Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMuskits-ESPnet: A Comprehensive Toolkit for Singing Voice Synthesis in New Paradigm
This research presents Muskits-ESPnet, a versatile toolkit that introduces new paradigms to Singing Voice Synthesis (SVS) through the application of pretrained audio models in both continuous and discrete approaches. Specifically, we explore discrete representations derived from SSL models and audio codecs and offer significant advantages in versatility and intelligence, supporting multi-format inputs and adaptable data processing workflows for various SVS models. The toolkit features automatic music score error detection and correction, as well as a perception auto-evaluation module to imitate human subjective evaluating scores. Muskits-ESPnet is available at https://github.com/espnet/espnet.
FlexSED: Towards Open-Vocabulary Sound Event Detection
Despite recent progress in large-scale sound event detection (SED) systems capable of handling hundreds of sound classes, existing multi-class classification frameworks remain fundamentally limited. They cannot process free-text sound queries, which enable more flexible and user-friendly interaction, and they lack zero-shot capabilities and offer poor few-shot adaptability. Although text-query-based separation methods have been explored, they primarily focus on source separation and are ill-suited for SED tasks that require precise temporal localization and efficient detection across large and diverse sound vocabularies. In this paper, we propose FlexSED, an open-vocabulary sound event detection system. FlexSED builds on a pretrained audio SSL model and the CLAP text encoder, introducing an encoder-decoder composition and an adaptive fusion strategy to enable effective continuous training from pretrained weights. To ensure robust supervision, it also employs large language models (LLMs) to assist in event query selection during training, addressing challenges related to missing labels. As a result, FlexSED achieves superior performance compared to vanilla SED models on AudioSet-Strong, while demonstrating strong zero-shot and few-shot capabilities. We release the code and pretrained models to support future research and applications based on FlexSED.
tinyCLAP: Distilling Constrastive Language-Audio Pretrained Models
Contrastive Language-Audio Pretraining (CLAP) became of crucial importance in the field of audio and speech processing. Its employment ranges from sound event detection to text-to-audio generation. However, one of the main limitations is the considerable amount of data required in the training process and the overall computational complexity during inference. This paper investigates how we can reduce the complexity of contrastive language-audio pre-trained models, yielding an efficient model that we call tinyCLAP. We derive an unimodal distillation loss from first principles and explore how the dimensionality of the shared, multimodal latent space can be reduced via pruning. TinyCLAP uses only 6% of the original Microsoft CLAP parameters with a minimal reduction (less than 5%) in zero-shot classification performance across the three sound event detection datasets on which it was tested
Training Audio Captioning Models without Audio
Automated Audio Captioning (AAC) is the task of generating natural language descriptions given an audio stream. A typical AAC system requires manually curated training data of audio segments and corresponding text caption annotations. The creation of these audio-caption pairs is costly, resulting in general data scarcity for the task. In this work, we address this major limitation and propose an approach to train AAC systems using only text. Our approach leverages the multimodal space of contrastively trained audio-text models, such as CLAP. During training, a decoder generates captions conditioned on the pretrained CLAP text encoder. During inference, the text encoder is replaced with the pretrained CLAP audio encoder. To bridge the modality gap between text and audio embeddings, we propose the use of noise injection or a learnable adapter, during training. We find that the proposed text-only framework performs competitively with state-of-the-art models trained with paired audio, showing that efficient text-to-audio transfer is possible. Finally, we showcase both stylized audio captioning and caption enrichment while training without audio or human-created text captions.
PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
Audio pattern recognition is an important research topic in the machine learning area, and includes several tasks such as audio tagging, acoustic scene classification, music classification, speech emotion classification and sound event detection. Recently, neural networks have been applied to tackle audio pattern recognition problems. However, previous systems are built on specific datasets with limited durations. Recently, in computer vision and natural language processing, systems pretrained on large-scale datasets have generalized well to several tasks. However, there is limited research on pretraining systems on large-scale datasets for audio pattern recognition. In this paper, we propose pretrained audio neural networks (PANNs) trained on the large-scale AudioSet dataset. These PANNs are transferred to other audio related tasks. We investigate the performance and computational complexity of PANNs modeled by a variety of convolutional neural networks. We propose an architecture called Wavegram-Logmel-CNN using both log-mel spectrogram and waveform as input feature. Our best PANN system achieves a state-of-the-art mean average precision (mAP) of 0.439 on AudioSet tagging, outperforming the best previous system of 0.392. We transfer PANNs to six audio pattern recognition tasks, and demonstrate state-of-the-art performance in several of those tasks. We have released the source code and pretrained models of PANNs: https://github.com/qiuqiangkong/audioset_tagging_cnn.
V2A-Mapper: A Lightweight Solution for Vision-to-Audio Generation by Connecting Foundation Models
Building artificial intelligence (AI) systems on top of a set of foundation models (FMs) is becoming a new paradigm in AI research. Their representative and generative abilities learnt from vast amounts of data can be easily adapted and transferred to a wide range of downstream tasks without extra training from scratch. However, leveraging FMs in cross-modal generation remains under-researched when audio modality is involved. On the other hand, automatically generating semantically-relevant sound from visual input is an important problem in cross-modal generation studies. To solve this vision-to-audio (V2A) generation problem, existing methods tend to design and build complex systems from scratch using modestly sized datasets. In this paper, we propose a lightweight solution to this problem by leveraging foundation models, specifically CLIP, CLAP, and AudioLDM. We first investigate the domain gap between the latent space of the visual CLIP and the auditory CLAP models. Then we propose a simple yet effective mapper mechanism (V2A-Mapper) to bridge the domain gap by translating the visual input between CLIP and CLAP spaces. Conditioned on the translated CLAP embedding, pretrained audio generative FM AudioLDM is adopted to produce high-fidelity and visually-aligned sound. Compared to previous approaches, our method only requires a quick training of the V2A-Mapper. We further analyze and conduct extensive experiments on the choice of the V2A-Mapper and show that a generative mapper is better at fidelity and variability (FD) while a regression mapper is slightly better at relevance (CS). Both objective and subjective evaluation on two V2A datasets demonstrate the superiority of our proposed method compared to current state-of-the-art approaches - trained with 86% fewer parameters but achieving 53% and 19% improvement in FD and CS, respectively.
Steer-MoE: Efficient Audio-Language Alignment with a Mixture-of-Experts Steering Module
Aligning pretrained audio encoders and Large Language Models (LLMs) offers a promising, parameter-efficient path to building powerful multimodal agents. However, existing methods often require costly full-model finetuning or rely on static adapters that may lack expressive power. Drawing inspiration from the Platonic Representation Hypothesis, we introduce SteerMoE, a novel and modular framework for audio-language alignment. SteerMoE freezes both the audio encoder and the LLM decoder, training only a lightweight steering module integrated within the encoder's layers. This module uses a Mixture-of-Experts (MoE) router to dynamically select and apply learned steering vectors, progressively transforming continuous audio representations into a space comprehensible to the LLM. By operating entirely in the continuous embedding space, our approach requires no modifications to the LLM's vocabulary and preserves its advanced reasoning and agentic capabilities. We demonstrate through experiments on ASR, audio understanding, and a qualitative function-calling task that SteerMoE achieves strong performance while remaining highly modular and computationally efficient, offering a robust new paradigm for developing sophisticated audio-language systems.
What Do Language Models Hear? Probing for Auditory Representations in Language Models
This work explores whether language models encode meaningfully grounded representations of sounds of objects. We learn a linear probe that retrieves the correct text representation of an object given a snippet of audio related to that object, where the sound representation is given by a pretrained audio model. This probe is trained via a contrastive loss that pushes the language representations and sound representations of an object to be close to one another. After training, the probe is tested on its ability to generalize to objects that were not seen during training. Across different language models and audio models, we find that the probe generalization is above chance in many cases, indicating that despite being trained only on raw text, language models encode grounded knowledge of sounds for some objects.
Improving Audio Captioning Models with Fine-grained Audio Features, Text Embedding Supervision, and LLM Mix-up Augmentation
Automated audio captioning (AAC) aims to generate informative descriptions for various sounds from nature and/or human activities. In recent years, AAC has quickly attracted research interest, with state-of-the-art systems now relying on a sequence-to-sequence (seq2seq) backbone powered by strong models such as Transformers. Following the macro-trend of applied machine learning research, in this work, we strive to improve the performance of seq2seq AAC models by extensively leveraging pretrained models and large language models (LLMs). Specifically, we utilize BEATs to extract fine-grained audio features. Then, we employ Instructor LLM to fetch text embeddings of captions, and infuse their language-modality knowledge into BEATs audio features via an auxiliary InfoNCE loss function. Moreover, we propose a novel data augmentation method that uses ChatGPT to produce caption mix-ups (i.e., grammatical and compact combinations of two captions) which, together with the corresponding audio mixtures, increase not only the amount but also the complexity and diversity of training data. During inference, we propose to employ nucleus sampling and a hybrid reranking algorithm, which has not been explored in AAC research. Combining our efforts, our model achieves a new state-of-the-art 32.6 SPIDEr-FL score on the Clotho evaluation split, and wins the 2023 DCASE AAC challenge.
SightSound-R1: Cross-Modal Reasoning Distillation from Vision to Audio Language Models
While large audio-language models (LALMs) have demonstrated state-of-the-art audio understanding, their reasoning capability in complex soundscapes still falls behind large vision-language models (LVLMs). Compared to the visual domain, one bottleneck is the lack of large-scale chain-of-thought audio data to teach LALM stepwise reasoning. To circumvent this data and modality gap, we present SightSound-R1, a cross-modal distillation framework that transfers advanced reasoning from a stronger LVLM teacher to a weaker LALM student on the same audio-visual question answering (AVQA) dataset. SightSound-R1 consists of three core steps: (i) test-time scaling to generate audio-focused chains of thought (CoT) from an LVLM teacher, (ii) audio-grounded validation to filter hallucinations, and (iii) a distillation pipeline with supervised fine-tuning (SFT) followed by Group Relative Policy Optimization (GRPO) for the LALM student. Results show that SightSound-R1 improves LALM reasoning performance both in the in-domain AVQA test set as well as in unseen auditory scenes and questions, outperforming both pretrained and label-only distilled baselines. Thus, we conclude that vision reasoning can be effectively transferred to audio models and scaled with abundant audio-visual data.
Score Distillation Sampling for Audio: Source Separation, Synthesis, and Beyond
We introduce Audio-SDS, a generalization of Score Distillation Sampling (SDS) to text-conditioned audio diffusion models. While SDS was initially designed for text-to-3D generation using image diffusion, its core idea of distilling a powerful generative prior into a separate parametric representation extends to the audio domain. Leveraging a single pretrained model, Audio-SDS enables a broad range of tasks without requiring specialized datasets. In particular, we demonstrate how Audio-SDS can guide physically informed impact sound simulations, calibrate FM-synthesis parameters, and perform prompt-specified source separation. Our findings illustrate the versatility of distillation-based methods across modalities and establish a robust foundation for future work using generative priors in audio tasks.
