + 2sigma) boundary was found to be 12%. The proposed framework provides the ability to predict output states in real-time and enables data-driven learning of complex input-output operator mapping. As a result, this model can be applied during initial development stages, where accurate models may not be available.
I2E: Real-Time Image-to-Event Conversion for High-Performance Spiking Neural Networks
Spiking neural networks (SNNs) promise highly energy-efficient computing, but their adoption is hindered by a critical scarcity of event-stream data. This work introduces I2E, an algorithmic framework that resolves this bottleneck by converting static images into high-fidelity event streams. By simulating microsaccadic eye movements with a highly parallelized convolution, I2E achieves a conversion speed over 300x faster than prior methods, uniquely enabling on-the-fly data augmentation for SNN training. The framework's effectiveness is demonstrated on large-scale benchmarks. An SNN trained on the generated I2E-ImageNet dataset achieves a state-of-the-art accuracy of 60.50%. Critically, this work establishes a powerful sim-to-real paradigm where pre-training on synthetic I2E data and fine-tuning on the real-world CIFAR10-DVS dataset yields an unprecedented accuracy of 92.5%. This result validates that synthetic event data can serve as a high-fidelity proxy for real sensor data, bridging a long-standing gap in neuromorphic engineering. By providing a scalable solution to the data problem, I2E offers a foundational toolkit for developing high-performance neuromorphic systems. The open-source algorithm and all generated datasets are provided to accelerate research in the field.
SpriteHand: Real-Time Versatile Hand-Object Interaction with Autoregressive Video Generation
Modeling and synthesizing complex hand-object interactions remains a significant challenge, even for state-of-the-art physics engines. Conventional simulation-based approaches rely on explicitly defined rigid object models and pre-scripted hand gestures, making them inadequate for capturing dynamic interactions with non-rigid or articulated entities such as deformable fabrics, elastic materials, hinge-based structures, furry surfaces, or even living creatures. In this paper, we present SpriteHand, an autoregressive video generation framework for real-time synthesis of versatile hand-object interaction videos across a wide range of object types and motion patterns. SpriteHand takes as input a static object image and a video stream in which the hands are imagined to interact with the virtual object embedded in a real-world scene, and generates corresponding hand-object interaction effects in real time. Our model employs a causal inference architecture for autoregressive generation and leverages a hybrid post-training approach to enhance visual realism and temporal coherence. Our 1.3B model supports real-time streaming generation at around 18 FPS and 640x368 resolution, with an approximate 150 ms latency on a single NVIDIA RTX 5090 GPU, and more than a minute of continuous output. Experiments demonstrate superior visual quality, physical plausibility, and interaction fidelity compared to both generative and engine-based baselines.
SplatAD: Real-Time Lidar and Camera Rendering with 3D Gaussian Splatting for Autonomous Driving
Ensuring the safety of autonomous robots, such as self-driving vehicles, requires extensive testing across diverse driving scenarios. Simulation is a key ingredient for conducting such testing in a cost-effective and scalable way. Neural rendering methods have gained popularity, as they can build simulation environments from collected logs in a data-driven manner. However, existing neural radiance field (NeRF) methods for sensor-realistic rendering of camera and lidar data suffer from low rendering speeds, limiting their applicability for large-scale testing. While 3D Gaussian Splatting (3DGS) enables real-time rendering, current methods are limited to camera data and are unable to render lidar data essential for autonomous driving. To address these limitations, we propose SplatAD, the first 3DGS-based method for realistic, real-time rendering of dynamic scenes for both camera and lidar data. SplatAD accurately models key sensor-specific phenomena such as rolling shutter effects, lidar intensity, and lidar ray dropouts, using purpose-built algorithms to optimize rendering efficiency. Evaluation across three autonomous driving datasets demonstrates that SplatAD achieves state-of-the-art rendering quality with up to +2 PSNR for NVS and +3 PSNR for reconstruction while increasing rendering speed over NeRF-based methods by an order of magnitude. See https://research.zenseact.com/publications/splatad/ for our project page.
Real-Time Navigation for Autonomous Surface Vehicles In Ice-Covered Waters
Vessel transit in ice-covered waters poses unique challenges in safe and efficient motion planning. When the concentration of ice is high, it may not be possible to find collision-free trajectories. Instead, ice can be pushed out of the way if it is small or if contact occurs near the edge of the ice. In this work, we propose a real-time navigation framework that minimizes collisions with ice and distance travelled by the vessel. We exploit a lattice-based planner with a cost that captures the ship interaction with ice. To address the dynamic nature of the environment, we plan motion in a receding horizon manner based on updated vessel and ice state information. Further, we present a novel planning heuristic for evaluating the cost-to-go, which is applicable to navigation in a channel without a fixed goal location. The performance of our planner is evaluated across several levels of ice concentration both in simulated and in real-world experiments.
Diffusion Models Are Real-Time Game Engines
We present GameNGen, the first game engine powered entirely by a neural model that enables real-time interaction with a complex environment over long trajectories at high quality. GameNGen can interactively simulate the classic game DOOM at over 20 frames per second on a single TPU. Next frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compression. Human raters are only slightly better than random chance at distinguishing short clips of the game from clips of the simulation. GameNGen is trained in two phases: (1) an RL-agent learns to play the game and the training sessions are recorded, and (2) a diffusion model is trained to produce the next frame, conditioned on the sequence of past frames and actions. Conditioning augmentations enable stable auto-regressive generation over long trajectories.
A Real-time Faint Space Debris Detector With Learning-based LCM
With the development of aerospace technology, the increasing population of space debris has posed a great threat to the safety of spacecraft. However, the low intensity of reflected light and high angular velocity of space debris impede the extraction. Besides, due to the limitations of the ground observation methods, small space debris can hardly be detected, making it necessary to enhance the spacecraft's capacity for space situational awareness (SSA). Considering that traditional methods have some defects in low-SNR target detection, such as low effectiveness and large time consumption, this paper proposes a method for low-SNR streak extraction based on local contrast and maximum likelihood estimation (MLE), which can detect space objects with SNR 2.0 efficiently. In the proposed algorithm, local contrast will be applied for crude classifications, which will return connected components as preliminary results, and then MLE will be performed to reconstruct the connected components of targets via orientated growth, further improving the precision. The algorithm has been verified with both simulated streaks and real star tracker images, and the average centroid error of the proposed algorithm is close to the state-of-the-art method like ODCC. At the same time, the algorithm in this paper has significant advantages in efficiency compared with ODCC. In conclusion, the algorithm in this paper is of high speed and precision, which guarantees its promising applications in the extraction of high dynamic targets.
KuaiLive: A Real-time Interactive Dataset for Live Streaming Recommendation
Live streaming platforms have become a dominant form of online content consumption, offering dynamically evolving content, real-time interactions, and highly engaging user experiences. These unique characteristics introduce new challenges that differentiate live streaming recommendation from traditional recommendation settings and have garnered increasing attention from industry in recent years. However, research progress in academia has been hindered by the lack of publicly available datasets that accurately reflect the dynamic nature of live streaming environments. To address this gap, we introduce KuaiLive, the first real-time, interactive dataset collected from Kuaishou, a leading live streaming platform in China with over 400 million daily active users. The dataset records the interaction logs of 23,772 users and 452,621 streamers over a 21-day period. Compared to existing datasets, KuaiLive offers several advantages: it includes precise live room start and end timestamps, multiple types of real-time user interactions (click, comment, like, gift), and rich side information features for both users and streamers. These features enable more realistic simulation of dynamic candidate items and better modeling of user and streamer behaviors. We conduct a thorough analysis of KuaiLive from multiple perspectives and evaluate several representative recommendation methods on it, establishing a strong benchmark for future research. KuaiLive can support a wide range of tasks in the live streaming domain, such as top-K recommendation, click-through rate prediction, watch time prediction, and gift price prediction. Moreover, its fine-grained behavioral data also enables research on multi-behavior modeling, multi-task learning, and fairness-aware recommendation. The dataset and related resources are publicly available at https://imgkkk574.github.io/KuaiLive.
GUIDE: Real-Time Human-Shaped Agents
The recent rapid advancement of machine learning has been driven by increasingly powerful models with the growing availability of training data and computational resources. However, real-time decision-making tasks with limited time and sparse learning signals remain challenging. One way of improving the learning speed and performance of these agents is to leverage human guidance. In this work, we introduce GUIDE, a framework for real-time human-guided reinforcement learning by enabling continuous human feedback and grounding such feedback into dense rewards to accelerate policy learning. Additionally, our method features a simulated feedback module that learns and replicates human feedback patterns in an online fashion, effectively reducing the need for human input while allowing continual training. We demonstrate the performance of our framework on challenging tasks with sparse rewards and visual observations. Our human study involving 50 subjects offers strong quantitative and qualitative evidence of the effectiveness of our approach. With only 10 minutes of human feedback, our algorithm achieves up to 30% increase in success rate compared to its RL baseline.
Fast-Image2Point: Towards Real-Time Point Cloud Reconstruction of a Single Image using 3D Supervision
A key question in the problem of 3D reconstruction is how to train a machine or a robot to model 3D objects. Many tasks like navigation in real-time systems such as autonomous vehicles directly depend on this problem. These systems usually have limited computational power. Despite considerable progress in 3D reconstruction systems in recent years, applying them to real-time systems such as navigation systems in autonomous vehicles is still challenging due to the high complexity and computational demand of the existing methods. This study addresses current problems in reconstructing objects displayed in a single-view image in a faster (real-time) fashion. To this end, a simple yet powerful deep neural framework is developed. The proposed framework consists of two components: the feature extractor module and the 3D generator module. We use point cloud representation for the output of our reconstruction module. The ShapeNet dataset is utilized to compare the method with the existing results in terms of computation time and accuracy. Simulations demonstrate the superior performance of the proposed method. Index Terms-Real-time 3D reconstruction, single-view reconstruction, supervised learning, deep neural network
Breaking the Pre-Planning Barrier: Adaptive Real-Time Coordination of Heterogeneous UAVs
Unmanned Aerial Vehicles (UAVs) offer significant potential in dynamic, perception-intensive tasks such as search and rescue and environmental monitoring; however, their effectiveness is severely restricted by conventional pre-planned routing methods, which lack the flexibility to respond in real-time to evolving task demands, unexpected disturbances, and localized view limitations in real-world scenarios. To address this fundamental limitation, we introduce a novel multi-agent reinforcement learning framework named Heterogeneous Graph Attention Multi-agent Deep Deterministic Policy Gradient (HGAM), uniquely designed to enable adaptive real-time coordination between mission UAVs (MUAVs) and charging UAVs (CUAVs). HGAM specifically addresses the previously unsolved challenge of enabling precise, decentralized continuous-action coordination solely based on local, heterogeneous graph-based observations. Extensive simulations demonstrate that HGAM substantially surpasses existing methods, achieving, for example, a 30\% improvement in data collection coverage and a 20\% increase in charging efficiency, providing crucial insights and foundations for the future deployment of intelligent, flexible UAV networks in complex, dynamic environments.
