new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 1

QUEACO: Borrowing Treasures from Weakly-labeled Behavior Data for Query Attribute Value Extraction

We study the problem of query attribute value extraction, which aims to identify named entities from user queries as diverse surface form attribute values and afterward transform them into formally canonical forms. Such a problem consists of two phases: {named entity recognition (NER)} and {attribute value normalization (AVN)}. However, existing works only focus on the NER phase but neglect equally important AVN. To bridge this gap, this paper proposes a unified query attribute value extraction system in e-commerce search named QUEACO, which involves both two phases. Moreover, by leveraging large-scale weakly-labeled behavior data, we further improve the extraction performance with less supervision cost. Specifically, for the NER phase, QUEACO adopts a novel teacher-student network, where a teacher network that is trained on the strongly-labeled data generates pseudo-labels to refine the weakly-labeled data for training a student network. Meanwhile, the teacher network can be dynamically adapted by the feedback of the student's performance on strongly-labeled data to maximally denoise the noisy supervisions from the weak labels. For the AVN phase, we also leverage the weakly-labeled query-to-attribute behavior data to normalize surface form attribute values from queries into canonical forms from products. Extensive experiments on a real-world large-scale E-commerce dataset demonstrate the effectiveness of QUEACO.

  • 10 authors
·
Aug 18, 2021

FaVChat: Hierarchical Prompt-Query Guided Facial Video Understanding with Data-Efficient GRPO

Multi-modal large language models (MLLMs) have shown strong capability in video understanding but still struggle with fine-grained visual comprehension, as pure visual encoders often lose subtle cues essential for precise reasoning. To address this limitation, we propose FaVChat, a Video-MLLM specifically designed for fine-grained facial understanding. FaVChat introduces a multi-level prompt-guided feature extraction mechanism that progressively captures task-relevant information from three complementary stages: low-level transformer layers for textures and motion, medium-level learnable queries for discriminative regions, and high-level adaptive feature weighting for semantic alignment. These enriched features are dynamically fused and fed into the LLM to enable more accurate fine-grained reasoning. To further enhance the model's ability to capture fine-grained facial attributes and maximize the utility of limited data, we propose Date-Efficient GRPO, a novel data-efficient reinforcement learning (RL) algorithm that maximizes the utility of each training sample through per-instance utility estimation and dynamic lifecycle scheduling. Extensive zero-shot evaluations across emotion recognition, explainable reasoning, and textual expression analysis demonstrate that FaVChat achieves finer-grained understanding, stronger accuracy, and better generalization than existing Video-MLLMs, even when trained with only 10K RL samples.

  • 9 authors
·
Mar 12, 2025

CaBaGe: Data-Free Model Extraction using ClAss BAlanced Generator Ensemble

Machine Learning as a Service (MLaaS) is often provided as a pay-per-query, black-box system to clients. Such a black-box approach not only hinders open replication, validation, and interpretation of model results, but also makes it harder for white-hat researchers to identify vulnerabilities in the MLaaS systems. Model extraction is a promising technique to address these challenges by reverse-engineering black-box models. Since training data is typically unavailable for MLaaS models, this paper focuses on the realistic version of it: data-free model extraction. We propose a data-free model extraction approach, CaBaGe, to achieve higher model extraction accuracy with a small number of queries. Our innovations include (1) a novel experience replay for focusing on difficult training samples; (2) an ensemble of generators for steadily producing diverse synthetic data; and (3) a selective filtering process for querying the victim model with harder, more balanced samples. In addition, we create a more realistic setting, for the first time, where the attacker has no knowledge of the number of classes in the victim training data, and create a solution to learn the number of classes on the fly. Our evaluation shows that CaBaGe outperforms existing techniques on seven datasets -- MNIST, FMNIST, SVHN, CIFAR-10, CIFAR-100, ImageNet-subset, and Tiny ImageNet -- with an accuracy improvement of the extracted models by up to 43.13%. Furthermore, the number of queries required to extract a clone model matching the final accuracy of prior work is reduced by up to 75.7%.