VinTAGe: Joint Video and Text Conditioning for Holistic Audio Generation
Recent advances in audio generation have focused on text-to-audio (T2A) and video-to-audio (V2A) tasks. However, T2A or V2A methods cannot generate holistic sounds (onscreen and off-screen). This is because T2A cannot generate sounds aligning with onscreen objects, while V2A cannot generate semantically complete (offscreen sounds missing). In this work, we address the task of holistic audio generation: given a video and a text prompt, we aim to generate both onscreen and offscreen sounds that are temporally synchronized with the video and semantically aligned with text and video. Previous approaches for joint text and video-to-audio generation often suffer from modality bias, favoring one modality over the other. To overcome this limitation, we introduce VinTAGe, a flow-based transformer model that jointly considers text and video to guide audio generation. Our framework comprises two key components: a Visual-Text Encoder and a Joint VT-SiT model. To reduce modality bias and improve generation quality, we employ pretrained uni-modal text-to-audio and video-to-audio generation models for additional guidance. Due to the lack of appropriate benchmarks, we also introduce VinTAGe-Bench, a dataset of 636 video-text-audio pairs containing both onscreen and offscreen sounds. Our comprehensive experiments on VinTAGe-Bench demonstrate that joint text and visual interaction is necessary for holistic audio generation. Furthermore, VinTAGe achieves state-of-the-art results on the VGGSound benchmark. Our source code and pre-trained models will be released. Demo is available at: https://www.youtube.com/watch?v=QmqWhUjPkJI.
Nix-TTS: Lightweight and End-to-End Text-to-Speech via Module-wise Distillation
Several solutions for lightweight TTS have shown promising results. Still, they either rely on a hand-crafted design that reaches non-optimum size or use a neural architecture search but often suffer training costs. We present Nix-TTS, a lightweight TTS achieved via knowledge distillation to a high-quality yet large-sized, non-autoregressive, and end-to-end (vocoder-free) TTS teacher model. Specifically, we offer module-wise distillation, enabling flexible and independent distillation to the encoder and decoder module. The resulting Nix-TTS inherited the advantageous properties of being non-autoregressive and end-to-end from the teacher, yet significantly smaller in size, with only 5.23M parameters or up to 89.34% reduction of the teacher model; it also achieves over 3.04x and 8.36x inference speedup on Intel-i7 CPU and Raspberry Pi 3B respectively and still retains a fair voice naturalness and intelligibility compared to the teacher model. We provide pretrained models and audio samples of Nix-TTS.
Towards Open Respiratory Acoustic Foundation Models: Pretraining and Benchmarking
Respiratory audio, such as coughing and breathing sounds, has predictive power for a wide range of healthcare applications, yet is currently under-explored. The main problem for those applications arises from the difficulty in collecting large labeled task-specific data for model development. Generalizable respiratory acoustic foundation models pretrained with unlabeled data would offer appealing advantages and possibly unlock this impasse. However, given the safety-critical nature of healthcare applications, it is pivotal to also ensure openness and replicability for any proposed foundation model solution. To this end, we introduce OPERA, an OPEn Respiratory Acoustic foundation model pretraining and benchmarking system, as the first approach answering this need. We curate large-scale respiratory audio datasets (~136K samples, 440 hours), pretrain three pioneering foundation models, and build a benchmark consisting of 19 downstream respiratory health tasks for evaluation. Our pretrained models demonstrate superior performance (against existing acoustic models pretrained with general audio on 16 out of 19 tasks) and generalizability (to unseen datasets and new respiratory audio modalities). This highlights the great promise of respiratory acoustic foundation models and encourages more studies using OPERA as an open resource to accelerate research on respiratory audio for health. The system is accessible from https://github.com/evelyn0414/OPERA.
Subtractive Training for Music Stem Insertion using Latent Diffusion Models
We present Subtractive Training, a simple and novel method for synthesizing individual musical instrument stems given other instruments as context. This method pairs a dataset of complete music mixes with 1) a variant of the dataset lacking a specific stem, and 2) LLM-generated instructions describing how the missing stem should be reintroduced. We then fine-tune a pretrained text-to-audio diffusion model to generate the missing instrument stem, guided by both the existing stems and the text instruction. Our results demonstrate Subtractive Training's efficacy in creating authentic drum stems that seamlessly blend with the existing tracks. We also show that we can use the text instruction to control the generation of the inserted stem in terms of rhythm, dynamics, and genre, allowing us to modify the style of a single instrument in a full song while keeping the remaining instruments the same. Lastly, we extend this technique to MIDI formats, successfully generating compatible bass, drum, and guitar parts for incomplete arrangements.
ASiT: Local-Global Audio Spectrogram vIsion Transformer for Event Classification
Transformers, which were originally developed for natural language processing, have recently generated significant interest in the computer vision and audio communities due to their flexibility in learning long-range relationships. Constrained by the data hungry nature of transformers and the limited amount of labelled data, most transformer-based models for audio tasks are finetuned from ImageNet pretrained models, despite the huge gap between the domain of natural images and audio. This has motivated the research in self-supervised pretraining of audio transformers, which reduces the dependency on large amounts of labeled data and focuses on extracting concise representations of audio spectrograms. In this paper, we propose Local-Global Audio Spectrogram vIsion Transformer, namely ASiT, a novel self-supervised learning framework that captures local and global contextual information by employing group masked model learning and self-distillation. We evaluate our pretrained models on both audio and speech classification tasks, including audio event classification, keyword spotting, and speaker identification. We further conduct comprehensive ablation studies, including evaluations of different pretraining strategies. The proposed ASiT framework significantly boosts the performance on all tasks and sets a new state-of-the-art performance in five audio and speech classification tasks, outperforming recent methods, including the approaches that use additional datasets for pretraining.
CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained Language-Vision Models
Recent work has studied text-to-audio synthesis using large amounts of paired text-audio data. However, audio recordings with high-quality text annotations can be difficult to acquire. In this work, we approach text-to-audio synthesis using unlabeled videos and pretrained language-vision models. We propose to learn the desired text-audio correspondence by leveraging the visual modality as a bridge. We train a conditional diffusion model to generate the audio track of a video, given a video frame encoded by a pretrained contrastive language-image pretraining (CLIP) model. At test time, we first explore performing a zero-shot modality transfer and condition the diffusion model with a CLIP-encoded text query. However, we observe a noticeable performance drop with respect to image queries. To close this gap, we further adopt a pretrained diffusion prior model to generate a CLIP image embedding given a CLIP text embedding. Our results show the effectiveness of the proposed method, and that the pretrained diffusion prior can reduce the modality transfer gap. While we focus on text-to-audio synthesis, the proposed model can also generate audio from image queries, and it shows competitive performance against a state-of-the-art image-to-audio synthesis model in a subjective listening test. This study offers a new direction of approaching text-to-audio synthesis that leverages the naturally-occurring audio-visual correspondence in videos and the power of pretrained language-vision models.
AudioLDM: Text-to-Audio Generation with Latent Diffusion Models
Text-to-audio (TTA) system has recently gained attention for its ability to synthesize general audio based on text descriptions. However, previous studies in TTA have limited generation quality with high computational costs. In this study, we propose AudioLDM, a TTA system that is built on a latent space to learn the continuous audio representations from contrastive language-audio pretraining (CLAP) latents. The pretrained CLAP models enable us to train LDMs with audio embedding while providing text embedding as a condition during sampling. By learning the latent representations of audio signals and their compositions without modeling the cross-modal relationship, AudioLDM is advantageous in both generation quality and computational efficiency. Trained on AudioCaps with a single GPU, AudioLDM achieves state-of-the-art TTA performance measured by both objective and subjective metrics (e.g., frechet distance). Moreover, AudioLDM is the first TTA system that enables various text-guided audio manipulations (e.g., style transfer) in a zero-shot fashion. Our implementation and demos are available at https://audioldm.github.io.
TalkingMachines: Real-Time Audio-Driven FaceTime-Style Video via Autoregressive Diffusion Models
In this paper, we present TalkingMachines -- an efficient framework that transforms pretrained video generation models into real-time, audio-driven character animators. TalkingMachines enables natural conversational experiences by integrating an audio large language model (LLM) with our video generation foundation model. Our primary contributions include: (1) We adapt a pretrained SOTA image-to-video DiT into an audio-driven avatar generation model of 18 billion parameters; (2) We enable infinite video streaming without error accumulation through asymmetric knowledge distillation from a bidirectional teacher model into a sparse causal, autoregressive student model; (3) We design a high-throughput, low-latency inference pipeline incorporating several key engineering optimizations such as: (a) disaggregation of the DiT and VAE decoder across separate devices, (b) efficient overlap of inter-device communication and computation using CUDA streams, (c) elimination of redundant recomputations to maximize frame-generation throughput. Please see demo videos here - https://aaxwaz.github.io/TalkingMachines/
How Should We Extract Discrete Audio Tokens from Self-Supervised Models?
Discrete audio tokens have recently gained attention for their potential to bridge the gap between audio and language processing. Ideal audio tokens must preserve content, paralinguistic elements, speaker identity, and many other audio details. Current audio tokenization methods fall into two categories: Semantic tokens, acquired through quantization of Self-Supervised Learning (SSL) models, and Neural compression-based tokens (codecs). Although previous studies have benchmarked codec models to identify optimal configurations, the ideal setup for quantizing pretrained SSL models remains unclear. This paper explores the optimal configuration of semantic tokens across discriminative and generative tasks. We propose a scalable solution to train a universal vocoder across multiple SSL layers. Furthermore, an attention mechanism is employed to identify task-specific influential layers, enhancing the adaptability and performance of semantic tokens in diverse audio applications.
Contrastive Audio-Visual Masked Autoencoder
In this paper, we first extend the recent Masked Auto-Encoder (MAE) model from a single modality to audio-visual multi-modalities. Subsequently, we propose the Contrastive Audio-Visual Masked Auto-Encoder (CAV-MAE) by combining contrastive learning and masked data modeling, two major self-supervised learning frameworks, to learn a joint and coordinated audio-visual representation. Our experiments show that the contrastive audio-visual correspondence learning objective not only enables the model to perform audio-visual retrieval tasks, but also helps the model learn a better joint representation. As a result, our fully self-supervised pretrained CAV-MAE achieves a new SOTA accuracy of 65.9% on VGGSound, and is comparable with the previous best supervised pretrained model on AudioSet in the audio-visual event classification task. Code and pretrained models are at https://github.com/yuangongnd/cav-mae.
CED: Consistent ensemble distillation for audio tagging
Augmentation and knowledge distillation (KD) are well-established techniques employed in audio classification tasks, aimed at enhancing performance and reducing model sizes on the widely recognized Audioset (AS) benchmark. Although both techniques are effective individually, their combined use, called consistent teaching, hasn't been explored before. This paper proposes CED, a simple training framework that distils student models from large teacher ensembles with consistent teaching. To achieve this, CED efficiently stores logits as well as the augmentation methods on disk, making it scalable to large-scale datasets. Central to CED's efficacy is its label-free nature, meaning that only the stored logits are used for the optimization of a student model only requiring 0.3\% additional disk space for AS. The study trains various transformer-based models, including a 10M parameter model achieving a 49.0 mean average precision (mAP) on AS. Pretrained models and code are available at https://github.com/RicherMans/CED.