Learning Dynamical Demand Response Model in Real-Time Pricing Program
Price responsiveness is a major feature of end use customers (EUCs) that participate in demand response (DR) programs, and has been conventionally modeled with static demand functions, which take the electricity price as the input and the aggregate energy consumption as the output. This, however, neglects the inherent temporal correlation of the EUC behaviors, and may result in large errors when predicting the actual responses of EUCs in real-time pricing (RTP) programs. In this paper, we propose a dynamical DR model so as to capture the temporal behavior of the EUCs. The states in the proposed dynamical DR model can be explicitly chosen, in which case the model can be represented by a linear function or a multi-layer feedforward neural network, or implicitly chosen, in which case the model can be represented by a recurrent neural network or a long short-term memory unit network. In both cases, the dynamical DR model can be learned from historical price and energy consumption data. Numerical simulation illustrated how the states are chosen and also showed the proposed dynamical DR model significantly outperforms the static ones.
OPTIC-ER: A Reinforcement Learning Framework for Real-Time Emergency Response and Equitable Resource Allocation in Underserved African Communities
Public service systems in many African regions suffer from delayed emergency response and spatial inequity, causing avoidable suffering. This paper introduces OPTIC-ER, a reinforcement learning (RL) framework for real-time, adaptive, and equitable emergency response. OPTIC-ER uses an attention-guided actor-critic architecture to manage the complexity of dispatch environments. Its key innovations are a Context-Rich State Vector, encoding action sub-optimality, and a Precision Reward Function, which penalizes inefficiency. Training occurs in a high-fidelity simulation using real data from Rivers State, Nigeria, accelerated by a precomputed Travel Time Atlas. The system is built on the TALS framework (Thin computing, Adaptability, Low-cost, Scalability) for deployment in low-resource settings. In evaluations on 500 unseen incidents, OPTIC-ER achieved a 100.00% optimality rate with negligible inefficiency, confirming its robustness and generalization. Beyond dispatch, the system generates Infrastructure Deficiency Maps and Equity Monitoring Dashboards to guide proactive governance and data-informed development. This work presents a validated blueprint for AI-augmented public services, showing how context-aware RL can bridge the gap between algorithmic decision-making and measurable human impact.
Efficient Physics-Based Learned Reconstruction Methods for Real-Time 3D Near-Field MIMO Radar Imaging
Near-field multiple-input multiple-output (MIMO) radar imaging systems have recently gained significant attention. In this paper, we develop novel non-iterative deep learning-based reconstruction methods for real-time near-field MIMO imaging. The goal is to achieve high image quality with low computational cost at compressive settings. The developed approaches have two stages. In the first approach, physics-based initial stage performs adjoint operation to back-project the measurements to the image-space, and deep neural network (DNN)-based second stage converts the 3D backprojected measurements to a magnitude-only reflectivity image. Since scene reflectivities often have random phase, DNN processes directly the magnitude of the adjoint result. As DNN, 3D U-Net is used to jointly exploit range and cross-range correlations. To comparatively evaluate the significance of exploiting physics in a learning-based approach, two additional approaches that replace the physics-based first stage with fully connected layers are also developed as purely learning-based methods. The performance is also analyzed by changing the DNN architecture for the second stage to include complex-valued processing (instead of magnitude-only processing), 2D convolution kernels (instead of 3D), and ResNet architecture (instead of U-Net). Moreover, we develop a synthesizer to generate large-scale dataset for training with 3D extended targets. We illustrate the performance through experimental data and extensive simulations. The results show the effectiveness of the developed physics-based learned reconstruction approach in terms of both run-time and image quality at highly compressive settings. Our source codes and dataset are made available at GitHub.
Safe Offline Reinforcement Learning with Real-Time Budget Constraints
Aiming at promoting the safe real-world deployment of Reinforcement Learning (RL), research on safe RL has made significant progress in recent years. However, most existing works in the literature still focus on the online setting where risky violations of the safety budget are likely to be incurred during training. Besides, in many real-world applications, the learned policy is required to respond to dynamically determined safety budgets (i.e., constraint threshold) in real time. In this paper, we target at the above real-time budget constraint problem under the offline setting, and propose Trajectory-based REal-time Budget Inference (TREBI) as a novel solution that approaches this problem from the perspective of trajectory distribution. Theoretically, we prove an error bound of the estimation on the episodic reward and cost under the offline setting and thus provide a performance guarantee for TREBI. Empirical results on a wide range of simulation tasks and a real-world large-scale advertising application demonstrate the capability of TREBI in solving real-time budget constraint problems under offline settings.
Learning Occlusion-Robust Vision Transformers for Real-Time UAV Tracking
Single-stream architectures using Vision Transformer (ViT) backbones show great potential for real-time UAV tracking recently. However, frequent occlusions from obstacles like buildings and trees expose a major drawback: these models often lack strategies to handle occlusions effectively. New methods are needed to enhance the occlusion resilience of single-stream ViT models in aerial tracking. In this work, we propose to learn Occlusion-Robust Representations (ORR) based on ViTs for UAV tracking by enforcing an invariance of the feature representation of a target with respect to random masking operations modeled by a spatial Cox process. Hopefully, this random masking approximately simulates target occlusions, thereby enabling us to learn ViTs that are robust to target occlusion for UAV tracking. This framework is termed ORTrack. Additionally, to facilitate real-time applications, we propose an Adaptive Feature-Based Knowledge Distillation (AFKD) method to create a more compact tracker, which adaptively mimics the behavior of the teacher model ORTrack according to the task's difficulty. This student model, dubbed ORTrack-D, retains much of ORTrack's performance while offering higher efficiency. Extensive experiments on multiple benchmarks validate the effectiveness of our method, demonstrating its state-of-the-art performance. Codes is available at https://github.com/wuyou3474/ORTrack.
One Map to Find Them All: Real-time Open-Vocabulary Mapping for Zero-shot Multi-Object Navigation
The capability to efficiently search for objects in complex environments is fundamental for many real-world robot applications. Recent advances in open-vocabulary vision models have resulted in semantically-informed object navigation methods that allow a robot to search for an arbitrary object without prior training. However, these zero-shot methods have so far treated the environment as unknown for each consecutive query. In this paper we introduce a new benchmark for zero-shot multi-object navigation, allowing the robot to leverage information gathered from previous searches to more efficiently find new objects. To address this problem we build a reusable open-vocabulary feature map tailored for real-time object search. We further propose a probabilistic-semantic map update that mitigates common sources of errors in semantic feature extraction and leverage this semantic uncertainty for informed multi-object exploration. We evaluate our method on a set of object navigation tasks in both simulation as well as with a real robot, running in real-time on a Jetson Orin AGX. We demonstrate that it outperforms existing state-of-the-art approaches both on single and multi-object navigation tasks. Additional videos, code and the multi-object navigation benchmark will be available on https://finnbsch.github.io/OneMap.
SkiM: Skipping Memory LSTM for Low-Latency Real-Time Continuous Speech Separation
Continuous speech separation for meeting pre-processing has recently become a focused research topic. Compared to the data in utterance-level speech separation, the meeting-style audio stream lasts longer, has an uncertain number of speakers. We adopt the time-domain speech separation method and the recently proposed Graph-PIT to build a super low-latency online speech separation model, which is very important for the real application. The low-latency time-domain encoder with a small stride leads to an extremely long feature sequence. We proposed a simple yet efficient model named Skipping Memory (SkiM) for the long sequence modeling. Experimental results show that SkiM achieves on par or even better separation performance than DPRNN. Meanwhile, the computational cost of SkiM is reduced by 75% compared to DPRNN. The strong long sequence modeling capability and low computational cost make SkiM a suitable model for online CSS applications. Our fastest real-time model gets 17.1 dB signal-to-distortion (SDR) improvement with less than 1-millisecond latency in the simulated meeting-style evaluation.