  • 4 authors
·
Sep 16, 2024

Performance Gap in Entity Knowledge Extraction Across Modalities in Vision Language Models

Vision-language models (VLMs) excel at extracting and reasoning about information from images. Yet, their capacity to leverage internal knowledge about specific entities remains underexplored. This work investigates the disparity in model performance when answering factual questions about an entity described in text versus depicted in an image. Our results reveal a significant accuracy drop - reaching 18% for some models - when the entity is presented visually instead of textually. To study this gap we present PopVQA, a dataset which allows separating entity recognition and question answering, and use it to benchmark several models. We hypothesize that this decline arises from limitations in how information flows from image tokens to query tokens. Thus, we use mechanistic interpretability tools to reveal that, although image tokens are preprocessed by the vision encoder, meaningful information flow from these tokens occurs only in the much deeper layers. Furthermore, critical image processing happens in the language model's middle layers, allowing few layers for consecutive reasoning, highlighting a potential inefficiency in how the model utilizes its layers for reasoning. These insights shed light on the internal mechanics of VLMs and offer pathways for enhancing their reasoning capabilities. PopVQA can be found at https://huggingface.co/datasets/idoco/PopVQA.

  • 4 authors
·
Dec 18, 2024

Q-Adapter: Visual Query Adapter for Extracting Textually-related Features in Video Captioning

Recent advances in video captioning are driven by large-scale pretrained models, which follow the standard "pre-training followed by fine-tuning" paradigm, where the full model is fine-tuned for downstream tasks. Although effective, this approach becomes computationally prohibitive as the model size increases. The Parameter-Efficient Fine-Tuning (PEFT) approach offers a promising alternative, but primarily focuses on the language components of Multimodal Large Language Models (MLLMs). Despite recent progress, PEFT remains underexplored in multimodal tasks and lacks sufficient understanding of visual information during fine-tuning the model. To bridge this gap, we propose Query-Adapter (Q-Adapter), a lightweight visual adapter module designed to enhance MLLMs by enabling efficient fine-tuning for the video captioning task. Q-Adapter introduces learnable query tokens and a gating layer into Vision Encoder, enabling effective extraction of sparse, caption-relevant features without relying on external textual supervision. We evaluate Q-Adapter on two well-known video captioning datasets, MSR-VTT and MSVD, where it achieves state-of-the-art performance among the methods that take the PEFT approach across BLEU@4, METEOR, ROUGE-L, and CIDEr metrics. Q-Adapter also achieves competitive performance compared to methods that take the full fine-tuning approach while requiring only 1.4% of the parameters. We further analyze the impact of key hyperparameters and design choices on fine-tuning effectiveness, providing insights into optimization strategies for adapter-based learning. These results highlight the strong potential of Q-Adapter in balancing caption quality and parameter efficiency, demonstrating its scalability for video-language modeling.

  • 4 authors
·
Oct 11, 2025

Structured prompt interrogation and recursive extraction of semantics (SPIRES): A method for populating knowledge bases using zero-shot learning

Creating knowledge bases and ontologies is a time consuming task that relies on a manual curation. AI/NLP approaches can assist expert curators in populating these knowledge bases, but current approaches rely on extensive training data, and are not able to populate arbitrary complex nested knowledge schemas. Here we present Structured Prompt Interrogation and Recursive Extraction of Semantics (SPIRES), a Knowledge Extraction approach that relies on the ability of Large Language Models (LLMs) to perform zero-shot learning (ZSL) and general-purpose query answering from flexible prompts and return information conforming to a specified schema. Given a detailed, user-defined knowledge schema and an input text, SPIRES recursively performs prompt interrogation against GPT-3+ to obtain a set of responses matching the provided schema. SPIRES uses existing ontologies and vocabularies to provide identifiers for all matched elements. We present examples of use of SPIRES in different domains, including extraction of food recipes, multi-species cellular signaling pathways, disease treatments, multi-step drug mechanisms, and chemical to disease causation graphs. Current SPIRES accuracy is comparable to the mid-range of existing Relation Extraction (RE) methods, but has the advantage of easy customization, flexibility, and, crucially, the ability to perform new tasks in the absence of any training data. This method supports a general strategy of leveraging the language interpreting capabilities of LLMs to assemble knowledge bases, assisting manual knowledge curation and acquisition while supporting validation with publicly-available databases and ontologies external to the LLM. SPIRES is available as part of the open source OntoGPT package: https://github.com/ monarch-initiative/ontogpt.