Exploring Capabilities of Monolingual Audio Transformers using Large Datasets in Automatic Speech Recognition of Czech
In this paper, we present our progress in pretraining Czech monolingual audio transformers from a large dataset containing more than 80 thousand hours of unlabeled speech, and subsequently fine-tuning the model on automatic speech recognition tasks using a combination of in-domain data and almost 6 thousand hours of out-of-domain transcribed speech. We are presenting a large palette of experiments with various fine-tuning setups evaluated on two public datasets (CommonVoice and VoxPopuli) and one extremely challenging dataset from the MALACH project. Our results show that monolingual Wav2Vec 2.0 models are robust ASR systems, which can take advantage of large labeled and unlabeled datasets and successfully compete with state-of-the-art LVCSR systems. Moreover, Wav2Vec models proved to be good zero-shot learners when no training data are available for the target ASR task.
audio2chart: End to End Audio Transcription into playable Guitar Hero charts
This work introduces audio2chart, a framework for the automatic generation of Guitar Hero style charts directly from raw audio. The task is formalized as a sequence prediction problem, where models are trained to generate discrete chart tokens aligned with the audio on discrete time steps. An unconditional baseline demonstrates strong predictive performance, while the addition of audio conditioning yields consistent improvements across accuracy based metrics. This work demonstrates that incorporating audio conditioning is both feasible and effective for improving note prediction in automatic chart generation. The complete codebase for training and inference is publicly available on GitHub supporting reproducible research on neural chart generation. A family of pretrained models is released on Hugging Face.
CoLLAP: Contrastive Long-form Language-Audio Pretraining with Musical Temporal Structure Augmentation
Modeling temporal characteristics plays a significant role in the representation learning of audio waveform. We propose Contrastive Long-form Language-Audio Pretraining (CoLLAP) to significantly extend the perception window for both the input audio (up to 5 minutes) and the language descriptions (exceeding 250 words), while enabling contrastive learning across modalities and temporal dynamics. Leveraging recent Music-LLMs to generate long-form music captions for full-length songs, augmented with musical temporal structures, we collect 51.3K audio-text pairs derived from the large-scale AudioSet training dataset, where the average audio length reaches 288 seconds. We propose a novel contrastive learning architecture that fuses language representations with structured audio representations by segmenting each song into clips and extracting their embeddings. With an attention mechanism, we capture multimodal temporal correlations, allowing the model to automatically weigh and enhance the final fusion score for improved contrastive alignment. Finally, we develop two variants of the CoLLAP model with different types of backbone language models. Through comprehensive experiments on multiple long-form music-text retrieval datasets, we demonstrate consistent performance improvement in retrieval accuracy compared with baselines. We also show the pretrained CoLLAP models can be transferred to various music information retrieval tasks, with heterogeneous long-form multimodal contexts.
SSAST: Self-Supervised Audio Spectrogram Transformer
Recently, neural networks based purely on self-attention, such as the Vision Transformer (ViT), have been shown to outperform deep learning models constructed with convolutional neural networks (CNNs) on various vision tasks, thus extending the success of Transformers, which were originally developed for language processing, to the vision domain. A recent study showed that a similar methodology can also be applied to the audio domain. Specifically, the Audio Spectrogram Transformer (AST) achieves state-of-the-art results on various audio classification benchmarks. However, pure Transformer models tend to require more training data compared to CNNs, and the success of the AST relies on supervised pretraining that requires a large amount of labeled data and a complex training pipeline, thus limiting the practical usage of AST. This paper focuses on audio and speech classification, and aims to reduce the need for large amounts of labeled data for AST by leveraging self-supervised learning using unlabeled data. Specifically, we propose to pretrain the AST model with joint discriminative and generative masked spectrogram patch modeling (MSPM) using unlabeled audio from AudioSet and Librispeech. We evaluate our pretrained models on both audio and speech classification tasks including audio event classification, keyword spotting, emotion recognition, and speaker identification. The proposed self-supervised framework significantly boosts AST performance on all tasks, with an average improvement of 60.9%, leading to similar or even better results than a supervised pretrained AST. To the best of our knowledge, it is the first patch-based self-supervised learning framework in the audio and speech domain, and also the first self-supervised learning framework for AST.
FusionAudio-1.2M: Towards Fine-grained Audio Captioning with Multimodal Contextual Fusion
High-quality, large-scale audio captioning is crucial for advancing audio understanding, yet current automated methods often generate captions that lack fine-grained detail and contextual accuracy, primarily due to their reliance on limited unimodal or superficial multimodal information. Drawing inspiration from human auditory perception, which adeptly integrates cross-modal cues and performs sophisticated auditory scene analysis, we introduce a novel two-stage automated pipeline. This pipeline first employs specialized pretrained models to extract diverse contextual cues (e.g., speech, music, general sounds, and visual information from associated video). A large language model (LLM) then synthesizes these rich, multimodal inputs to generate detailed and context-aware audio captions. Key contributions of this work include: (1) the proposed scalable method for fine-grained audio caption generation; (2) FusionAudio, a new large-scale dataset comprising 1.2 million such detailed captions, combined with 6 million QA pairs; and (3) enhanced audio models developed using FusionAudio, specifically a CLAP-based audio encoder with superior audio-text alignment and instruction following. This paper paves the way for more nuanced and accurate automated understanding of complex audio environments. Code and data can be found in https://github.com/satsuki2486441738/FusionAudio.
AudioBERT: Audio Knowledge Augmented Language Model
Recent studies have identified that language models, pretrained on text-only datasets, often lack elementary visual knowledge, e.g., colors of everyday objects. Motivated by this observation, we ask whether a similar shortcoming exists in terms of the auditory knowledge. To answer this question, we construct a new dataset called AuditoryBench, which consists of two novel tasks for evaluating auditory knowledge. Based on our analysis using the benchmark, we find that language models also suffer from a severe lack of auditory knowledge. To address this limitation, we propose AudioBERT, a novel method to augment the auditory knowledge of BERT through a retrieval-based approach. First, we detect auditory knowledge spans in prompts to query our retrieval model efficiently. Then, we inject audio knowledge into BERT and switch on low-rank adaptation for effective adaptation when audio knowledge is required. Our experiments demonstrate that AudioBERT is quite effective, achieving superior performance on the AuditoryBench. The dataset and code are available at https://github.com/HJ-Ok/AudioBERT.
TANGO: Co-Speech Gesture Video Reenactment with Hierarchical Audio Motion Embedding and Diffusion Interpolation
We present TANGO, a framework for generating co-speech body-gesture videos. Given a few-minute, single-speaker reference video and target speech audio, TANGO produces high-fidelity videos with synchronized body gestures. TANGO builds on Gesture Video Reenactment (GVR), which splits and retrieves video clips using a directed graph structure - representing video frames as nodes and valid transitions as edges. We address two key limitations of GVR: audio-motion misalignment and visual artifacts in GAN-generated transition frames. In particular, (i) we propose retrieving gestures using latent feature distance to improve cross-modal alignment. To ensure the latent features could effectively model the relationship between speech audio and gesture motion, we implement a hierarchical joint embedding space (AuMoCLIP); (ii) we introduce the diffusion-based model to generate high-quality transition frames. Our diffusion model, Appearance Consistent Interpolation (ACInterp), is built upon AnimateAnyone and includes a reference motion module and homography background flow to preserve appearance consistency between generated and reference videos. By integrating these components into the graph-based retrieval framework, TANGO reliably produces realistic, audio-synchronized videos and outperforms all existing generative and retrieval methods. Our codes and pretrained models are available: https://pantomatrix.github.io/TANGO/
AxLSTMs: learning self-supervised audio representations with xLSTMs
While the transformer has emerged as the eminent neural architecture, several independent lines of research have emerged to address its limitations. Recurrent neural approaches have observed a lot of renewed interest, including the extended long short-term memory (xLSTM) architecture, which reinvigorates the original LSTM. However, while xLSTMs have shown competitive performance compared to the transformer, their viability for learning self-supervised general-purpose audio representations has not been evaluated. This work proposes Audio xLSTM (AxLSTM), an approach for learning audio representations from masked spectrogram patches in a self-supervised setting. Pretrained on the AudioSet dataset, the proposed AxLSTM models outperform comparable self-supervised audio spectrogram transformer (SSAST) baselines by up to 25% in relative performance across a set of ten diverse downstream tasks while having up to 45% fewer parameters.
Noise2Music: Text-conditioned Music Generation with Diffusion Models
We introduce Noise2Music, where a series of diffusion models is trained to generate high-quality 30-second music clips from text prompts. Two types of diffusion models, a generator model, which generates an intermediate representation conditioned on text, and a cascader model, which generates high-fidelity audio conditioned on the intermediate representation and possibly the text, are trained and utilized in succession to generate high-fidelity music. We explore two options for the intermediate representation, one using a spectrogram and the other using audio with lower fidelity. We find that the generated audio is not only able to faithfully reflect key elements of the text prompt such as genre, tempo, instruments, mood, and era, but goes beyond to ground fine-grained semantics of the prompt. Pretrained large language models play a key role in this story -- they are used to generate paired text for the audio of the training set and to extract embeddings of the text prompts ingested by the diffusion models. Generated examples: https://google-research.github.io/noise2music
Joint Music and Language Attention Models for Zero-shot Music Tagging
Music tagging is a task to predict the tags of music recordings. However, previous music tagging research primarily focuses on close-set music tagging tasks which can not be generalized to new tags. In this work, we propose a zero-shot music tagging system modeled by a joint music and language attention (JMLA) model to address the open-set music tagging problem. The JMLA model consists of an audio encoder modeled by a pretrained masked autoencoder and a decoder modeled by a Falcon7B. We introduce preceiver resampler to convert arbitrary length audio into fixed length embeddings. We introduce dense attention connections between encoder and decoder layers to improve the information flow between the encoder and decoder layers. We collect a large-scale music and description dataset from the internet. We propose to use ChatGPT to convert the raw descriptions into formalized and diverse descriptions to train the JMLA models. Our proposed JMLA system achieves a zero-shot audio tagging accuracy of 64.82% on the GTZAN dataset, outperforming previous zero-shot systems and achieves comparable results to previous systems on the FMA and the MagnaTagATune datasets.
When Fine-Tuning is Not Enough: Lessons from HSAD on Hybrid and Adversarial Audio Spoof Detection
The rapid advancement of AI has enabled highly realistic speech synthesis and voice cloning, posing serious risks to voice authentication, smart assistants, and telecom security. While most prior work frames spoof detection as a binary task, real-world attacks often involve hybrid utterances that mix genuine and synthetic speech, making detection substantially more challenging. To address this gap, we introduce the Hybrid Spoofed Audio Dataset (HSAD), a benchmark containing 1,248 clean and 41,044 degraded utterances across four classes: human, cloned, zero-shot AI-generated, and hybrid audio. Each sample is annotated with spoofing method, speaker identity, and degradation metadata to enable fine-grained analysis. We evaluate six transformer-based models, including spectrogram encoders (MIT-AST, MattyB95-AST) and self-supervised waveform models (Wav2Vec2, HuBERT). Results reveal critical lessons: pretrained models overgeneralize and collapse under hybrid conditions; spoof-specific fine-tuning improves separability but struggles with unseen compositions; and dataset-specific adaptation on HSAD yields large performance gains (AST greater than 97 percent and F1 score is approximately 99 percent), though residual errors persist for complex hybrids. These findings demonstrate that fine-tuning alone is not sufficient-robust hybrid-aware benchmarks like HSAD are essential to expose calibration failures, model biases, and factors affecting spoof detection in adversarial environments. HSAD thus provides both a dataset and an analytic framework for building resilient and trustworthy voice authentication systems.