Flash-VStream: Memory-Based Real-Time Understanding for Long Video Streams
Benefiting from the advancements in large language models and cross-modal alignment, existing multi-modal video understanding methods have achieved prominent performance in offline scenario. However, online video streams, as one of the most common media forms in the real world, have seldom received attention. Compared to offline videos, the 'dynamic' nature of online video streams poses challenges for the direct application of existing models and introduces new problems, such as the storage of extremely long-term information, interaction between continuous visual content and 'asynchronous' user questions. Therefore, in this paper we present Flash-VStream, a video-language model that simulates the memory mechanism of human. Our model is able to process extremely long video streams in real-time and respond to user queries simultaneously. Compared to existing models, Flash-VStream achieves significant reductions in inference latency and VRAM consumption, which is intimately related to performing understanding of online streaming video. In addition, given that existing video understanding benchmarks predominantly concentrate on offline scenario, we propose VStream-QA, a novel question answering benchmark specifically designed for online video streaming understanding. Comparisons with popular existing methods on the proposed benchmark demonstrate the superiority of our method for such challenging setting. To verify the generalizability of our approach, we further evaluate it on existing video understanding benchmarks and achieves state-of-the-art performance in offline scenarios as well. All code, models, and datasets are available at the https://invinciblewyq.github.io/vstream-page/
CognitiveDrone: A VLA Model and Evaluation Benchmark for Real-Time Cognitive Task Solving and Reasoning in UAVs
This paper introduces CognitiveDrone, a novel Vision-Language-Action (VLA) model tailored for complex Unmanned Aerial Vehicles (UAVs) tasks that demand advanced cognitive abilities. Trained on a dataset comprising over 8,000 simulated flight trajectories across three key categories-Human Recognition, Symbol Understanding, and Reasoning-the model generates real-time 4D action commands based on first-person visual inputs and textual instructions. To further enhance performance in intricate scenarios, we propose CognitiveDrone-R1, which integrates an additional Vision-Language Model (VLM) reasoning module to simplify task directives prior to high-frequency control. Experimental evaluations using our open-source benchmark, CognitiveDroneBench, reveal that while a racing-oriented model (RaceVLA) achieves an overall success rate of 31.3%, the base CognitiveDrone model reaches 59.6%, and CognitiveDrone-R1 attains a success rate of 77.2%. These results demonstrate improvements of up to 30% in critical cognitive tasks, underscoring the effectiveness of incorporating advanced reasoning capabilities into UAV control systems. Our contributions include the development of a state-of-the-art VLA model for UAV control and the introduction of the first dedicated benchmark for assessing cognitive tasks in drone operations. The complete repository is available at cognitivedrone.github.io
AI-Trader: Benchmarking Autonomous Agents in Real-Time Financial Markets
Large Language Models (LLMs) have demonstrated remarkable potential as autonomous agents, approaching human-expert performance through advanced reasoning and tool orchestration. However, decision-making in fully dynamic and live environments remains highly challenging, requiring real-time information integration and adaptive responses. While existing efforts have explored live evaluation mechanisms in structured tasks, a critical gap remains in systematic benchmarking for real-world applications, particularly in finance where stringent requirements exist for live strategic responsiveness. To address this gap, we introduce AI-Trader, the first fully-automated, live, and data-uncontaminated evaluation benchmark for LLM agents in financial decision-making. AI-Trader spans three major financial markets: U.S. stocks, A-shares, and cryptocurrencies, with multiple trading granularities to simulate live financial environments. Our benchmark implements a revolutionary fully autonomous minimal information paradigm where agents receive only essential context and must independently search, verify, and synthesize live market information without human intervention. We evaluate six mainstream LLMs across three markets and multiple trading frequencies. Our analysis reveals striking findings: general intelligence does not automatically translate to effective trading capability, with most agents exhibiting poor returns and weak risk management. We demonstrate that risk control capability determines cross-market robustness, and that AI trading strategies achieve excess returns more readily in highly liquid markets than policy-driven environments. These findings expose critical limitations in current autonomous agents and provide clear directions for future improvements. The code and evaluation data are open-sourced to foster community research: https://github.com/HKUDS/AI-Trader.
Language-EXtended Indoor SLAM (LEXIS): A Versatile System for Real-time Visual Scene Understanding
Versatile and adaptive semantic understanding would enable autonomous systems to comprehend and interact with their surroundings. Existing fixed-class models limit the adaptability of indoor mobile and assistive autonomous systems. In this work, we introduce LEXIS, a real-time indoor Simultaneous Localization and Mapping (SLAM) system that harnesses the open-vocabulary nature of Large Language Models (LLMs) to create a unified approach to scene understanding and place recognition. The approach first builds a topological SLAM graph of the environment (using visual-inertial odometry) and embeds Contrastive Language-Image Pretraining (CLIP) features in the graph nodes. We use this representation for flexible room classification and segmentation, serving as a basis for room-centric place recognition. This allows loop closure searches to be directed towards semantically relevant places. Our proposed system is evaluated using both public, simulated data and real-world data, covering office and home environments. It successfully categorizes rooms with varying layouts and dimensions and outperforms the state-of-the-art (SOTA). For place recognition and trajectory estimation tasks we achieve equivalent performance to the SOTA, all also utilizing the same pre-trained model. Lastly, we demonstrate the system's potential for planning.
Matrix-Game 2.0: An Open-Source, Real-Time, and Streaming Interactive World Model
Recent advances in interactive video generations have demonstrated diffusion model's potential as world models by capturing complex physical dynamics and interactive behaviors. However, existing interactive world models depend on bidirectional attention and lengthy inference steps, severely limiting real-time performance. Consequently, they are hard to simulate real-world dynamics, where outcomes must update instantaneously based on historical context and current actions. To address this, we present Matrix-Game 2.0, an interactive world model generates long videos on-the-fly via few-step auto-regressive diffusion. Our framework consists of three key components: (1) A scalable data production pipeline for Unreal Engine and GTA5 environments to effectively produce massive amounts (about 1200 hours) of video data with diverse interaction annotations; (2) An action injection module that enables frame-level mouse and keyboard inputs as interactive conditions; (3) A few-step distillation based on the casual architecture for real-time and streaming video generation. Matrix Game 2.0 can generate high-quality minute-level videos across diverse scenes at an ultra-fast speed of 25 FPS. We open-source our model weights and codebase to advance research in interactive world modeling.
SERN: Simulation-Enhanced Realistic Navigation for Multi-Agent Robotic Systems in Contested Environments
The increasing deployment of autonomous systems in complex environments necessitates efficient communication and task completion among multiple agents. This paper presents SERN (Simulation-Enhanced Realistic Navigation), a novel framework integrating virtual and physical environments for real-time collaborative decision-making in multi-robot systems. SERN addresses key challenges in asset deployment and coordination through our bi-directional SERN ROS Bridge communication framework. Our approach advances the SOTA through: accurate real-world representation in virtual environments using Unity high-fidelity simulator; synchronization of physical and virtual robot movements; efficient ROS data distribution between remote locations; and integration of SOTA semantic segmentation for enhanced environmental perception. Additionally, we introduce a Multi-Metric Cost Function (MMCF) that dynamically balances latency, reliability, computational overhead, and bandwidth consumption to optimize system performance in contested environments. We further provide theoretical justification for synchronization accuracy by proving that the positional error between physical and virtual robots remains bounded under varying network conditions. Our evaluations show a 15% to 24% improvement in latency and up to a 15% increase in processing efficiency compared to traditional ROS setups. Real-world and virtual simulation experiments with multiple robots (Clearpath Jackal and Husky) demonstrate synchronization accuracy, achieving less than 5 cm positional error and under 2^circ rotational error. These results highlight SERN's potential to enhance situational awareness and multi-agent coordination in diverse, contested environments.
Scaling Instructable Agents Across Many Simulated Worlds
Building embodied AI systems that can follow arbitrary language instructions in any 3D environment is a key challenge for creating general AI. Accomplishing this goal requires learning to ground language in perception and embodied actions, in order to accomplish complex tasks. The Scalable, Instructable, Multiworld Agent (SIMA) project tackles this by training agents to follow free-form instructions across a diverse range of virtual 3D environments, including curated research environments as well as open-ended, commercial video games. Our goal is to develop an instructable agent that can accomplish anything a human can do in any simulated 3D environment. Our approach focuses on language-driven generality while imposing minimal assumptions. Our agents interact with environments in real-time using a generic, human-like interface: the inputs are image observations and language instructions and the outputs are keyboard-and-mouse actions. This general approach is challenging, but it allows agents to ground language across many visually complex and semantically rich environments while also allowing us to readily run agents in new environments. In this paper we describe our motivation and goal, the initial progress we have made, and promising preliminary results on several diverse research environments and a variety of commercial video games.
Simulation of Nanorobots with Artificial Intelligence and Reinforcement Learning for Advanced Cancer Cell Detection and Tracking
Nanorobots are a promising development in targeted drug delivery and the treatment of neurological disorders, with potential for crossing the blood-brain barrier (BBB). These small devices leverage advancements in nanotechnology and bioengineering for precise navigation and targeted payload delivery, particularly for conditions like brain tumors, Alzheimer's disease, and Parkinson's disease. Recent progress in artificial intelligence (AI) and machine learning (ML) has improved the navigation and effectiveness of nanorobots, allowing them to detect and interact with cancer cells through biomarker analysis. This study presents a new reinforcement learning (RL) framework for optimizing nanorobot navigation in complex biological environments, focusing on cancer cell detection by analyzing the concentration gradients of surrounding biomarkers. We utilize a computer simulation model to explore the behavior of nanorobots in a three-dimensional space with cancer cells and biological barriers. The proposed method uses Q-learning to refine movement strategies based on real-time biomarker concentration data, enabling nanorobots to autonomously navigate to cancerous tissues for targeted drug delivery. This research lays the groundwork for future laboratory experiments and clinical applications, with implications for personalized medicine and less invasive cancer treatments. The integration of intelligent nanorobots could revolutionize therapeutic strategies, reducing side effects and enhancing treatment effectiveness for cancer patients. Further research will investigate the practical deployment of these technologies in medical settings, aiming to unlock the full potential of nanorobotics in healthcare.
HoloScene: Simulation-Ready Interactive 3D Worlds from a Single Video
Digitizing the physical world into accurate simulation-ready virtual environments offers significant opportunities in a variety of fields such as augmented and virtual reality, gaming, and robotics. However, current 3D reconstruction and scene-understanding methods commonly fall short in one or more critical aspects, such as geometry completeness, object interactivity, physical plausibility, photorealistic rendering, or realistic physical properties for reliable dynamic simulation. To address these limitations, we introduce HoloScene, a novel interactive 3D reconstruction framework that simultaneously achieves these requirements. HoloScene leverages a comprehensive interactive scene-graph representation, encoding object geometry, appearance, and physical properties alongside hierarchical and inter-object relationships. Reconstruction is formulated as an energy-based optimization problem, integrating observational data, physical constraints, and generative priors into a unified, coherent objective. Optimization is efficiently performed via a hybrid approach combining sampling-based exploration with gradient-based refinement. The resulting digital twins exhibit complete and precise geometry, physical stability, and realistic rendering from novel viewpoints. Evaluations conducted on multiple benchmark datasets demonstrate superior performance, while practical use-cases in interactive gaming and real-time digital-twin manipulation illustrate HoloScene's broad applicability and effectiveness. Project page: https://xiahongchi.github.io/HoloScene.