  • 12 authors
·
Apr 5, 2023

A Retrospective Systematic Study on Hierarchical Sparse Query Transformer-assisted Ultrasound Screening for Early Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC), ranking as the third leading cause of cancer-related mortality worldwide, demands urgent improvements in early detection to enhance patient survival. While ultrasound remains the preferred screening modality due to its cost-effectiveness and real-time capabilities, its sensitivity (59%-78%) heavily relies on radiologists' expertise, leading to inconsistent diagnostic outcomes and operational inefficiencies. Recent advancements in AI technology offer promising solutions to bridge this gap. This study introduces the Hierarchical Sparse Query Transformer (HSQformer), a novel hybrid architecture that synergizes CNNs' local feature extraction with Vision Transformers' global contextual awareness through latent space representation and sparse learning. By dynamically activating task-specific experts via a Mixture-of-Experts (MoE) framework, HSQformer achieves hierarchical feature integration without structural redundancy. Evaluated across three clinical scenarios: single-center, multi-center, and high-risk patient cohorts, HSQformer outperforms state-of-the-art models (e.g., 95.38% AUC in multi-center testing) and matches senior radiologists' diagnostic accuracy while significantly surpassing junior counterparts. These results highlight the potential of AI-assisted tools to standardize HCC screening, reduce dependency on human expertise, and improve early diagnosis rates. The full code is available at https://github.com/Asunatan/HSQformer.

  • 11 authors
·
Feb 5, 2025

Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG via Multi-Partite Graph and Query-Driven Iterative Retrieval

Despite the remarkable progress of Large Language Models (LLMs), their performance in question answering (QA) remains limited by the lack of domain-specific and up-to-date knowledge. Retrieval-Augmented Generation (RAG) addresses this limitation by incorporating external information, often from graph-structured data. However, existing graph-based RAG methods suffer from poor graph quality due to incomplete extraction and insufficient utilization of query information during retrieval. To overcome these limitations, we propose Clue-RAG, a novel approach that introduces (1) a multi-partite graph index incorporates Chunk, knowledge unit, and entity to capture semantic content at multiple levels of granularity, coupled with a hybrid extraction strategy that reduces LLM token usage while still producing accurate and disambiguated knowledge units, and (2) Q-Iter, a query-driven iterative retrieval strategy that enhances relevance through semantic search and constrained graph traversal. Experiments on three QA benchmarks show that Clue-RAG significantly outperforms state-of-the-art baselines, achieving up to 99.33% higher Accuracy and 113.51% higher F1 score while reducing indexing costs by 72.58%. Remarkably, Clue-RAG matches or outperforms baselines even without using an LLM for indexing. These results demonstrate the effectiveness and cost-efficiency of Clue-RAG in advancing graph-based RAG systems.

  • 5 authors
·
Jul 11, 2025

AGENTiGraph: An Interactive Knowledge Graph Platform for LLM-based Chatbots Utilizing Private Data

Large Language Models~(LLMs) have demonstrated capabilities across various applications but face challenges such as hallucination, limited reasoning abilities, and factual inconsistencies, especially when tackling complex, domain-specific tasks like question answering~(QA). While Knowledge Graphs~(KGs) have been shown to help mitigate these issues, research on the integration of LLMs with background KGs remains limited. In particular, user accessibility and the flexibility of the underlying KG have not been thoroughly explored. We introduce AGENTiGraph (Adaptive Generative ENgine for Task-based Interaction and Graphical Representation), a platform for knowledge management through natural language interaction. It integrates knowledge extraction, integration, and real-time visualization. AGENTiGraph employs a multi-agent architecture to dynamically interpret user intents, manage tasks, and integrate new knowledge, ensuring adaptability to evolving user requirements and data contexts. Our approach demonstrates superior performance in knowledge graph interactions, particularly for complex domain-specific tasks. Experimental results on a dataset of 3,500 test cases show AGENTiGraph significantly outperforms state-of-the-art zero-shot baselines, achieving 95.12\% accuracy in task classification and 90.45\% success rate in task execution. User studies corroborate its effectiveness in real-world scenarios. To showcase versatility, we extended AGENTiGraph to legislation and healthcare domains, constructing specialized KGs capable of answering complex queries in legal and medical contexts.

  • 13 authors
·
Oct 15, 2024

Scalable Video Object Segmentation with Simplified Framework

The current popular methods for video object segmentation (VOS) implement feature matching through several hand-crafted modules that separately perform feature extraction and matching. However, the above hand-crafted designs empirically cause insufficient target interaction, thus limiting the dynamic target-aware feature learning in VOS. To tackle these limitations, this paper presents a scalable Simplified VOS (SimVOS) framework to perform joint feature extraction and matching by leveraging a single transformer backbone. Specifically, SimVOS employs a scalable ViT backbone for simultaneous feature extraction and matching between query and reference features. This design enables SimVOS to learn better target-ware features for accurate mask prediction. More importantly, SimVOS could directly apply well-pretrained ViT backbones (e.g., MAE) for VOS, which bridges the gap between VOS and large-scale self-supervised pre-training. To achieve a better performance-speed trade-off, we further explore within-frame attention and propose a new token refinement module to improve the running speed and save computational cost. Experimentally, our SimVOS achieves state-of-the-art results on popular video object segmentation benchmarks, i.e., DAVIS-2017 (88.0% J&F), DAVIS-2016 (92.9% J&F) and YouTube-VOS 2019 (84.2% J&F), without applying any synthetic video or BL30K pre-training used in previous VOS approaches.