EnCLAP: Combining Neural Audio Codec and Audio-Text Joint Embedding for Automated Audio Captioning
We propose EnCLAP, a novel framework for automated audio captioning. EnCLAP employs two acoustic representation models, EnCodec and CLAP, along with a pretrained language model, BART. We also introduce a new training objective called masked codec modeling that improves acoustic awareness of the pretrained language model. Experimental results on AudioCaps and Clotho demonstrate that our model surpasses the performance of baseline models. Source code will be available at https://github.com/jaeyeonkim99/EnCLAP . An online demo is available at https://huggingface.co/spaces/enclap-team/enclap .
This Paper Had the Smartest Reviewers -- Flattery Detection Utilising an Audio-Textual Transformer-Based Approach
Flattery is an important aspect of human communication that facilitates social bonding, shapes perceptions, and influences behavior through strategic compliments and praise, leveraging the power of speech to build rapport effectively. Its automatic detection can thus enhance the naturalness of human-AI interactions. To meet this need, we present a novel audio textual dataset comprising 20 hours of speech and train machine learning models for automatic flattery detection. In particular, we employ pretrained AST, Wav2Vec2, and Whisper models for the speech modality, and Whisper TTS models combined with a RoBERTa text classifier for the textual modality. Subsequently, we build a multimodal classifier by combining text and audio representations. Evaluation on unseen test data demonstrates promising results, with Unweighted Average Recall scores reaching 82.46% in audio-only experiments, 85.97% in text-only experiments, and 87.16% using a multimodal approach.
Foley Control: Aligning a Frozen Latent Text-to-Audio Model to Video
Foley Control is a lightweight approach to video-guided Foley that keeps pretrained single-modality models frozen and learns only a small cross-attention bridge between them. We connect V-JEPA2 video embeddings to a frozen Stable Audio Open DiT text-to-audio (T2A) model by inserting compact video cross-attention after the model's existing text cross-attention, so prompts set global semantics while video refines timing and local dynamics. The frozen backbones retain strong marginals (video; audio given text) and the bridge learns the audio-video dependency needed for synchronization -- without retraining the audio prior. To cut memory and stabilize training, we pool video tokens before conditioning. On curated video-audio benchmarks, Foley Control delivers competitive temporal and semantic alignment with far fewer trainable parameters than recent multi-modal systems, while preserving prompt-driven controllability and production-friendly modularity (swap/upgrade encoders or the T2A backbone without end-to-end retraining). Although we focus on Video-to-Foley, the same bridge design can potentially extend to other audio modalities (e.g., speech).
StereoSync: Spatially-Aware Stereo Audio Generation from Video
Although audio generation has been widely studied over recent years, video-aligned audio generation still remains a relatively unexplored frontier. To address this gap, we introduce StereoSync, a novel and efficient model designed to generate audio that is both temporally synchronized with a reference video and spatially aligned with its visual context. Moreover, StereoSync also achieves efficiency by leveraging pretrained foundation models, reducing the need for extensive training while maintaining high-quality synthesis. Unlike existing methods that primarily focus on temporal synchronization, StereoSync introduces a significant advancement by incorporating spatial awareness into video-aligned audio generation. Indeed, given an input video, our approach extracts spatial cues from depth maps and bounding boxes, using them as cross-attention conditioning in a diffusion-based audio generation model. Such an approach allows StereoSync to go beyond simple synchronization, producing stereo audio that dynamically adapts to the spatial structure and movement of a video scene. We evaluate StereoSync on Walking The Maps, a curated dataset comprising videos from video games that feature animated characters walking through diverse environments. Experimental results demonstrate the ability of StereoSync to achieve both temporal and spatial alignment, advancing the state of the art in video-to-audio generation and resulting in a significantly more immersive and realistic audio experience.
SyncFusion: Multimodal Onset-synchronized Video-to-Audio Foley Synthesis
Sound design involves creatively selecting, recording, and editing sound effects for various media like cinema, video games, and virtual/augmented reality. One of the most time-consuming steps when designing sound is synchronizing audio with video. In some cases, environmental recordings from video shoots are available, which can aid in the process. However, in video games and animations, no reference audio exists, requiring manual annotation of event timings from the video. We propose a system to extract repetitive actions onsets from a video, which are then used - in conjunction with audio or textual embeddings - to condition a diffusion model trained to generate a new synchronized sound effects audio track. In this way, we leave complete creative control to the sound designer while removing the burden of synchronization with video. Furthermore, editing the onset track or changing the conditioning embedding requires much less effort than editing the audio track itself, simplifying the sonification process. We provide sound examples, source code, and pretrained models to faciliate reproducibility
Modelling black-box audio effects with time-varying feature modulation
Deep learning approaches for black-box modelling of audio effects have shown promise, however, the majority of existing work focuses on nonlinear effects with behaviour on relatively short time-scales, such as guitar amplifiers and distortion. While recurrent and convolutional architectures can theoretically be extended to capture behaviour at longer time scales, we show that simply scaling the width, depth, or dilation factor of existing architectures does not result in satisfactory performance when modelling audio effects such as fuzz and dynamic range compression. To address this, we propose the integration of time-varying feature-wise linear modulation into existing temporal convolutional backbones, an approach that enables learnable adaptation of the intermediate activations. We demonstrate that our approach more accurately captures long-range dependencies for a range of fuzz and compressor implementations across both time and frequency domain metrics. We provide sound examples, source code, and pretrained models to faciliate reproducibility.
AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining
Although audio generation shares commonalities across different types of audio, such as speech, music, and sound effects, designing models for each type requires careful consideration of specific objectives and biases that can significantly differ from those of other types. To bring us closer to a unified perspective of audio generation, this paper proposes a framework that utilizes the same learning method for speech, music, and sound effect generation. Our framework introduces a general representation of audio, called language of audio (LOA). Any audio can be translated into LOA based on AudioMAE, a self-supervised pre-trained representation learning model. In the generation process, we translate any modalities into LOA by using a GPT-2 model, and we perform self-supervised audio generation learning with a latent diffusion model conditioned on LOA. The proposed framework naturally brings advantages such as in-context learning abilities and reusable self-supervised pretrained AudioMAE and latent diffusion models. Experiments on the major benchmarks of text-to-audio, text-to-music, and text-to-speech demonstrate new state-of-the-art or competitive performance to previous approaches. Our demo and code are available at https://audioldm.github.io/audioldm2.
Audio Prompt Adapter: Unleashing Music Editing Abilities for Text-to-Music with Lightweight Finetuning
Text-to-music models allow users to generate nearly realistic musical audio with textual commands. However, editing music audios remains challenging due to the conflicting desiderata of performing fine-grained alterations on the audio while maintaining a simple user interface. To address this challenge, we propose Audio Prompt Adapter (or AP-Adapter), a lightweight addition to pretrained text-to-music models. We utilize AudioMAE to extract features from the input audio, and construct attention-based adapters to feedthese features into the internal layers of AudioLDM2, a diffusion-based text-to-music model. With 22M trainable parameters, AP-Adapter empowers users to harness both global (e.g., genre and timbre) and local (e.g., melody) aspects of music, using the original audio and a short text as inputs. Through objective and subjective studies, we evaluate AP-Adapter on three tasks: timbre transfer, genre transfer, and accompaniment generation. Additionally, we demonstrate its effectiveness on out-of-domain audios containing unseen instruments during training.
HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection
Audio classification is an important task of mapping audio samples into their corresponding labels. Recently, the transformer model with self-attention mechanisms has been adopted in this field. However, existing audio transformers require large GPU memories and long training time, meanwhile relying on pretrained vision models to achieve high performance, which limits the model's scalability in audio tasks. To combat these problems, we introduce HTS-AT: an audio transformer with a hierarchical structure to reduce the model size and training time. It is further combined with a token-semantic module to map final outputs into class featuremaps, thus enabling the model for the audio event detection (i.e. localization in time). We evaluate HTS-AT on three datasets of audio classification where it achieves new state-of-the-art (SOTA) results on AudioSet and ESC-50, and equals the SOTA on Speech Command V2. It also achieves better performance in event localization than the previous CNN-based models. Moreover, HTS-AT requires only 35% model parameters and 15% training time of the previous audio transformer. These results demonstrate the high performance and high efficiency of HTS-AT.
Towards Robust Family-Infant Audio Analysis Based on Unsupervised Pretraining of Wav2vec 2.0 on Large-Scale Unlabeled Family Audio
To perform automatic family audio analysis, past studies have collected recordings using phone, video, or audio-only recording devices like LENA, investigated supervised learning methods, and used or fine-tuned general-purpose embeddings learned from large pretrained models. In this study, we advance the audio component of a new infant wearable multi-modal device called LittleBeats (LB) by learning family audio representation via wav2vec 2.0 (W2V2) pertaining. We show given a limited number of labeled LB home recordings, W2V2 pretrained using 1k-hour of unlabeled home recordings outperforms oracle W2V2 pretrained on 52k-hour unlabeled audio in terms of parent/infant speaker diarization (SD) and vocalization classifications (VC) at home. Extra relevant external unlabeled and labeled data further benefit W2V2 pretraining and fine-tuning. With SpecAug and environmental speech corruptions, we obtain 12% relative gain on SD and moderate boost on VC. Code and model weights are available.
Pheme: Efficient and Conversational Speech Generation
In recent years, speech generation has seen remarkable progress, now achieving one-shot generation capability that is often virtually indistinguishable from real human voice. Integrating such advancements in speech generation with large language models might revolutionize a wide range of applications. However, certain applications, such as assistive conversational systems, require natural and conversational speech generation tools that also operate efficiently in real time. Current state-of-the-art models like VALL-E and SoundStorm, powered by hierarchical neural audio codecs, require large neural components and extensive training data to work well. In contrast, MQTTS aims to build more compact conversational TTS models while capitalizing on smaller-scale real-life conversational speech data. However, its autoregressive nature yields high inference latency and thus limits its real-time usage. In order to mitigate the current limitations of the state-of-the-art TTS models while capitalizing on their strengths, in this work we introduce the Pheme model series that 1) offers compact yet high-performing models, 2) allows for parallel speech generation of 3) natural conversational speech, and 4) it can be trained efficiently on smaller-scale conversational data, cutting data demands by more than 10x but still matching the quality of the autoregressive TTS models. We also show that through simple teacher-student distillation we can meet significant improvements in voice quality for single-speaker setups on top of pretrained Pheme checkpoints, relying solely on synthetic speech generated by much larger teacher models. Audio samples and pretrained models are available online.
Leveraging Context for Multimodal Fallacy Classification in Political Debates
In this paper, we present our submission to the MM-ArgFallacy2025 shared task, which aims to advance research in multimodal argument mining, focusing on logical fallacies in political debates. Our approach uses pretrained Transformer-based models and proposes several ways to leverage context. In the fallacy classification subtask, our models achieved macro F1-scores of 0.4444 (text), 0.3559 (audio), and 0.4403 (multimodal). Our multimodal model showed performance comparable to the text-only model, suggesting potential for improvements.