OceanSim: A GPU-Accelerated Underwater Robot Perception Simulation Framework
Underwater simulators offer support for building robust underwater perception solutions. Significant work has recently been done to develop new simulators and to advance the performance of existing underwater simulators. Still, there remains room for improvement on physics-based underwater sensor modeling and rendering efficiency. In this paper, we propose OceanSim, a high-fidelity GPU-accelerated underwater simulator to address this research gap. We propose advanced physics-based rendering techniques to reduce the sim-to-real gap for underwater image simulation. We develop OceanSim to fully leverage the computing advantages of GPUs and achieve real-time imaging sonar rendering and fast synthetic data generation. We evaluate the capabilities and realism of OceanSim using real-world data to provide qualitative and quantitative results. The code and detailed documentation are made available on the project website to support the marine robotics community: https://umfieldrobotics.github.io/OceanSim.
Inferix: A Block-Diffusion based Next-Generation Inference Engine for World Simulation
World models serve as core simulators for fields such as agentic AI, embodied AI, and gaming, capable of generating long, physically realistic, and interactive high-quality videos. Moreover, scaling these models could unlock emergent capabilities in visual perception, understanding, and reasoning, paving the way for a new paradigm that moves beyond current LLM-centric vision foundation models. A key breakthrough empowering them is the semi-autoregressive (block-diffusion) decoding paradigm, which merges the strengths of diffusion and autoregressive methods by generating video tokens in block-applying diffusion within each block while conditioning on previous ones, resulting in more coherent and stable video sequences. Crucially, it overcomes limitations of standard video diffusion by reintroducing LLM-style KV Cache management, enabling efficient, variable-length, and high-quality generation. Therefore, Inferix is specifically designed as a next-generation inference engine to enable immersive world synthesis through optimized semi-autoregressive decoding processes. This dedicated focus on world simulation distinctly sets it apart from systems engineered for high-concurrency scenarios (like vLLM or SGLang) and from classic video diffusion models (such as xDiTs). Inferix further enhances its offering with interactive video streaming and profiling, enabling real-time interaction and realistic simulation to accurately model world dynamics. Additionally, it supports efficient benchmarking through seamless integration of LV-Bench, a new fine-grained evaluation benchmark tailored for minute-long video generation scenarios. We hope the community will work together to advance Inferix and foster world model exploration.
Single-shot thermometry of simulated Bose--Einstein condensates using artificial intelligence
Precise determination of thermodynamic parameters in ultracold Bose gases remains challenging due to the destructive nature of conventional measurement techniques and inherent experimental uncertainties. We demonstrate an artificial intelligence approach for rapid, non-destructive estimation of the chemical potential and temperature from single-shot, in situ imaged density profiles of finite-temperature Bose gases. Our convolutional neural network is trained exclusively on quasi-2D `pancake' condensates in harmonic trap configurations. It achieves parameter extraction within fractions of a second. The model also demonstrates zero-shot generalisation across both trap geometry and thermalisation dynamics, successfully estimating thermodynamic parameters for toroidally trapped condensates with errors of only a few nanokelvin despite no prior exposure to such geometries during training, and maintaining predictive accuracy during dynamic thermalisation processes after a relatively brief evolution without explicit training on non-equilibrium states. These results suggest that supervised learning can overcome traditional limitations in ultracold atom thermometry, with extension to broader geometric configurations, temperature ranges, and additional parameters potentially enabling comprehensive real-time analysis of quantum gas experiments. Such capabilities could significantly streamline experimental workflows whilst improving measurement precision across a range of quantum fluid systems.
Digital Twins for Patient Care via Knowledge Graphs and Closed-Form Continuous-Time Liquid Neural Networks
Digital twin technology has is anticipated to transform healthcare, enabling personalized medicines and support, earlier diagnoses, simulated treatment outcomes, and optimized surgical plans. Digital twins are readily gaining traction in industries like manufacturing, supply chain logistics, and civil infrastructure. Not in patient care, however. The challenge of modeling complex diseases with multimodal patient data and the computational complexities of analyzing it have stifled digital twin adoption in the biomedical vertical. Yet, these major obstacles can potentially be handled by approaching these models in a different way. This paper proposes a novel framework for addressing the barriers to clinical twin modeling created by computational costs and modeling complexities. We propose structuring patient health data as a knowledge graph and using closed-form continuous-time liquid neural networks, for real-time analytics. By synthesizing multimodal patient data and leveraging the flexibility and efficiency of closed form continuous time networks and knowledge graph ontologies, our approach enables real time insights, personalized medicine, early diagnosis and intervention, and optimal surgical planning. This novel approach provides a comprehensive and adaptable view of patient health along with real-time analytics, paving the way for digital twin simulations and other anticipated benefits in healthcare.
Unbounded: A Generative Infinite Game of Character Life Simulation
We introduce the concept of a generative infinite game, a video game that transcends the traditional boundaries of finite, hard-coded systems by using generative models. Inspired by James P. Carse's distinction between finite and infinite games, we leverage recent advances in generative AI to create Unbounded: a game of character life simulation that is fully encapsulated in generative models. Specifically, Unbounded draws inspiration from sandbox life simulations and allows you to interact with your autonomous virtual character in a virtual world by feeding, playing with and guiding it - with open-ended mechanics generated by an LLM, some of which can be emergent. In order to develop Unbounded, we propose technical innovations in both the LLM and visual generation domains. Specifically, we present: (1) a specialized, distilled large language model (LLM) that dynamically generates game mechanics, narratives, and character interactions in real-time, and (2) a new dynamic regional image prompt Adapter (IP-Adapter) for vision models that ensures consistent yet flexible visual generation of a character across multiple environments. We evaluate our system through both qualitative and quantitative analysis, showing significant improvements in character life simulation, user instruction following, narrative coherence, and visual consistency for both characters and the environments compared to traditional related approaches.
Simulating the Visual World with Artificial Intelligence: A Roadmap
The landscape of video generation is shifting, from a focus on generating visually appealing clips to building virtual environments that support interaction and maintain physical plausibility. These developments point toward the emergence of video foundation models that function not only as visual generators but also as implicit world models, models that simulate the physical dynamics, agent-environment interactions, and task planning that govern real or imagined worlds. This survey provides a systematic overview of this evolution, conceptualizing modern video foundation models as the combination of two core components: an implicit world model and a video renderer. The world model encodes structured knowledge about the world, including physical laws, interaction dynamics, and agent behavior. It serves as a latent simulation engine that enables coherent visual reasoning, long-term temporal consistency, and goal-driven planning. The video renderer transforms this latent simulation into realistic visual observations, effectively producing videos as a "window" into the simulated world. We trace the progression of video generation through four generations, in which the core capabilities advance step by step, ultimately culminating in a world model, built upon a video generation model, that embodies intrinsic physical plausibility, real-time multimodal interaction, and planning capabilities spanning multiple spatiotemporal scales. For each generation, we define its core characteristics, highlight representative works, and examine their application domains such as robotics, autonomous driving, and interactive gaming. Finally, we discuss open challenges and design principles for next-generation world models, including the role of agent intelligence in shaping and evaluating these systems. An up-to-date list of related works is maintained at this link.
A Deep Reinforcement Learning-Based TCP Congestion Control Algorithm: Design, Simulation, and Evaluation
This paper presents a novel TCP congestion control algorithm based on Deep Reinforcement Learning. The proposed approach utilizes Deep Q-Networks to optimize the congestion window (cWnd) by observing key network parameters and taking real-time actions. The algorithm is trained and evaluated within the NS-3 network simulator using the OpenGym interface. The results demonstrate significant improvements over traditional TCP New Reno in terms of latency and throughput, with better adaptability to changing network conditions. This study emphasizes the potential of reinforcement learning techniques for solving complex congestion control problems in modern networks.
Mind the Gap Between Conversations for Improved Long-Term Dialogue Generation
Knowing how to end and resume conversations over time is a natural part of communication, allowing for discussions to span weeks, months, or years. The duration of gaps between conversations dictates which topics are relevant and which questions to ask, and dialogue systems which do not explicitly model time may generate responses that are unnatural. In this work we explore the idea of making dialogue models aware of time, and present GapChat, a multi-session dialogue dataset in which the time between each session varies. While the dataset is constructed in real-time, progress on events in speakers' lives is simulated in order to create realistic dialogues occurring across a long timespan. We expose time information to the model and compare different representations of time and event progress. In human evaluation we show that time-aware models perform better in metrics that judge the relevance of the chosen topics and the information gained from the conversation.
Yan: Foundational Interactive Video Generation
We present Yan, a foundational framework for interactive video generation, covering the entire pipeline from simulation and generation to editing. Specifically, Yan comprises three core modules. AAA-level Simulation: We design a highly-compressed, low-latency 3D-VAE coupled with a KV-cache-based shift-window denoising inference process, achieving real-time 1080P/60FPS interactive simulation. Multi-Modal Generation: We introduce a hierarchical autoregressive caption method that injects game-specific knowledge into open-domain multi-modal video diffusion models (VDMs), then transforming the VDM into a frame-wise, action-controllable, real-time infinite interactive video generator. Notably, when the textual and visual prompts are sourced from different domains, the model demonstrates strong generalization, allowing it to blend and compose the style and mechanics across domains flexibly according to user prompts. Multi-Granularity Editing: We propose a hybrid model that explicitly disentangles interactive mechanics simulation from visual rendering, enabling multi-granularity video content editing during interaction through text. Collectively, Yan offers an integration of these modules, pushing interactive video generation beyond isolated capabilities toward a comprehensive AI-driven interactive creation paradigm, paving the way for the next generation of creative tools, media, and entertainment. The project page is: https://greatx3.github.io/Yan/.
A Procedural World Generation Framework for Systematic Evaluation of Continual Learning
Several families of continual learning techniques have been proposed to alleviate catastrophic interference in deep neural network training on non-stationary data. However, a comprehensive comparison and analysis of limitations remains largely open due to the inaccessibility to suitable datasets. Empirical examination not only varies immensely between individual works, it further currently relies on contrived composition of benchmarks through subdivision and concatenation of various prevalent static vision datasets. In this work, our goal is to bridge this gap by introducing a computer graphics simulation framework that repeatedly renders only upcoming urban scene fragments in an endless real-time procedural world generation process. At its core lies a modular parametric generative model with adaptable generative factors. The latter can be used to flexibly compose data streams, which significantly facilitates a detailed analysis and allows for effortless investigation of various continual learning schemes.