  • 4 authors
·
Aug 19, 2023

EXIT: Context-Aware Extractive Compression for Enhancing Retrieval-Augmented Generation

We introduce EXIT, an extractive context compression framework that enhances both the effectiveness and efficiency of retrieval-augmented generation (RAG) in question answering (QA). Current RAG systems often struggle when retrieval models fail to rank the most relevant documents, leading to the inclusion of more context at the expense of latency and accuracy. While abstractive compression methods can drastically reduce token counts, their token-by-token generation process significantly increases end-to-end latency. Conversely, existing extractive methods reduce latency but rely on independent, non-adaptive sentence selection, failing to fully utilize contextual information. EXIT addresses these limitations by classifying sentences from retrieved documents - while preserving their contextual dependencies - enabling parallelizable, context-aware extraction that adapts to query complexity and retrieval quality. Our evaluations on both single-hop and multi-hop QA tasks show that EXIT consistently surpasses existing compression methods and even uncompressed baselines in QA accuracy, while also delivering substantial reductions in inference time and token count. By improving both effectiveness and efficiency, EXIT provides a promising direction for developing scalable, high-quality QA solutions in RAG pipelines. Our code is available at https://github.com/ThisIsHwang/EXIT

  • 6 authors
·
Dec 17, 2024

AlignedGen: Aligning Style Across Generated Images

Despite their generative power, diffusion models struggle to maintain style consistency across images conditioned on the same style prompt, hindering their practical deployment in creative workflows. While several training-free methods attempt to solve this, they are constrained to the U-Net architecture, which not only leads to low-quality results and artifacts like object repetition but also renders them incompatible with superior Diffusion Transformer (DiT). To address these issues, we introduce AlignedGen, a novel training-free framework that enhances style consistency across images generated by DiT models. Our work first reveals a critical insight: naive attention sharing fails in DiT due to conflicting positional signals from improper position embeddings. We introduce Shifted Position Embedding (ShiftPE), an effective solution that resolves this conflict by allocating a non-overlapping set of positional indices to each image. Building on this foundation, we develop Advanced Attention Sharing (AAS), a suite of three techniques meticulously designed to fully unleash the potential of attention sharing within the DiT. Furthermore, to broaden the applicability of our method, we present an efficient query, key, and value feature extraction algorithm, enabling our method to seamlessly incorporate external images as style references. Extensive experimental results validate that our method effectively enhances style consistency across generated images while maintaining precise text-to-image alignment.

  • 6 authors
·
Sep 21, 2025

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Learning to converse using only a few examples is a great challenge in conversational AI. The current best conversational models, which are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL), are language models (LMs) fine-tuned on large conversational datasets. Training these models is expensive, both in terms of computational resources and time, and it is hard to keep them up to date with new conversational skills. A simple yet unexplored solution is prompt-based few-shot learning (Brown et al. 2020) which does not require gradient-based fine-tuning but instead uses a few examples in the LM context as the only source of learning. In this paper, we explore prompt-based few-shot learning in dialogue tasks. We benchmark LMs of different sizes in nine response generation tasks, which include four knowledge-grounded tasks, a task-oriented generations task, three open-chat tasks, and controlled stylistic generation, and five conversational parsing tasks, which include dialogue state tracking, graph path generation, persona information extraction, document retrieval, and internet query generation. The current largest released LM (GPT-J-6B) using prompt-based few-shot learning, and thus requiring no training, achieves competitive performance to fully trained state-of-the-art models. Moreover, we propose a novel prompt-based few-shot classifier, that also does not require any fine-tuning, to select the most appropriate prompt given a dialogue history. Finally, by combining the power of prompt-based few-shot learning and a Skill Selector, we create an end-to-end chatbot named the Few-Shot Bot (FSB), which automatically selects the most appropriate conversational skill, queries different knowledge bases or the internet, and uses the retrieved knowledge to generate a human-like response, all using only few dialogue examples per skill.

  • 4 authors
·
Oct 15, 2021