TRIBE: TRImodal Brain Encoder for whole-brain fMRI response prediction
Historically, neuroscience has progressed by fragmenting into specialized domains, each focusing on isolated modalities, tasks, or brain regions. While fruitful, this approach hinders the development of a unified model of cognition. Here, we introduce TRIBE, the first deep neural network trained to predict brain responses to stimuli across multiple modalities, cortical areas and individuals. By combining the pretrained representations of text, audio and video foundational models and handling their time-evolving nature with a transformer, our model can precisely model the spatial and temporal fMRI responses to videos, achieving the first place in the Algonauts 2025 brain encoding competition with a significant margin over competitors. Ablations show that while unimodal models can reliably predict their corresponding cortical networks (e.g. visual or auditory networks), they are systematically outperformed by our multimodal model in high-level associative cortices. Currently applied to perception and comprehension, our approach paves the way towards building an integrative model of representations in the human brain. Our code is available at https://github.com/facebookresearch/algonauts-2025.
OmniFusion: Simultaneous Multilingual Multimodal Translations via Modular Fusion
There has been significant progress in open-source text-only translation large language models (LLMs) with better language coverage and quality. However, these models can be only used in cascaded pipelines for speech translation (ST), performing automatic speech recognition first followed by translation. This introduces additional latency, which is particularly critical in simultaneous ST (SimulST), and prevents the model from exploiting multimodal context, such as images, which can aid disambiguation. Pretrained multimodal foundation models (MMFMs) already possess strong perception and reasoning capabilities across multiple modalities, but generally lack the multilingual coverage and specialized translation performance of dedicated translation LLMs. To build an effective multimodal translation system, we propose an end-to-end approach that fuses MMFMs with translation LLMs. We introduce a novel fusion strategy that connects hidden states from multiple layers of a pretrained MMFM to a translation LLM, enabling joint end-to-end training. The resulting model, OmniFusion, built on Omni 2.5-7B as the MMFM and SeedX PPO-7B as the translation LLM, can perform speech-to-text, speech-and-image-to-text, and text-and-image-to-text translation. Experiments demonstrate that OmniFusion effectively leverages both audio and visual inputs, achieves a 1-second latency reduction in SimulST compared to cascaded pipelines and also improves the overall translation qualityCode is available at https://github.com/saikoneru/OmniFusion.
Qwen-Audio: Advancing Universal Audio Understanding via Unified Large-Scale Audio-Language Models
Recently, instruction-following audio-language models have received broad attention for audio interaction with humans. However, the absence of pre-trained audio models capable of handling diverse audio types and tasks has hindered progress in this field. Consequently, most existing works have only been able to support a limited range of interaction capabilities. In this paper, we develop the Qwen-Audio model and address this limitation by scaling up audio-language pre-training to cover over 30 tasks and various audio types, such as human speech, natural sounds, music, and songs, to facilitate universal audio understanding abilities. However, directly co-training all tasks and datasets can lead to interference issues, as the textual labels associated with different datasets exhibit considerable variations due to differences in task focus, language, granularity of annotation, and text structure. To overcome the one-to-many interference, we carefully design a multi-task training framework by conditioning on a sequence of hierarchical tags to the decoder for encouraging knowledge sharing and avoiding interference through shared and specified tags respectively. Remarkably, Qwen-Audio achieves impressive performance across diverse benchmark tasks without requiring any task-specific fine-tuning, surpassing its counterparts. Building upon the capabilities of Qwen-Audio, we further develop Qwen-Audio-Chat, which allows for input from various audios and text inputs, enabling multi-turn dialogues and supporting various audio-central scenarios.
Attention or Convolution: Transformer Encoders in Audio Language Models for Inference Efficiency
In this paper, we show that a simple self-supervised pre-trained audio model can achieve comparable inference efficiency to more complicated pre-trained models with speech transformer encoders. These speech transformers rely on mixing convolutional modules with self-attention modules. They achieve state-of-the-art performance on ASR with top efficiency. We first show that employing these speech transformers as an encoder significantly improves the efficiency of pre-trained audio models as well. However, our study shows that we can achieve comparable efficiency with advanced self-attention solely. We demonstrate that this simpler approach is particularly beneficial with a low-bit weight quantization technique of a neural network to improve efficiency. We hypothesize that it prevents propagating the errors between different quantized modules compared to recent speech transformers mixing quantized convolution and the quantized self-attention modules.
Tuning In: Analysis of Audio Classifier Performance in Clinical Settings with Limited Data
This study assesses deep learning models for audio classification in a clinical setting with the constraint of small datasets reflecting real-world prospective data collection. We analyze CNNs, including DenseNet and ConvNeXt, alongside transformer models like ViT, SWIN, and AST, and compare them against pre-trained audio models such as YAMNet and VGGish. Our method highlights the benefits of pre-training on large datasets before fine-tuning on specific clinical data. We prospectively collected two first-of-their-kind patient audio datasets from stroke patients. We investigated various preprocessing techniques, finding that RGB and grayscale spectrogram transformations affect model performance differently based on the priors they learn from pre-training. Our findings indicate CNNs can match or exceed transformer models in small dataset contexts, with DenseNet-Contrastive and AST models showing notable performance. This study highlights the significance of incremental marginal gains through model selection, pre-training, and preprocessing in sound classification; this offers valuable insights for clinical diagnostics that rely on audio classification.
Masked Generative Video-to-Audio Transformers with Enhanced Synchronicity
Video-to-audio (V2A) generation leverages visual-only video features to render plausible sounds that match the scene. Importantly, the generated sound onsets should match the visual actions that are aligned with them, otherwise unnatural synchronization artifacts arise. Recent works have explored the progression of conditioning sound generators on still images and then video features, focusing on quality and semantic matching while ignoring synchronization, or by sacrificing some amount of quality to focus on improving synchronization only. In this work, we propose a V2A generative model, named MaskVAT, that interconnects a full-band high-quality general audio codec with a sequence-to-sequence masked generative model. This combination allows modeling both high audio quality, semantic matching, and temporal synchronicity at the same time. Our results show that, by combining a high-quality codec with the proper pre-trained audio-visual features and a sequence-to-sequence parallel structure, we are able to yield highly synchronized results on one hand, whilst being competitive with the state of the art of non-codec generative audio models. Sample videos and generated audios are available at https://maskvat.github.io .
InfantCryNet: A Data-driven Framework for Intelligent Analysis of Infant Cries
Understanding the meaning of infant cries is a significant challenge for young parents in caring for their newborns. The presence of background noise and the lack of labeled data present practical challenges in developing systems that can detect crying and analyze its underlying reasons. In this paper, we present a novel data-driven framework, "InfantCryNet," for accomplishing these tasks. To address the issue of data scarcity, we employ pre-trained audio models to incorporate prior knowledge into our model. We propose the use of statistical pooling and multi-head attention pooling techniques to extract features more effectively. Additionally, knowledge distillation and model quantization are applied to enhance model efficiency and reduce the model size, better supporting industrial deployment in mobile devices. Experiments on real-life datasets demonstrate the superior performance of the proposed framework, outperforming state-of-the-art baselines by 4.4% in classification accuracy. The model compression effectively reduces the model size by 7% without compromising performance and by up to 28% with only an 8% decrease in accuracy, offering practical insights for model selection and system design.
Enhancing Low-Resource Language and Instruction Following Capabilities of Audio Language Models
Audio language models can understand audio inputs and perform a range of audio-related tasks based on instructions, such as speech recognition and audio captioning, where the instructions are usually textual prompts. Audio language models are mostly initialized from pre-trained audio encoders and large language models (LLMs). Although these pre-trained components were developed to support multiple languages, audio-language models are trained predominantly on English data, which may limit their usability to only English instructions or English speech inputs. First, this paper examines the performance of existing audio language models in an underserved language using Thai as an example. This paper demonstrates that, despite being built on multilingual backbones, audio language models do not exhibit cross-lingual emergent abilities to low-resource languages. Second, this paper studies data mixture for developing audio language models that are optimized for a target language as well as English. In addition. this paper integrates audio comprehension and speech instruction-following capabilities into a single unified model. Our experiments provide insights into data mixture for enhancing instruction-following capabilities in both a low-resource language and English. Our model, Typhoon-Audio, outperforms existing open-source audio language models by a considerable margin, and it is comparable to state-of-the-art Gemini-1.5-Pro in both English and Thai languages.
On the Audio Hallucinations in Large Audio-Video Language Models
Large audio-video language models can generate descriptions for both video and audio. However, they sometimes ignore audio content, producing audio descriptions solely reliant on visual information. This paper refers to this as audio hallucinations and analyzes them in large audio-video language models. We gather 1,000 sentences by inquiring about audio information and annotate them whether they contain hallucinations. If a sentence is hallucinated, we also categorize the type of hallucination. The results reveal that 332 sentences are hallucinated with distinct trends observed in nouns and verbs for each hallucination type. Based on this, we tackle a task of audio hallucination classification using pre-trained audio-text models in the zero-shot and fine-tuning settings. Our experimental results reveal that the zero-shot models achieve higher performance (52.2% in F1) than the random (40.3%) and the fine-tuning models achieve 87.9%, outperforming the zero-shot models.
QAMRO: Quality-aware Adaptive Margin Ranking Optimization for Human-aligned Assessment of Audio Generation Systems
Evaluating audio generation systems, including text-to-music (TTM), text-to-speech (TTS), and text-to-audio (TTA), remains challenging due to the subjective and multi-dimensional nature of human perception. Existing methods treat mean opinion score (MOS) prediction as a regression problem, but standard regression losses overlook the relativity of perceptual judgments. To address this limitation, we introduce QAMRO, a novel Quality-aware Adaptive Margin Ranking Optimization framework that seamlessly integrates regression objectives from different perspectives, aiming to highlight perceptual differences and prioritize accurate ratings. Our framework leverages pre-trained audio-text models such as CLAP and Audiobox-Aesthetics, and is trained exclusively on the official AudioMOS Challenge 2025 dataset. It demonstrates superior alignment with human evaluations across all dimensions, significantly outperforming robust baseline models.
Enhancing Speech Emotion Recognition with Graph-Based Multimodal Fusion and Prosodic Features for the Speech Emotion Recognition in Naturalistic Conditions Challenge at Interspeech 2025
Training SER models in natural, spontaneous speech is especially challenging due to the subtle expression of emotions and the unpredictable nature of real-world audio. In this paper, we present a robust system for the INTERSPEECH 2025 Speech Emotion Recognition in Naturalistic Conditions Challenge, focusing on categorical emotion recognition. Our method combines state-of-the-art audio models with text features enriched by prosodic and spectral cues. In particular, we investigate the effectiveness of Fundamental Frequency (F0) quantization and the use of a pretrained audio tagging model. We also employ an ensemble model to improve robustness. On the official test set, our system achieved a Macro F1-score of 39.79% (42.20% on validation). Our results underscore the potential of these methods, and analysis of fusion techniques confirmed the effectiveness of Graph Attention Networks. Our source code is publicly available.