Learning Collective Dynamics of Multi-Agent Systems using Event-based Vision
This paper proposes a novel problem: vision-based perception to learn and predict the collective dynamics of multi-agent systems, specifically focusing on interaction strength and convergence time. Multi-agent systems are defined as collections of more than ten interacting agents that exhibit complex group behaviors. Unlike prior studies that assume knowledge of agent positions, we focus on deep learning models to directly predict collective dynamics from visual data, captured as frames or events. Due to the lack of relevant datasets, we create a simulated dataset using a state-of-the-art flocking simulator, coupled with a vision-to-event conversion framework. We empirically demonstrate the effectiveness of event-based representation over traditional frame-based methods in predicting these collective behaviors. Based on our analysis, we present event-based vision for Multi-Agent dynamic Prediction (evMAP), a deep learning architecture designed for real-time, accurate understanding of interaction strength and collective behavior emergence in multi-agent systems.
Learning to Fly in Seconds
Learning-based methods, particularly Reinforcement Learning (RL), hold great promise for streamlining deployment, enhancing performance, and achieving generalization in the control of autonomous multirotor aerial vehicles. Deep RL has been able to control complex systems with impressive fidelity and agility in simulation but the simulation-to-reality transfer often brings a hard-to-bridge reality gap. Moreover, RL is commonly plagued by prohibitively long training times. In this work, we propose a novel asymmetric actor-critic-based architecture coupled with a highly reliable RL-based training paradigm for end-to-end quadrotor control. We show how curriculum learning and a highly optimized simulator enhance sample complexity and lead to fast training times. To precisely discuss the challenges related to low-level/end-to-end multirotor control, we also introduce a taxonomy that classifies the existing levels of control abstractions as well as non-linearities and domain parameters. Our framework enables Simulation-to-Reality (Sim2Real) transfer for direct RPM control after only 18 seconds of training on a consumer-grade laptop as well as its deployment on microcontrollers to control a multirotor under real-time guarantees. Finally, our solution exhibits competitive performance in trajectory tracking, as demonstrated through various experimental comparisons with existing state-of-the-art control solutions using a real Crazyflie nano quadrotor. We open source the code including a very fast multirotor dynamics simulator that can simulate about 5 months of flight per second on a laptop GPU. The fast training times and deployment to a cheap, off-the-shelf quadrotor lower the barriers to entry and help democratize the research and development of these systems.
Data-driven operator learning for energy-efficient building control
Energy-efficient ventilation control plays a vital role in reducing building energy consumption while ensuring occupant health and comfort. While Computational Fluid Dynamics (CFD) simulations offer high-fidelity modeling of airflow for building HVAC design, their high computational cost makes them impractical for practical adoption in real-time building management system. In this work, we present a data-driven framework that combines the physical accuracy of CFD with the computational efficiency of machine learning to enable energy-efficient building ventilation control. Our method jointly optimizes airflow supply rates and vent angles to reduce energy use and adhere to air quality constraints. We train a neural operator transformer to learn the mapping from building control actions to airflow field distributions using high-resolution CFD data. This learned operator enables a gradient-based control framework capable of optimal decision-making. Experimental results demonstrate that our approach achieves substantial energy savings compared to maximum airflow rate control, rule-based control, and data-driven control based on regional average CO2 predictions, while consistently maintaining safe indoor air quality. These results highlight the practicality and scalability of our method for enabling safe and energy-efficient building management.
Playable Game Generation
In recent years, Artificial Intelligence Generated Content (AIGC) has advanced from text-to-image generation to text-to-video and multimodal video synthesis. However, generating playable games presents significant challenges due to the stringent requirements for real-time interaction, high visual quality, and accurate simulation of game mechanics. Existing approaches often fall short, either lacking real-time capabilities or failing to accurately simulate interactive mechanics. To tackle the playability issue, we propose a novel method called PlayGen, which encompasses game data generation, an autoregressive DiT-based diffusion model, and a comprehensive playability-based evaluation framework. Validated on well-known 2D and 3D games, PlayGen achieves real-time interaction, ensures sufficient visual quality, and provides accurate interactive mechanics simulation. Notably, these results are sustained even after over 1000 frames of gameplay on an NVIDIA RTX 2060 GPU. Our code is publicly available: https://github.com/GreatX3/Playable-Game-Generation. Our playable demo generated by AI is: http://124.156.151.207.
AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning
StarCraft II is one of the most challenging simulated reinforcement learning environments; it is partially observable, stochastic, multi-agent, and mastering StarCraft II requires strategic planning over long time horizons with real-time low-level execution. It also has an active professional competitive scene. StarCraft II is uniquely suited for advancing offline RL algorithms, both because of its challenging nature and because Blizzard has released a massive dataset of millions of StarCraft II games played by human players. This paper leverages that and establishes a benchmark, called AlphaStar Unplugged, introducing unprecedented challenges for offline reinforcement learning. We define a dataset (a subset of Blizzard's release), tools standardizing an API for machine learning methods, and an evaluation protocol. We also present baseline agents, including behavior cloning, offline variants of actor-critic and MuZero. We improve the state of the art of agents using only offline data, and we achieve 90% win rate against previously published AlphaStar behavior cloning agent.
VR-GS: A Physical Dynamics-Aware Interactive Gaussian Splatting System in Virtual Reality
As consumer Virtual Reality (VR) and Mixed Reality (MR) technologies gain momentum, there's a growing focus on the development of engagements with 3D virtual content. Unfortunately, traditional techniques for content creation, editing, and interaction within these virtual spaces are fraught with difficulties. They tend to be not only engineering-intensive but also require extensive expertise, which adds to the frustration and inefficiency in virtual object manipulation. Our proposed VR-GS system represents a leap forward in human-centered 3D content interaction, offering a seamless and intuitive user experience. By developing a physical dynamics-aware interactive Gaussian Splatting in a Virtual Reality setting, and constructing a highly efficient two-level embedding strategy alongside deformable body simulations, VR-GS ensures real-time execution with highly realistic dynamic responses. The components of our Virtual Reality system are designed for high efficiency and effectiveness, starting from detailed scene reconstruction and object segmentation, advancing through multi-view image in-painting, and extending to interactive physics-based editing. The system also incorporates real-time deformation embedding and dynamic shadow casting, ensuring a comprehensive and engaging virtual experience.Our project page is available at: https://yingjiang96.github.io/VR-GS/.
GENIE: Gaussian Encoding for Neural Radiance Fields Interactive Editing
Neural Radiance Fields (NeRF) and Gaussian Splatting (GS) have recently transformed 3D scene representation and rendering. NeRF achieves high-fidelity novel view synthesis by learning volumetric representations through neural networks, but its implicit encoding makes editing and physical interaction challenging. In contrast, GS represents scenes as explicit collections of Gaussian primitives, enabling real-time rendering, faster training, and more intuitive manipulation. This explicit structure has made GS particularly well-suited for interactive editing and integration with physics-based simulation. In this paper, we introduce GENIE (Gaussian Encoding for Neural Radiance Fields Interactive Editing), a hybrid model that combines the photorealistic rendering quality of NeRF with the editable and structured representation of GS. Instead of using spherical harmonics for appearance modeling, we assign each Gaussian a trainable feature embedding. These embeddings are used to condition a NeRF network based on the k nearest Gaussians to each query point. To make this conditioning efficient, we introduce Ray-Traced Gaussian Proximity Search (RT-GPS), a fast nearest Gaussian search based on a modified ray-tracing pipeline. We also integrate a multi-resolution hash grid to initialize and update Gaussian features. Together, these components enable real-time, locality-aware editing: as Gaussian primitives are repositioned or modified, their interpolated influence is immediately reflected in the rendered output. By combining the strengths of implicit and explicit representations, GENIE supports intuitive scene manipulation, dynamic interaction, and compatibility with physical simulation, bridging the gap between geometry-based editing and neural rendering. The code can be found under (https://github.com/MikolajZielinski/genie)
DRAWER: Digital Reconstruction and Articulation With Environment Realism
Creating virtual digital replicas from real-world data unlocks significant potential across domains like gaming and robotics. In this paper, we present DRAWER, a novel framework that converts a video of a static indoor scene into a photorealistic and interactive digital environment. Our approach centers on two main contributions: (i) a reconstruction module based on a dual scene representation that reconstructs the scene with fine-grained geometric details, and (ii) an articulation module that identifies articulation types and hinge positions, reconstructs simulatable shapes and appearances and integrates them into the scene. The resulting virtual environment is photorealistic, interactive, and runs in real time, with compatibility for game engines and robotic simulation platforms. We demonstrate the potential of DRAWER by using it to automatically create an interactive game in Unreal Engine and to enable real-to-sim-to-real transfer for robotics applications.
OmniRe: Omni Urban Scene Reconstruction
We introduce OmniRe, a holistic approach for efficiently reconstructing high-fidelity dynamic urban scenes from on-device logs. Recent methods for modeling driving sequences using neural radiance fields or Gaussian Splatting have demonstrated the potential of reconstructing challenging dynamic scenes, but often overlook pedestrians and other non-vehicle dynamic actors, hindering a complete pipeline for dynamic urban scene reconstruction. To that end, we propose a comprehensive 3DGS framework for driving scenes, named OmniRe, that allows for accurate, full-length reconstruction of diverse dynamic objects in a driving log. OmniRe builds dynamic neural scene graphs based on Gaussian representations and constructs multiple local canonical spaces that model various dynamic actors, including vehicles, pedestrians, and cyclists, among many others. This capability is unmatched by existing methods. OmniRe allows us to holistically reconstruct different objects present in the scene, subsequently enabling the simulation of reconstructed scenarios with all actors participating in real-time (~60Hz). Extensive evaluations on the Waymo dataset show that our approach outperforms prior state-of-the-art methods quantitatively and qualitatively by a large margin. We believe our work fills a critical gap in driving reconstruction.