Adapting a ConvNeXt model to audio classification on AudioSet
In computer vision, convolutional neural networks (CNN) such as ConvNeXt, have been able to surpass state-of-the-art transformers, partly thanks to depthwise separable convolutions (DSC). DSC, as an approximation of the regular convolution, has made CNNs more efficient in time and memory complexity without deteriorating their accuracy, and sometimes even improving it. In this paper, we first implement DSC into the Pretrained Audio Neural Networks (PANN) family for audio classification on AudioSet, to show its benefits in terms of accuracy/model size trade-off. Second, we adapt the now famous ConvNeXt model to the same task. It rapidly overfits, so we report on techniques that improve the learning process. Our best ConvNeXt model reached 0.471 mean-average precision on AudioSet, which is better than or equivalent to recent large audio transformers, while using three times less parameters. We also achieved positive results in audio captioning and audio retrieval with this model. Our PyTorch source code and checkpoint models are available at https://github.com/topel/audioset-convnext-inf.
AudioToken: Adaptation of Text-Conditioned Diffusion Models for Audio-to-Image Generation
In recent years, image generation has shown a great leap in performance, where diffusion models play a central role. Although generating high-quality images, such models are mainly conditioned on textual descriptions. This begs the question: "how can we adopt such models to be conditioned on other modalities?". In this paper, we propose a novel method utilizing latent diffusion models trained for text-to-image-generation to generate images conditioned on audio recordings. Using a pre-trained audio encoding model, the proposed method encodes audio into a new token, which can be considered as an adaptation layer between the audio and text representations. Such a modeling paradigm requires a small number of trainable parameters, making the proposed approach appealing for lightweight optimization. Results suggest the proposed method is superior to the evaluated baseline methods, considering objective and subjective metrics. Code and samples are available at: https://pages.cs.huji.ac.il/adiyoss-lab/AudioToken.
Step-by-Step Video-to-Audio Synthesis via Negative Audio Guidance
We propose a novel step-by-step video-to-audio generation method that sequentially produces individual audio tracks, each corresponding to a specific sound event in the video. Our approach mirrors traditional Foley workflows, aiming to capture all sound events induced by a given video comprehensively. Each generation step is formulated as a guided video-to-audio synthesis task, conditioned on a target text prompt and previously generated audio tracks. This design is inspired by the idea of concept negation from prior compositional generation frameworks. To enable this guided generation, we introduce a training framework that leverages pre-trained video-to-audio models and eliminates the need for specialized paired datasets, allowing training on more accessible data. Experimental results demonstrate that our method generates multiple semantically distinct audio tracks for a single input video, leading to higher-quality composite audio synthesis than existing baselines.
Video-Foley: Two-Stage Video-To-Sound Generation via Temporal Event Condition For Foley Sound
Foley sound synthesis is crucial for multimedia production, enhancing user experience by synchronizing audio and video both temporally and semantically. Recent studies on automating this labor-intensive process through video-to-sound generation face significant challenges. Systems lacking explicit temporal features suffer from poor controllability and alignment, while timestamp-based models require costly and subjective human annotation. We propose Video-Foley, a video-to-sound system using Root Mean Square (RMS) as a temporal event condition with semantic timbre prompts (audio or text). RMS, a frame-level intensity envelope feature closely related to audio semantics, ensures high controllability and synchronization. The annotation-free self-supervised learning framework consists of two stages, Video2RMS and RMS2Sound, incorporating novel ideas including RMS discretization and RMS-ControlNet with a pretrained text-to-audio model. Our extensive evaluation shows that Video-Foley achieves state-of-the-art performance in audio-visual alignment and controllability for sound timing, intensity, timbre, and nuance. Code, model weights, and demonstrations are available on the accompanying website. (https://jnwnlee.github.io/video-foley-demo)
Large Language Models Are Strong Audio-Visual Speech Recognition Learners
Multimodal large language models (MLLMs) have recently become a focal point of research due to their formidable multimodal understanding capabilities. For example, in the audio and speech domains, an LLM can be equipped with (automatic) speech recognition (ASR) abilities by just concatenating the audio tokens, computed with an audio encoder, and the text tokens to achieve state-of-the-art results. On the contrary, tasks like visual and audio-visual speech recognition (VSR/AVSR), which also exploit noise-invariant lip movement information, have received little or no attention. To bridge this gap, we propose Llama-AVSR, a new MLLM with strong audio-visual speech recognition capabilities. It leverages pre-trained audio and video encoders to produce modality-specific tokens which, together with the text tokens, are processed by a pre-trained LLM (e.g., Llama3.1-8B) to yield the resulting response in an auto-regressive fashion. Llama-AVSR requires a small number of trainable parameters as only modality-specific projectors and LoRA modules are trained whereas the multi-modal encoders and LLM are kept frozen. We evaluate our proposed approach on LRS3, the largest public AVSR benchmark, and we achieve new state-of-the-art results for the tasks of ASR and AVSR with a WER of 0.81% and 0.77%, respectively. To bolster our results, we investigate the key factors that underpin the effectiveness of Llama-AVSR: the choice of the pre-trained encoders and LLM, the efficient integration of LoRA modules, and the optimal performance-efficiency trade-off obtained via modality-aware compression rates.
video-SALMONN: Speech-Enhanced Audio-Visual Large Language Models
Speech understanding as an element of the more generic video understanding using audio-visual large language models (av-LLMs) is a crucial yet understudied aspect. This paper proposes video-SALMONN, a single end-to-end av-LLM for video processing, which can understand not only visual frame sequences, audio events and music, but speech as well. To obtain fine-grained temporal information required by speech understanding, while keeping efficient for other video elements, this paper proposes a novel multi-resolution causal Q-Former (MRC Q-Former) structure to connect pre-trained audio-visual encoders and the backbone large language model. Moreover, dedicated training approaches including the diversity loss and the unpaired audio-visual mixed training scheme are proposed to avoid frames or modality dominance. On the introduced speech-audio-visual evaluation benchmark, video-SALMONN achieves more than 25\% absolute accuracy improvements on the video-QA task and over 30\% absolute accuracy improvements on audio-visual QA tasks with human speech. In addition, video-SALMONN demonstrates remarkable video comprehension and reasoning abilities on tasks that are unprecedented by other av-LLMs. Our training code and model checkpoints are available at \url{https://github.com/bytedance/SALMONN/}.
Seeing and Hearing: Open-domain Visual-Audio Generation with Diffusion Latent Aligners
Video and audio content creation serves as the core technique for the movie industry and professional users. Recently, existing diffusion-based methods tackle video and audio generation separately, which hinders the technique transfer from academia to industry. In this work, we aim at filling the gap, with a carefully designed optimization-based framework for cross-visual-audio and joint-visual-audio generation. We observe the powerful generation ability of off-the-shelf video or audio generation models. Thus, instead of training the giant models from scratch, we propose to bridge the existing strong models with a shared latent representation space. Specifically, we propose a multimodality latent aligner with the pre-trained ImageBind model. Our latent aligner shares a similar core as the classifier guidance that guides the diffusion denoising process during inference time. Through carefully designed optimization strategy and loss functions, we show the superior performance of our method on joint video-audio generation, visual-steered audio generation, and audio-steered visual generation tasks. The project website can be found at https://yzxing87.github.io/Seeing-and-Hearing/
ZeroSep: Separate Anything in Audio with Zero Training
Audio source separation is fundamental for machines to understand complex acoustic environments and underpins numerous audio applications. Current supervised deep learning approaches, while powerful, are limited by the need for extensive, task-specific labeled data and struggle to generalize to the immense variability and open-set nature of real-world acoustic scenes. Inspired by the success of generative foundation models, we investigate whether pre-trained text-guided audio diffusion models can overcome these limitations. We make a surprising discovery: zero-shot source separation can be achieved purely through a pre-trained text-guided audio diffusion model under the right configuration. Our method, named ZeroSep, works by inverting the mixed audio into the diffusion model's latent space and then using text conditioning to guide the denoising process to recover individual sources. Without any task-specific training or fine-tuning, ZeroSep repurposes the generative diffusion model for a discriminative separation task and inherently supports open-set scenarios through its rich textual priors. ZeroSep is compatible with a variety of pre-trained text-guided audio diffusion backbones and delivers strong separation performance on multiple separation benchmarks, surpassing even supervised methods.
The Power of Sound (TPoS): Audio Reactive Video Generation with Stable Diffusion
In recent years, video generation has become a prominent generative tool and has drawn significant attention. However, there is little consideration in audio-to-video generation, though audio contains unique qualities like temporal semantics and magnitude. Hence, we propose The Power of Sound (TPoS) model to incorporate audio input that includes both changeable temporal semantics and magnitude. To generate video frames, TPoS utilizes a latent stable diffusion model with textual semantic information, which is then guided by the sequential audio embedding from our pretrained Audio Encoder. As a result, this method produces audio reactive video contents. We demonstrate the effectiveness of TPoS across various tasks and compare its results with current state-of-the-art techniques in the field of audio-to-video generation. More examples are available at https://ku-vai.github.io/TPoS/
VoiceLDM: Text-to-Speech with Environmental Context
This paper presents VoiceLDM, a model designed to produce audio that accurately follows two distinct natural language text prompts: the description prompt and the content prompt. The former provides information about the overall environmental context of the audio, while the latter conveys the linguistic content. To achieve this, we adopt a text-to-audio (TTA) model based on latent diffusion models and extend its functionality to incorporate an additional content prompt as a conditional input. By utilizing pretrained contrastive language-audio pretraining (CLAP) and Whisper, VoiceLDM is trained on large amounts of real-world audio without manual annotations or transcriptions. Additionally, we employ dual classifier-free guidance to further enhance the controllability of VoiceLDM. Experimental results demonstrate that VoiceLDM is capable of generating plausible audio that aligns well with both input conditions, even surpassing the speech intelligibility of the ground truth audio on the AudioCaps test set. Furthermore, we explore the text-to-speech (TTS) and zero-shot text-to-audio capabilities of VoiceLDM and show that it achieves competitive results. Demos and code are available at https://voiceldm.github.io.
On the Utility of Speech and Audio Foundation Models for Marmoset Call Analysis
Marmoset monkeys encode vital information in their calls and serve as a surrogate model for neuro-biologists to understand the evolutionary origins of human vocal communication. Traditionally analyzed with signal processing-based features, recent approaches have utilized self-supervised models pre-trained on human speech for feature extraction, capitalizing on their ability to learn a signal's intrinsic structure independently of its acoustic domain. However, the utility of such foundation models remains unclear for marmoset call analysis in terms of multi-class classification, bandwidth, and pre-training domain. This study assesses feature representations derived from speech and general audio domains, across pre-training bandwidths of 4, 8, and 16 kHz for marmoset call-type and caller classification tasks. Results show that models with higher bandwidth improve performance, and pre-training on speech or general audio yields comparable results, improving over a spectral baseline.
Natural Language Supervision for General-Purpose Audio Representations
Audio-Language models jointly learn multimodal text and audio representations that enable Zero-Shot inference. Models rely on the encoders to create powerful representations of the input and generalize to multiple tasks ranging from sounds, music, and speech. Although models have achieved remarkable performance, there is still a performance gap with task-specific models. In this paper, we propose a Contrastive Language-Audio Pretraining model that is pretrained with a diverse collection of 4.6M audio-text pairs employing two innovative encoders for Zero-Shot inference. To learn audio representations, we trained an audio encoder on 22 audio tasks, instead of the standard training of sound event classification. To learn language representations, we trained an autoregressive decoder-only model instead of the standard encoder-only models. Then, the audio and language representations are brought into a joint multimodal space using Contrastive Learning. We used our encoders to improve the downstream performance by a margin. We extensively evaluated the generalization of our representations on 26 downstream tasks, the largest in the literature. Our model achieves state of the art results in several tasks leading the way towards general-purpose audio representations.
MusiLingo: Bridging Music and Text with Pre-trained Language Models for Music Captioning and Query Response
Large Language Models (LLMs) have shown immense potential in multimodal applications, yet the convergence of textual and musical domains remains relatively unexplored. To address this gap, we present MusiLingo, a novel system for music caption generation and music-related query responses. MusiLingo employs a single projection layer to align music representations from the pre-trained frozen music audio model MERT with the frozen LLaMA language model, bridging the gap between music audio and textual contexts. We train it on an extensive music caption dataset and fine-tune it with instructional data. Due to the scarcity of high-quality music Q&A datasets, we created the MusicInstruct (MI) dataset from MusicCaps, tailored for open-ended music inquiries. Empirical evaluations demonstrate its competitive performance in generating music captions and composing music-related Q&A pairs. Our introduced dataset enables notable advancements beyond previous ones.
AudioSetCaps: An Enriched Audio-Caption Dataset using Automated Generation Pipeline with Large Audio and Language Models
With the emergence of audio-language models, constructing large-scale paired audio-language datasets has become essential yet challenging for model development, primarily due to the time-intensive and labour-heavy demands involved. While large language models (LLMs) have improved the efficiency of synthetic audio caption generation, current approaches struggle to effectively extract and incorporate detailed audio information. In this paper, we propose an automated pipeline that integrates audio-language models for fine-grained content extraction, LLMs for synthetic caption generation, and a contrastive language-audio pretraining (CLAP) model-based refinement process to improve the quality of captions. Specifically, we employ prompt chaining techniques in the content extraction stage to obtain accurate and fine-grained audio information, while we use the refinement process to mitigate potential hallucinations in the generated captions. Leveraging the AudioSet dataset and the proposed approach, we create AudioSetCaps, a dataset comprising 1.9 million audio-caption pairs, the largest audio-caption dataset at the time of writing. The models trained with AudioSetCaps achieve state-of-the-art performance on audio-text retrieval with R@1 scores of 46.3% for text-to-audio and 59.7% for audio-to-text retrieval and automated audio captioning with the CIDEr score of 84.8. As our approach has shown promising results with AudioSetCaps, we create another dataset containing 4.1 million synthetic audio-language pairs based on the Youtube-8M and VGGSound datasets. To facilitate research in audio-language learning, we have made our pipeline, datasets with 6 million audio-language pairs, and pre-trained models publicly available at https://github.com/JishengBai/AudioSetCaps.
SLAM-AAC: Enhancing Audio Captioning with Paraphrasing Augmentation and CLAP-Refine through LLMs
Automated Audio Captioning (AAC) aims to generate natural textual descriptions for input audio signals. Recent progress in audio pre-trained models and large language models (LLMs) has significantly enhanced audio understanding and textual reasoning capabilities, making improvements in AAC possible. In this paper, we propose SLAM-AAC to further enhance AAC with paraphrasing augmentation and CLAP-Refine through LLMs. Our approach uses the self-supervised EAT model to extract fine-grained audio representations, which are then aligned with textual embeddings via lightweight linear layers. The caption generation LLM is efficiently fine-tuned using the LoRA adapter. Drawing inspiration from the back-translation method in machine translation, we implement paraphrasing augmentation to expand the Clotho dataset during pre-training. This strategy helps alleviate the limitation of scarce audio-text pairs and generates more diverse captions from a small set of audio clips. During inference, we introduce the plug-and-play CLAP-Refine strategy to fully exploit multiple decoding outputs, akin to the n-best rescoring strategy in speech recognition. Using the CLAP model for audio-text similarity calculation, we could select the textual descriptions generated by multiple searching beams that best match the input audio. Experimental results show that SLAM-AAC achieves state-of-the-art performance on Clotho V2 and AudioCaps, surpassing previous mainstream models.
A Study of Gender Impact in Self-supervised Models for Speech-to-Text Systems
Self-supervised models for speech processing emerged recently as popular foundation blocks in speech processing pipelines. These models are pre-trained on unlabeled audio data and then used in speech processing downstream tasks such as automatic speech recognition (ASR) or speech translation (ST). Since these models are now used in research and industrial systems alike, it becomes necessary to understand the impact caused by some features such as gender distribution within pre-training data. Using French as our investigation language, we train and compare gender-specific wav2vec 2.0 models against models containing different degrees of gender balance in their pre-training data. The comparison is performed by applying these models to two speech-to-text downstream tasks: ASR and ST. Results show the type of downstream integration matters. We observe lower overall performance using gender-specific pre-training before fine-tuning an end-to-end ASR system. However, when self-supervised models are used as feature extractors, the overall ASR and ST results follow more complex patterns in which the balanced pre-trained model does not necessarily lead to the best results. Lastly, our crude 'fairness' metric, the relative performance difference measured between female and male test sets, does not display a strong variation from balanced to gender-specific pre-trained wav2vec 2.0 models.
Let's Go Real Talk: Spoken Dialogue Model for Face-to-Face Conversation
In this paper, we introduce a novel Face-to-Face spoken dialogue model. It processes audio-visual speech from user input and generates audio-visual speech as the response, marking the initial step towards creating an avatar chatbot system without relying on intermediate text. To this end, we newly introduce MultiDialog, the first large-scale multimodal (i.e., audio and visual) spoken dialogue corpus containing 340 hours of approximately 9,000 dialogues, recorded based on the open domain dialogue dataset, TopicalChat. The MultiDialog contains parallel audio-visual recordings of conversation partners acting according to the given script with emotion annotations, which we expect to open up research opportunities in multimodal synthesis. Our Face-to-Face spoken dialogue model incorporates a textually pretrained large language model and adapts it into the audio-visual spoken dialogue domain by incorporating speech-text joint pretraining. Through extensive experiments, we validate the effectiveness of our model in facilitating a face-to-face conversation. Demo and data are available at https://multidialog.github.io and https://huggingface.co/datasets/IVLLab/MultiDialog, respectively.
MMDisCo: Multi-Modal Discriminator-Guided Cooperative Diffusion for Joint Audio and Video Generation
This study aims to construct an audio-video generative model with minimal computational cost by leveraging pre-trained single-modal generative models for audio and video. To achieve this, we propose a novel method that guides single-modal models to cooperatively generate well-aligned samples across modalities. Specifically, given two pre-trained base diffusion models, we train a lightweight joint guidance module to adjust scores separately estimated by the base models to match the score of joint distribution over audio and video. We show that this guidance can be computed using the gradient of the optimal discriminator, which distinguishes real audio-video pairs from fake ones independently generated by the base models. Based on this analysis, we construct a joint guidance module by training this discriminator. Additionally, we adopt a loss function to stabilize the discriminator's gradient and make it work as a noise estimator, as in standard diffusion models. Empirical evaluations on several benchmark datasets demonstrate that our method improves both single-modal fidelity and multimodal alignment with relatively few parameters. The code is available at: https://github.com/SonyResearch/MMDisCo.
Music Understanding LLaMA: Advancing Text-to-Music Generation with Question Answering and Captioning
Text-to-music generation (T2M-Gen) faces a major obstacle due to the scarcity of large-scale publicly available music datasets with natural language captions. To address this, we propose the Music Understanding LLaMA (MU-LLaMA), capable of answering music-related questions and generating captions for music files. Our model utilizes audio representations from a pretrained MERT model to extract music features. However, obtaining a suitable dataset for training the MU-LLaMA model remains challenging, as existing publicly accessible audio question answering datasets lack the necessary depth for open-ended music question answering. To fill this gap, we present a methodology for generating question-answer pairs from existing audio captioning datasets and introduce the MusicQA Dataset designed for answering open-ended music-related questions. The experiments demonstrate that the proposed MU-LLaMA model, trained on our designed MusicQA dataset, achieves outstanding performance in both music question answering and music caption generation across various metrics, outperforming current state-of-the-art (SOTA) models in both fields and offering a promising advancement in the T2M-Gen research field.
Data-Efficient Multimodal Fusion on a Single GPU
The goal of multimodal alignment is to learn a single latent space that is shared between multimodal inputs. The most powerful models in this space have been trained using massive datasets of paired inputs and large-scale computational resources, making them prohibitively expensive to train in many practical scenarios. We surmise that existing unimodal encoders pre-trained on large amounts of unimodal data should provide an effective bootstrap to create multimodal models from unimodal ones at much lower costs. We therefore propose FuseMix, a multimodal augmentation scheme that operates on the latent spaces of arbitrary pre-trained unimodal encoders. Using FuseMix for multimodal alignment, we achieve competitive performance -- and in certain cases outperform state-of-the art methods -- in both image-text and audio-text retrieval, with orders of magnitude less compute and data: for example, we outperform CLIP on the Flickr30K text-to-image retrieval task with sim ! 600times fewer GPU days and sim ! 80times fewer image-text pairs. Additionally, we show how our method can be applied to convert pre-trained text-to-image generative models into audio-to-image ones. Code is available at: https://github.com/layer6ai-labs/fusemix.
ASTAR-NTU solution to AudioMOS Challenge 2025 Track1
Evaluation of text-to-music systems is constrained by the cost and availability of collecting experts for assessment. AudioMOS 2025 Challenge track 1 is created to automatically predict music impression (MI) as well as text alignment (TA) between the prompt and the generated musical piece. This paper reports our winning system, which uses a dual-branch architecture with pre-trained MuQ and RoBERTa models as audio and text encoders. A cross-attention mechanism fuses the audio and text representations. For training, we reframe the MI and TA prediction as a classification task. To incorporate the ordinal nature of MOS scores, one-hot labels are converted to a soft distribution using a Gaussian kernel. On the official test set, a single model trained with this method achieves a system-level Spearman's Rank Correlation Coefficient (SRCC) of 0.991 for MI and 0.952 for TA, corresponding to a relative improvement of 21.21\% in MI SRCC and 31.47\% in TA SRCC over the challenge baseline.
BEATs: Audio Pre-Training with Acoustic Tokenizers
The massive growth of self-supervised learning (SSL) has been witnessed in language, vision, speech, and audio domains over the past few years. While discrete label prediction is widely adopted for other modalities, the state-of-the-art audio SSL models still employ reconstruction loss for pre-training. Compared with reconstruction loss, semantic-rich discrete label prediction encourages the SSL model to abstract the high-level audio semantics and discard the redundant details as in human perception. However, a semantic-rich acoustic tokenizer for general audio pre-training is usually not straightforward to obtain, due to the continuous property of audio and unavailable phoneme sequences like speech. To tackle this challenge, we propose BEATs, an iterative audio pre-training framework to learn Bidirectional Encoder representation from Audio Transformers, where an acoustic tokenizer and an audio SSL model are optimized by iterations. In the first iteration, we use random projection as the acoustic tokenizer to train an audio SSL model in a mask and label prediction manner. Then, we train an acoustic tokenizer for the next iteration by distilling the semantic knowledge from the pre-trained or fine-tuned audio SSL model. The iteration is repeated with the hope of mutual promotion of the acoustic tokenizer and audio SSL model. The experimental results demonstrate our acoustic tokenizers can generate discrete labels with rich audio semantics and our audio SSL models achieve state-of-the-art results across various audio classification benchmarks, even outperforming previous models that use more training data and model parameters significantly. Specifically, we set a new state-of-the-art mAP 50.6% on AudioSet-2M for audio-only models without using any external data, and 98.1% accuracy on ESC-50. The code and pre-trained models are available at https://aka.ms/beats.