Pandora: Towards General World Model with Natural Language Actions and Video States
World models simulate future states of the world in response to different actions. They facilitate interactive content creation and provides a foundation for grounded, long-horizon reasoning. Current foundation models do not fully meet the capabilities of general world models: large language models (LLMs) are constrained by their reliance on language modality and their limited understanding of the physical world, while video models lack interactive action control over the world simulations. This paper makes a step towards building a general world model by introducing Pandora, a hybrid autoregressive-diffusion model that simulates world states by generating videos and allows real-time control with free-text actions. Pandora achieves domain generality, video consistency, and controllability through large-scale pretraining and instruction tuning. Crucially, Pandora bypasses the cost of training-from-scratch by integrating a pretrained LLM (7B) and a pretrained video model, requiring only additional lightweight finetuning. We illustrate extensive outputs by Pandora across diverse domains (indoor/outdoor, natural/urban, human/robot, 2D/3D, etc.). The results indicate great potential of building stronger general world models with larger-scale training.
A Digital Twin Framework for Physical-Virtual Integration in V2X-Enabled Connected Vehicle Corridors
Transportation Cyber-Physical Systems (T-CPS) enhance safety and mobility by integrating cyber and physical transportation systems. A key component of T-CPS is the Digital Twin (DT), a virtual representation that enables simulation, analysis, and optimization through real-time data exchange and communication. Although existing studies have explored DTs for vehicles, communications, pedestrians, and traffic, real-world validations and implementations of DTs that encompass infrastructure, vehicles, signals, communications, and more remain limited due to several challenges. These include accessing real-world connected infrastructure, integrating heterogeneous, multi-sourced data, ensuring real-time data processing, and synchronizing the digital and physical systems. To address these challenges, this study develops a traffic DT based on a real-world connected vehicle corridor. Leveraging the Cellular Vehicle-to-Everything (C-V2X) infrastructure in the corridor, along with communication, computing, and simulation technologies, the proposed DT accurately replicates physical vehicle behaviors, signal timing, communications, and traffic patterns within the virtual environment. Building upon the previous data pipeline, the digital system ensures robust synchronization with the physical environment. Moreover, the DT's scalable and redundant architecture enhances data integrity, making it capable of supporting future large-scale C-V2X deployments. Furthermore, its ability to provide feedback to the physical system is demonstrated through applications such as signal timing adjustments, vehicle advisory messages, and incident notifications. The proposed DT is a vital tool in T-CPS, enabling real-time traffic monitoring, prediction, and optimization to enhance the reliability and safety of transportation systems.
A Survey of Interactive Generative Video
Interactive Generative Video (IGV) has emerged as a crucial technology in response to the growing demand for high-quality, interactive video content across various domains. In this paper, we define IGV as a technology that combines generative capabilities to produce diverse high-quality video content with interactive features that enable user engagement through control signals and responsive feedback. We survey the current landscape of IGV applications, focusing on three major domains: 1) gaming, where IGV enables infinite exploration in virtual worlds; 2) embodied AI, where IGV serves as a physics-aware environment synthesizer for training agents in multimodal interaction with dynamically evolving scenes; and 3) autonomous driving, where IGV provides closed-loop simulation capabilities for safety-critical testing and validation. To guide future development, we propose a comprehensive framework that decomposes an ideal IGV system into five essential modules: Generation, Control, Memory, Dynamics, and Intelligence. Furthermore, we systematically analyze the technical challenges and future directions in realizing each component for an ideal IGV system, such as achieving real-time generation, enabling open-domain control, maintaining long-term coherence, simulating accurate physics, and integrating causal reasoning. We believe that this systematic analysis will facilitate future research and development in the field of IGV, ultimately advancing the technology toward more sophisticated and practical applications.
LatticeWorld: A Multimodal Large Language Model-Empowered Framework for Interactive Complex World Generation
Recent research has been increasingly focusing on developing 3D world models that simulate complex real-world scenarios. World models have found broad applications across various domains, including embodied AI, autonomous driving, entertainment, etc. A more realistic simulation with accurate physics will effectively narrow the sim-to-real gap and allow us to gather rich information about the real world conveniently. While traditional manual modeling has enabled the creation of virtual 3D scenes, modern approaches have leveraged advanced machine learning algorithms for 3D world generation, with most recent advances focusing on generative methods that can create virtual worlds based on user instructions. This work explores such a research direction by proposing LatticeWorld, a simple yet effective 3D world generation framework that streamlines the industrial production pipeline of 3D environments. LatticeWorld leverages lightweight LLMs (LLaMA-2-7B) alongside the industry-grade rendering engine (e.g., Unreal Engine 5) to generate a dynamic environment. Our proposed framework accepts textual descriptions and visual instructions as multimodal inputs and creates large-scale 3D interactive worlds with dynamic agents, featuring competitive multi-agent interaction, high-fidelity physics simulation, and real-time rendering. We conduct comprehensive experiments to evaluate LatticeWorld, showing that it achieves superior accuracy in scene layout generation and visual fidelity. Moreover, LatticeWorld achieves over a 90times increase in industrial production efficiency while maintaining high creative quality compared with traditional manual production methods. Our demo video is available at https://youtu.be/8VWZXpERR18
Benchmarking Large Language Models on Communicative Medical Coaching: a Novel System and Dataset
Traditional applications of natural language processing (NLP) in healthcare have predominantly focused on patient-centered services, enhancing patient interactions and care delivery, such as through medical dialogue systems. However, the potential of NLP to benefit inexperienced doctors, particularly in areas such as communicative medical coaching, remains largely unexplored. We introduce ``ChatCoach,'' an integrated human-AI cooperative framework. Within this framework, both a patient agent and a coaching agent collaboratively support medical learners in practicing their medical communication skills during consultations. Unlike traditional dialogue systems, ChatCoach provides a simulated environment where a human doctor can engage in medical dialogue with a patient agent. Simultaneously, a coaching agent provides real-time feedback to the doctor. To construct the ChatCoach system, we developed a dataset and integrated Large Language Models such as ChatGPT and Llama2, aiming to assess their effectiveness in communicative medical coaching tasks. Our comparative analysis demonstrates that instruction-tuned Llama2 significantly outperforms ChatGPT's prompting-based approaches.
A Survey on Future Frame Synthesis: Bridging Deterministic and Generative Approaches
Future Frame Synthesis (FFS), the task of generating subsequent video frames from context, represents a core challenge in machine intelligence and a cornerstone for developing predictive world models. This survey provides a comprehensive analysis of the FFS landscape, charting its critical evolution from deterministic algorithms focused on pixel-level accuracy to modern generative paradigms that prioritize semantic coherence and dynamic plausibility. We introduce a novel taxonomy organized by algorithmic stochasticity, which not only categorizes existing methods but also reveals the fundamental drivers--advances in architectures, datasets, and computational scale--behind this paradigm shift. Critically, our analysis identifies a bifurcation in the field's trajectory: one path toward efficient, real-time prediction, and another toward large-scale, generative world simulation. By pinpointing key challenges and proposing concrete research questions for both frontiers, this survey serves as an essential guide for researchers aiming to advance the frontiers of visual dynamic modeling.
NeRFMeshing: Distilling Neural Radiance Fields into Geometrically-Accurate 3D Meshes
With the introduction of Neural Radiance Fields (NeRFs), novel view synthesis has recently made a big leap forward. At the core, NeRF proposes that each 3D point can emit radiance, allowing to conduct view synthesis using differentiable volumetric rendering. While neural radiance fields can accurately represent 3D scenes for computing the image rendering, 3D meshes are still the main scene representation supported by most computer graphics and simulation pipelines, enabling tasks such as real time rendering and physics-based simulations. Obtaining 3D meshes from neural radiance fields still remains an open challenge since NeRFs are optimized for view synthesis, not enforcing an accurate underlying geometry on the radiance field. We thus propose a novel compact and flexible architecture that enables easy 3D surface reconstruction from any NeRF-driven approach. Upon having trained the radiance field, we distill the volumetric 3D representation into a Signed Surface Approximation Network, allowing easy extraction of the 3D mesh and appearance. Our final 3D mesh is physically accurate and can be rendered in real time on an array of devices.
STOPNet: Multiview-based 6-DoF Suction Detection for Transparent Objects on Production Lines
In this work, we present STOPNet, a framework for 6-DoF object suction detection on production lines, with a focus on but not limited to transparent objects, which is an important and challenging problem in robotic systems and modern industry. Current methods requiring depth input fail on transparent objects due to depth cameras' deficiency in sensing their geometry, while we proposed a novel framework to reconstruct the scene on the production line depending only on RGB input, based on multiview stereo. Compared to existing works, our method not only reconstructs the whole 3D scene in order to obtain high-quality 6-DoF suction poses in real time but also generalizes to novel environments, novel arrangements and novel objects, including challenging transparent objects, both in simulation and the real world. Extensive experiments in simulation and the real world show that our method significantly surpasses the baselines and has better generalizability, which caters to practical industrial needs.
TimeArena: Shaping Efficient Multitasking Language Agents in a Time-Aware Simulation
Despite remarkable advancements in emulating human-like behavior through Large Language Models (LLMs), current textual simulations do not adequately address the notion of time. To this end, we introduce TimeArena, a novel textual simulated environment that incorporates complex temporal dynamics and constraints that better reflect real-life planning scenarios. In TimeArena, agents are asked to complete multiple tasks as soon as possible, allowing for parallel processing to save time. We implement the dependency between actions, the time duration for each action, and the occupancy of the agent and the objects in the environment. TimeArena grounds to 30 real-world tasks in cooking, household activities, and laboratory work. We conduct extensive experiments with various state-of-the-art LLMs using TimeArena. Our findings reveal that even the most powerful models, e.g., GPT-4, still lag behind humans in effective multitasking, underscoring the need for enhanced temporal awareness in the development of language agents.
From Virtual Games to Real-World Play
We introduce RealPlay, a neural network-based real-world game engine that enables interactive video generation from user control signals. Unlike prior works focused on game-style visuals, RealPlay aims to produce photorealistic, temporally consistent video sequences that resemble real-world footage. It operates in an interactive loop: users observe a generated scene, issue a control command, and receive a short video chunk in response. To enable such realistic and responsive generation, we address key challenges including iterative chunk-wise prediction for low-latency feedback, temporal consistency across iterations, and accurate control response. RealPlay is trained on a combination of labeled game data and unlabeled real-world videos, without requiring real-world action annotations. Notably, we observe two forms of generalization: (1) control transfer-RealPlay effectively maps control signals from virtual to real-world scenarios; and (2) entity transfer-although training labels originate solely from a car racing game, RealPlay generalizes to control diverse real-world entities, including bicycles and pedestrians, beyond vehicles. Project page can be found: https://wenqsun.github.io/RealPlay/
Discrete-Time Hybrid Automata Learning: Legged Locomotion Meets Skateboarding
This paper introduces Discrete-time Hybrid Automata Learning (DHAL), a framework using on-policy Reinforcement Learning to identify and execute mode-switching without trajectory segmentation or event function learning. Hybrid dynamical systems, which include continuous flow and discrete mode switching, can model robotics tasks like legged robot locomotion. Model-based methods usually depend on predefined gaits, while model-free approaches lack explicit mode-switching knowledge. Current methods identify discrete modes via segmentation before regressing continuous flow, but learning high-dimensional complex rigid body dynamics without trajectory labels or segmentation is a challenging open problem. Our approach incorporates a beta policy distribution and a multi-critic architecture to model contact-guided motions, exemplified by a challenging quadrupedal robot skateboard task. We validate our method through simulations and real-world tests, demonstrating robust performance in hybrid dynamical systems.
Inference-Time Policy Steering through Human Interactions
Generative policies trained with human demonstrations can autonomously accomplish multimodal, long-horizon tasks. However, during inference, humans are often removed from the policy execution loop, limiting the ability to guide a pre-trained policy towards a specific sub-goal or trajectory shape among multiple predictions. Naive human intervention may inadvertently exacerbate distribution shift, leading to constraint violations or execution failures. To better align policy output with human intent without inducing out-of-distribution errors, we propose an Inference-Time Policy Steering (ITPS) framework that leverages human interactions to bias the generative sampling process, rather than fine-tuning the policy on interaction data. We evaluate ITPS across three simulated and real-world benchmarks, testing three forms of human interaction and associated alignment distance metrics. Among six sampling strategies, our proposed stochastic sampling with diffusion policy achieves the best trade-off between alignment and distribution shift. Videos are available at https://yanweiw.github.io/itps/.
Sequential Predictive Conformal Inference for Time Series
We present a new distribution-free conformal prediction algorithm for sequential data (e.g., time series), called the sequential predictive conformal inference (SPCI). We specifically account for the nature that time series data are non-exchangeable, and thus many existing conformal prediction algorithms are not applicable. The main idea is to adaptively re-estimate the conditional quantile of non-conformity scores (e.g., prediction residuals), upon exploiting the temporal dependence among them. More precisely, we cast the problem of conformal prediction interval as predicting the quantile of a future residual, given a user-specified point prediction algorithm. Theoretically, we establish asymptotic valid conditional coverage upon extending consistency analyses in quantile regression. Using simulation and real-data experiments, we demonstrate a significant reduction in interval width of SPCI compared to other existing methods under the desired empirical coverage.
Learning Sim-to-Real Humanoid Locomotion in 15 Minutes
Massively parallel simulation has reduced reinforcement learning (RL) training time for robots from days to minutes. However, achieving fast and reliable sim-to-real RL for humanoid control remains difficult due to the challenges introduced by factors such as high dimensionality and domain randomization. In this work, we introduce a simple and practical recipe based on off-policy RL algorithms, i.e., FastSAC and FastTD3, that enables rapid training of humanoid locomotion policies in just 15 minutes with a single RTX 4090 GPU. Our simple recipe stabilizes off-policy RL algorithms at massive scale with thousands of parallel environments through carefully tuned design choices and minimalist reward functions. We demonstrate rapid end-to-end learning of humanoid locomotion controllers on Unitree G1 and Booster T1 robots under strong domain randomization, e.g., randomized dynamics, rough terrain, and push perturbations, as well as fast training of whole-body human-motion tracking policies. We provide videos and open-source implementation at: https://younggyo.me/fastsac-humanoid.
Data-Driven Traffic Simulation for an Intersection in a Metropolis
We present a novel data-driven simulation environment for modeling traffic in metropolitan street intersections. Using real-world tracking data collected over an extended period of time, we train trajectory forecasting models to learn agent interactions and environmental constraints that are difficult to capture conventionally. Trajectories of new agents are first coarsely generated by sampling from the spatial and temporal generative distributions, then refined using state-of-the-art trajectory forecasting models. The simulation can run either autonomously, or under explicit human control conditioned on the generative distributions. We present the experiments for a variety of model configurations. Under an iterative prediction scheme, the way-point-supervised TrajNet++ model obtained 0.36 Final Displacement Error (FDE) in 20 FPS on an NVIDIA A100 GPU.
TF-Mamba: A Time-Frequency Network for Sound Source Localization
Sound source localization (SSL) determines the position of sound sources using multi-channel audio data. It is commonly used to improve speech enhancement and separation. Extracting spatial features is crucial for SSL, especially in challenging acoustic environments. Recently, a novel structure referred to as Mamba demonstrated notable performance across various sequence-based modalities. This study introduces the Mamba for SSL tasks. We consider the Mamba-based model to analyze spatial features from speech signals by fusing both time and frequency features, and we develop an SSL system called TF-Mamba. This system integrates time and frequency fusion, with Bidirectional Mamba managing both time-wise and frequency-wise processing. We conduct the experiments on the simulated and real datasets. Experiments show that TF-Mamba significantly outperforms other advanced methods. The code will be publicly released in due course.
On the Geographic Spread of Chikungunya between Brazil and Florida: A Multi-patch Model with Time Delay
Chikungunya (CHIK) is a viral disease transmitted to humans through the bites of {\it Aedes} mosquitoes infected with the chikungunya virus (CHIKV). CHIKV has been imported annually to Florida in the last decade due to Miami's crucial location as a hub for international travel, particularly from Central and South America including Brazil, where CHIK is endemic. This work addresses to the geographic spread of CHIK, incorporating factors such as human movement, temperature dependency, as well as vertical transmission, and incubation periods, for different patches. Central to the model is the integration of a multi-patch framework, and in the numerical analysis it is considered human movement between endemic Brazilian states and Florida. We establish crucial correlations between the mosquito reproduction number R_{m} and the disease reproduction number R_{0} with the disease dynamics in a multi-patch environment, encompassing not only a numerical analysis but also from a theoretical perspective. Through numerical simulations, validated with real population and temperature data, it is possible to understand the disease dynamics under many different scenarios and make future projections, offering insights for potential effective control strategies, as well as addressing the timing for these strategies to be adopted.
PaperBot: Learning to Design Real-World Tools Using Paper
Paper is a cheap, recyclable, and clean material that is often used to make practical tools. Traditional tool design either relies on simulation or physical analysis, which is often inaccurate and time-consuming. In this paper, we propose PaperBot, an approach that directly learns to design and use a tool in the real world using paper without human intervention. We demonstrated the effectiveness and efficiency of PaperBot on two tool design tasks: 1. learning to fold and throw paper airplanes for maximum travel distance 2. learning to cut paper into grippers that exert maximum gripping force. We present a self-supervised learning framework that learns to perform a sequence of folding, cutting, and dynamic manipulation actions in order to optimize the design and use of a tool. We deploy our system to a real-world two-arm robotic system to solve challenging design tasks that involve aerodynamics (paper airplane) and friction (paper gripper) that are impossible to simulate accurately.
Sim-to-Real Transfer for Mobile Robots with Reinforcement Learning: from NVIDIA Isaac Sim to Gazebo and Real ROS 2 Robots
Unprecedented agility and dexterous manipulation have been demonstrated with controllers based on deep reinforcement learning (RL), with a significant impact on legged and humanoid robots. Modern tooling and simulation platforms, such as NVIDIA Isaac Sim, have been enabling such advances. This article focuses on demonstrating the applications of Isaac in local planning and obstacle avoidance as one of the most fundamental ways in which a mobile robot interacts with its environments. Although there is extensive research on proprioception-based RL policies, the article highlights less standardized and reproducible approaches to exteroception. At the same time, the article aims to provide a base framework for end-to-end local navigation policies and how a custom robot can be trained in such simulation environment. We benchmark end-to-end policies with the state-of-the-art Nav2, navigation stack in Robot Operating System (ROS). We also cover the sim-to-real transfer process by demonstrating zero-shot transferability of policies trained in the Isaac simulator to real-world robots. This is further evidenced by the tests with different simulated robots, which show the generalization of the learned policy. Finally, the benchmarks demonstrate comparable performance to Nav2, opening the door to quick deployment of state-of-the-art end-to-end local planners for custom robot platforms, but importantly furthering the possibilities by expanding the state and action spaces or task definitions for more complex missions. Overall, with this article we introduce the most important steps, and aspects to consider, in deploying RL policies for local path planning and obstacle avoidance with Isaac Sim training, Gazebo testing, and ROS 2 for real-time inference in real robots. The code is available at https://github.com/sahars93/RL-Navigation.
MotionTTT: 2D Test-Time-Training Motion Estimation for 3D Motion Corrected MRI
A major challenge of the long measurement times in magnetic resonance imaging (MRI), an important medical imaging technology, is that patients may move during data acquisition. This leads to severe motion artifacts in the reconstructed images and volumes. In this paper, we propose a deep learning-based test-time-training method for accurate motion estimation. The key idea is that a neural network trained for motion-free reconstruction has a small loss if there is no motion, thus optimizing over motion parameters passed through the reconstruction network enables accurate estimation of motion. The estimated motion parameters enable to correct for the motion and to reconstruct accurate motion-corrected images. Our method uses 2D reconstruction networks to estimate rigid motion in 3D, and constitutes the first deep learning based method for 3D rigid motion estimation towards 3D-motion-corrected MRI. We show that our method can provably reconstruct motion parameters for a simple signal and neural network model. We demonstrate the effectiveness of our method for both retrospectively simulated motion and prospectively collected real motion-corrupted data.
HR-INR: Continuous Space-Time Video Super-Resolution via Event Camera
Continuous space-time video super-resolution (C-STVSR) aims to simultaneously enhance video resolution and frame rate at an arbitrary scale. Recently, implicit neural representation (INR) has been applied to video restoration, representing videos as implicit fields that can be decoded at an arbitrary scale. However, the highly ill-posed nature of C-STVSR limits the effectiveness of current INR-based methods: they assume linear motion between frames and use interpolation or feature warping to generate features at arbitrary spatiotemporal positions with two consecutive frames. This restrains C-STVSR from capturing rapid and nonlinear motion and long-term dependencies (involving more than two frames) in complex dynamic scenes. In this paper, we propose a novel C-STVSR framework, called HR-INR, which captures both holistic dependencies and regional motions based on INR. It is assisted by an event camera, a novel sensor renowned for its high temporal resolution and low latency. To fully utilize the rich temporal information from events, we design a feature extraction consisting of (1) a regional event feature extractor - taking events as inputs via the proposed event temporal pyramid representation to capture the regional nonlinear motion and (2) a holistic event-frame feature extractor for long-term dependence and continuity motion. We then propose a novel INR-based decoder with spatiotemporal embeddings to capture long-term dependencies with a larger temporal perception field. We validate the effectiveness and generalization of our method on four datasets (both simulated and real data), showing the superiority of our method.
Multi-Fidelity Reinforcement Learning for Time-Optimal Quadrotor Re-planning
High-speed online trajectory planning for UAVs poses a significant challenge due to the need for precise modeling of complex dynamics while also being constrained by computational limitations. This paper presents a multi-fidelity reinforcement learning method (MFRL) that aims to effectively create a realistic dynamics model and simultaneously train a planning policy that can be readily deployed in real-time applications. The proposed method involves the co-training of a planning policy and a reward estimator; the latter predicts the performance of the policy's output and is trained efficiently through multi-fidelity Bayesian optimization. This optimization approach models the correlation between different fidelity levels, thereby constructing a high-fidelity model based on a low-fidelity foundation, which enables the accurate development of the reward model with limited high-fidelity experiments. The framework is further extended to include real-world flight experiments in reinforcement learning training, allowing the reward model to precisely reflect real-world constraints and broadening the policy's applicability to real-world scenarios. We present rigorous evaluations by training and testing the planning policy in both simulated and real-world environments. The resulting trained policy not only generates faster and more reliable trajectories compared to the baseline snap minimization method, but it also achieves trajectory updates in 2 ms on average, while the baseline method takes several minutes.
Manipulation as in Simulation: Enabling Accurate Geometry Perception in Robots
Modern robotic manipulation primarily relies on visual observations in a 2D color space for skill learning but suffers from poor generalization. In contrast, humans, living in a 3D world, depend more on physical properties-such as distance, size, and shape-than on texture when interacting with objects. Since such 3D geometric information can be acquired from widely available depth cameras, it appears feasible to endow robots with similar perceptual capabilities. Our pilot study found that using depth cameras for manipulation is challenging, primarily due to their limited accuracy and susceptibility to various types of noise. In this work, we propose Camera Depth Models (CDMs) as a simple plugin on daily-use depth cameras, which take RGB images and raw depth signals as input and output denoised, accurate metric depth. To achieve this, we develop a neural data engine that generates high-quality paired data from simulation by modeling a depth camera's noise pattern. Our results show that CDMs achieve nearly simulation-level accuracy in depth prediction, effectively bridging the sim-to-real gap for manipulation tasks. Notably, our experiments demonstrate, for the first time, that a policy trained on raw simulated depth, without the need for adding noise or real-world fine-tuning, generalizes seamlessly to real-world robots on two challenging long-horizon tasks involving articulated, reflective, and slender objects, with little to no performance degradation. We hope our findings will inspire future research in utilizing simulation data and 3D information in general robot policies.
Learnable Adaptive Time-Frequency Representation via Differentiable Short-Time Fourier Transform
The short-time Fourier transform (STFT) is widely used for analyzing non-stationary signals. However, its performance is highly sensitive to its parameters, and manual or heuristic tuning often yields suboptimal results. To overcome this limitation, we propose a unified differentiable formulation of the STFT that enables gradient-based optimization of its parameters. This approach addresses the limitations of traditional STFT parameter tuning methods, which often rely on computationally intensive discrete searches. It enables fine-tuning of the time-frequency representation (TFR) based on any desired criterion. Moreover, our approach integrates seamlessly with neural networks, allowing joint optimization of the STFT parameters and network weights. The efficacy of the proposed differentiable STFT in enhancing TFRs and improving performance in downstream tasks is demonstrated through experiments on both simulated and real-world data.
Search-TTA: A Multimodal Test-Time Adaptation Framework for Visual Search in the Wild
To perform autonomous visual search for environmental monitoring, a robot may leverage satellite imagery as a prior map. This can help inform coarse, high-level search and exploration strategies, even when such images lack sufficient resolution to allow fine-grained, explicit visual recognition of targets. However, there are some challenges to overcome with using satellite images to direct visual search. For one, targets that are unseen in satellite images are underrepresented (compared to ground images) in most existing datasets, and thus vision models trained on these datasets fail to reason effectively based on indirect visual cues. Furthermore, approaches which leverage large Vision Language Models (VLMs) for generalization may yield inaccurate outputs due to hallucination, leading to inefficient search. To address these challenges, we introduce Search-TTA, a multimodal test-time adaptation framework that can accept text and/or image input. First, we pretrain a remote sensing image encoder to align with CLIP's visual encoder to output probability distributions of target presence used for visual search. Second, our framework dynamically refines CLIP's predictions during search using a test-time adaptation mechanism. Through a feedback loop inspired by Spatial Poisson Point Processes, gradient updates (weighted by uncertainty) are used to correct (potentially inaccurate) predictions and improve search performance. To validate Search-TTA's performance, we curate a visual search dataset based on internet-scale ecological data. We find that Search-TTA improves planner performance by up to 9.7%, particularly in cases with poor initial CLIP predictions. It also achieves comparable performance to state-of-the-art VLMs. Finally, we deploy Search-TTA on a real UAV via hardware-in-the-loop testing, by simulating its operation within a large-scale simulation that provides onboard sensing.
A Scalable and Reproducible System-on-Chip Simulation for Reinforcement Learning
Deep Reinforcement Learning (DRL) underlies in a simulated environment and optimizes objective goals. By extending the conventional interaction scheme, this paper proffers gym-ds3, a scalable and reproducible open environment tailored for a high-fidelity Domain-Specific System-on-Chip (DSSoC) application. The simulation corroborates to schedule hierarchical jobs onto heterogeneous System-on-Chip (SoC) processors and bridges the system to reinforcement learning research. We systematically analyze the representative SoC simulator and discuss the primary challenging aspects that the system (1) continuously generates indefinite jobs at a rapid injection rate, (2) optimizes complex objectives, and (3) operates in steady-state scheduling. We provide exemplary snippets and experimentally demonstrate the run-time performances on different schedulers that successfully mimic results achieved from the standard DS3 framework and real-world embedded systems.
ReProHRL: Towards Multi-Goal Navigation in the Real World using Hierarchical Agents
Robots have been successfully used to perform tasks with high precision. In real-world environments with sparse rewards and multiple goals, learning is still a major challenge and Reinforcement Learning (RL) algorithms fail to learn good policies. Training in simulation environments and then fine-tuning in the real world is a common approach. However, adapting to the real-world setting is a challenge. In this paper, we present a method named Ready for Production Hierarchical RL (ReProHRL) that divides tasks with hierarchical multi-goal navigation guided by reinforcement learning. We also use object detectors as a pre-processing step to learn multi-goal navigation and transfer it to the real world. Empirical results show that the proposed ReProHRL method outperforms the state-of-the-art baseline in simulation and real-world environments in terms of both training time and performance. Although both methods achieve a 100% success rate in a simple environment for single goal-based navigation, in a more complex environment and multi-goal setting, the proposed method outperforms the baseline by 18% and 5%, respectively. For the real-world implementation and proof of concept demonstration, we deploy the proposed method on a nano-drone named Crazyflie with a front camera to perform multi-goal navigation experiments.
ORV: 4D Occupancy-centric Robot Video Generation
Acquiring real-world robotic simulation data through teleoperation is notoriously time-consuming and labor-intensive. Recently, action-driven generative models have gained widespread adoption in robot learning and simulation, as they eliminate safety concerns and reduce maintenance efforts. However, the action sequences used in these methods often result in limited control precision and poor generalization due to their globally coarse alignment. To address these limitations, we propose ORV, an Occupancy-centric Robot Video generation framework, which utilizes 4D semantic occupancy sequences as a fine-grained representation to provide more accurate semantic and geometric guidance for video generation. By leveraging occupancy-based representations, ORV enables seamless translation of simulation data into photorealistic robot videos, while ensuring high temporal consistency and precise controllability. Furthermore, our framework supports the simultaneous generation of multi-view videos of robot gripping operations - an important capability for downstream robotic learning tasks. Extensive experimental results demonstrate that ORV consistently outperforms existing baseline methods across various datasets and sub-tasks. Demo, Code and Model: https://orangesodahub.github.io/ORV
Is Artificial Intelligence Generated Image Detection a Solved Problem?
The rapid advancement of generative models, such as GANs and Diffusion models, has enabled the creation of highly realistic synthetic images, raising serious concerns about misinformation, deepfakes, and copyright infringement. Although numerous Artificial Intelligence Generated Image (AIGI) detectors have been proposed, often reporting high accuracy, their effectiveness in real-world scenarios remains questionable. To bridge this gap, we introduce AIGIBench, a comprehensive benchmark designed to rigorously evaluate the robustness and generalization capabilities of state-of-the-art AIGI detectors. AIGIBench simulates real-world challenges through four core tasks: multi-source generalization, robustness to image degradation, sensitivity to data augmentation, and impact of test-time pre-processing. It includes 23 diverse fake image subsets that span both advanced and widely adopted image generation techniques, along with real-world samples collected from social media and AI art platforms. Extensive experiments on 11 advanced detectors demonstrate that, despite their high reported accuracy in controlled settings, these detectors suffer significant performance drops on real-world data, limited benefits from common augmentations, and nuanced effects of pre-processing, highlighting the need for more robust detection strategies. By providing a unified and realistic evaluation framework, AIGIBench offers valuable insights to guide future research toward dependable and generalizable AIGI detection.