DiffuseStyleGesture: Stylized Audio-Driven Co-Speech Gesture Generation with Diffusion Models
The art of communication beyond speech there are gestures. The automatic co-speech gesture generation draws much attention in computer animation. It is a challenging task due to the diversity of gestures and the difficulty of matching the rhythm and semantics of the gesture to the corresponding speech. To address these problems, we present DiffuseStyleGesture, a diffusion model based speech-driven gesture generation approach. It generates high-quality, speech-matched, stylized, and diverse co-speech gestures based on given speeches of arbitrary length. Specifically, we introduce cross-local attention and self-attention to the gesture diffusion pipeline to generate better speech matched and realistic gestures. We then train our model with classifier-free guidance to control the gesture style by interpolation or extrapolation. Additionally, we improve the diversity of generated gestures with different initial gestures and noise. Extensive experiments show that our method outperforms recent approaches on speech-driven gesture generation. Our code, pre-trained models, and demos are available at https://github.com/YoungSeng/DiffuseStyleGesture.
WavLM model ensemble for audio deepfake detection
Audio deepfake detection has become a pivotal task over the last couple of years, as many recent speech synthesis and voice cloning systems generate highly realistic speech samples, thus enabling their use in malicious activities. In this paper we address the issue of audio deepfake detection as it was set in the ASVspoof5 challenge. First, we benchmark ten types of pretrained representations and show that the self-supervised representations stemming from the wav2vec2 and wavLM families perform best. Of the two, wavLM is better when restricting the pretraining data to LibriSpeech, as required by the challenge rules. To further improve performance, we finetune the wavLM model for the deepfake detection task. We extend the ASVspoof5 dataset with samples from other deepfake detection datasets and apply data augmentation. Our final challenge submission consists of a late fusion combination of four models and achieves an equal error rate of 6.56% and 17.08% on the two evaluation sets.
Fine-tune the pretrained ATST model for sound event detection
Sound event detection (SED) often suffers from the data deficiency problem. The recent baseline system in the DCASE2023 challenge task 4 leverages the large pretrained self-supervised learning (SelfSL) models to mitigate such restriction, where the pretrained models help to produce more discriminative features for SED. However, the pretrained models are regarded as a frozen feature extractor in the challenge baseline system and most of the challenge submissions, and fine-tuning of the pretrained models has been rarely studied. In this work, we study the fine-tuning method of the pretrained models for SED. We first introduce ATST-Frame, our newly proposed SelfSL model, to the SED system. ATST-Frame was especially designed for learning frame-level representations of audio signals and obtained state-of-the-art (SOTA) performances on a series of downstream tasks. We then propose a fine-tuning method for ATST-Frame using both (in-domain) unlabelled and labelled SED data. Our experiments show that, the proposed method overcomes the overfitting problem when fine-tuning the large pretrained network, and our SED system obtains new SOTA results of 0.587/0.812 PSDS1/PSDS2 scores on the DCASE challenge task 4 dataset.
MM-Diffusion: Learning Multi-Modal Diffusion Models for Joint Audio and Video Generation
We propose the first joint audio-video generation framework that brings engaging watching and listening experiences simultaneously, towards high-quality realistic videos. To generate joint audio-video pairs, we propose a novel Multi-Modal Diffusion model (i.e., MM-Diffusion), with two-coupled denoising autoencoders. In contrast to existing single-modal diffusion models, MM-Diffusion consists of a sequential multi-modal U-Net for a joint denoising process by design. Two subnets for audio and video learn to gradually generate aligned audio-video pairs from Gaussian noises. To ensure semantic consistency across modalities, we propose a novel random-shift based attention block bridging over the two subnets, which enables efficient cross-modal alignment, and thus reinforces the audio-video fidelity for each other. Extensive experiments show superior results in unconditional audio-video generation, and zero-shot conditional tasks (e.g., video-to-audio). In particular, we achieve the best FVD and FAD on Landscape and AIST++ dancing datasets. Turing tests of 10k votes further demonstrate dominant preferences for our model. The code and pre-trained models can be downloaded at https://github.com/researchmm/MM-Diffusion.
Unified Model for Image, Video, Audio and Language Tasks
Large Language Models (LLMs) have made the ambitious quest for generalist agents significantly far from being a fantasy. A key hurdle for building such general models is the diversity and heterogeneity of tasks and modalities. A promising solution is unification, allowing the support of a myriad of tasks and modalities within one unified framework. While few large models (e.g., Flamingo (Alayrac et al., 2022), trained on massive datasets, can support more than two modalities, current small to mid-scale unified models are still limited to 2 modalities, usually image-text or video-text. The question that we ask is: is it possible to build efficiently a unified model that can support all modalities? To answer this, we propose UnIVAL, a step further towards this ambitious goal. Without relying on fancy datasets sizes or models with billions of parameters, the ~ 0.25B parameter UnIVAL model goes beyond two modalities and unifies text, images, video, and audio into a single model. Our model is efficiently pretrained on many tasks, based on task balancing and multimodal curriculum learning. UnIVAL shows competitive performance to existing state-of-the-art approaches, across image and video-text tasks. The feature representations learned from image and video-text modalities, allows the model to achieve competitive performance when finetuned on audio-text tasks, despite not being pretrained on audio. Thanks to the unified model, we propose a novel study on multimodal model merging via weight interpolation of models trained on different multimodal tasks, showing their benefits in particular for out-of-distribution generalization. Finally, we motivate unification by showing the synergy between tasks. The model weights and code are released here: https://github.com/mshukor/UnIVAL.
Text-Queried Audio Source Separation via Hierarchical Modeling
Target audio source separation with natural language queries presents a promising paradigm for extracting arbitrary audio events through arbitrary text descriptions. Existing methods mainly face two challenges, the difficulty in jointly modeling acoustic-textual alignment and semantic-aware separation within a blindly-learned single-stage architecture, and the reliance on large-scale accurately-labeled training data to compensate for inefficient cross-modal learning and separation. To address these challenges, we propose a hierarchical decomposition framework, HSM-TSS, that decouples the task into global-local semantic-guided feature separation and structure-preserving acoustic reconstruction. Our approach introduces a dual-stage mechanism for semantic separation, operating on distinct global and local semantic feature spaces. We first perform global-semantic separation through a global semantic feature space aligned with text queries. A Q-Audio architecture is employed to align audio and text modalities, serving as pretrained global-semantic encoders. Conditioned on the predicted global feature, we then perform the second-stage local-semantic separation on AudioMAE features that preserve time-frequency structures, followed by acoustic reconstruction. We also propose an instruction processing pipeline to parse arbitrary text queries into structured operations, extraction or removal, coupled with audio descriptions, enabling flexible sound manipulation. Our method achieves state-of-the-art separation performance with data-efficient training while maintaining superior semantic consistency with queries in complex auditory scenes.
End-to-End Speech Translation with Pre-trained Models and Adapters: UPC at IWSLT 2021
This paper describes the submission to the IWSLT 2021 offline speech translation task by the UPC Machine Translation group. The task consists of building a system capable of translating English audio recordings extracted from TED talks into German text. Submitted systems can be either cascade or end-to-end and use a custom or given segmentation. Our submission is an end-to-end speech translation system, which combines pre-trained models (Wav2Vec 2.0 and mBART) with coupling modules between the encoder and decoder, and uses an efficient fine-tuning technique, which trains only 20% of its total parameters. We show that adding an Adapter to the system and pre-training it, can increase the convergence speed and the final result, with which we achieve a BLEU score of 27.3 on the MuST-C test set. Our final model is an ensemble that obtains 28.22 BLEU score on the same set. Our submission also uses a custom segmentation algorithm that employs pre-trained Wav2Vec 2.0 for identifying periods of untranscribable text and can bring improvements of 2.5 to 3 BLEU score on the IWSLT 2019 test set, as compared to the result with the given segmentation.
Macaw-LLM: Multi-Modal Language Modeling with Image, Audio, Video, and Text Integration
Although instruction-tuned large language models (LLMs) have exhibited remarkable capabilities across various NLP tasks, their effectiveness on other data modalities beyond text has not been fully studied. In this work, we propose Macaw-LLM, a novel multi-modal LLM that seamlessly integrates visual, audio, and textual information. Macaw-LLM consists of three main components: a modality module for encoding multi-modal data, a cognitive module for harnessing pretrained LLMs, and an alignment module for harmonizing diverse representations. Our novel alignment module seamlessly bridges multi-modal features to textual features, simplifying the adaptation process from the modality modules to the cognitive module. In addition, we construct a large-scale multi-modal instruction dataset in terms of multi-turn dialogue, including 69K image instances and 50K video instances. We have made our data, code and model publicly available, which we hope can pave the way for future research in multi-modal LLMs and expand the capabilities of LLMs to handle diverse data modalities and address complex real-world scenarios.
Codified audio language modeling learns useful representations for music information retrieval
We demonstrate that language models pre-trained on codified (discretely-encoded) music audio learn representations that are useful for downstream MIR tasks. Specifically, we explore representations from Jukebox (Dhariwal et al. 2020): a music generation system containing a language model trained on codified audio from 1M songs. To determine if Jukebox's representations contain useful information for MIR, we use them as input features to train shallow models on several MIR tasks. Relative to representations from conventional MIR models which are pre-trained on tagging, we find that using representations from Jukebox as input features yields 30% stronger performance on average across four MIR tasks: tagging, genre classification, emotion recognition, and key detection. For key detection, we observe that representations from Jukebox are considerably stronger than those from models pre-trained on tagging, suggesting that pre-training via codified audio language modeling may address blind spots in conventional approaches. We interpret the strength of Jukebox's representations as evidence that modeling audio instead of tags provides richer representations for MIR.
AV-DiT: Efficient Audio-Visual Diffusion Transformer for Joint Audio and Video Generation
Recent Diffusion Transformers (DiTs) have shown impressive capabilities in generating high-quality single-modality content, including images, videos, and audio. However, it is still under-explored whether the transformer-based diffuser can efficiently denoise the Gaussian noises towards superb multimodal content creation. To bridge this gap, we introduce AV-DiT, a novel and efficient audio-visual diffusion transformer designed to generate high-quality, realistic videos with both visual and audio tracks. To minimize model complexity and computational costs, AV-DiT utilizes a shared DiT backbone pre-trained on image-only data, with only lightweight, newly inserted adapters being trainable. This shared backbone facilitates both audio and video generation. Specifically, the video branch incorporates a trainable temporal attention layer into a frozen pre-trained DiT block for temporal consistency. Additionally, a small number of trainable parameters adapt the image-based DiT block for audio generation. An extra shared DiT block, equipped with lightweight parameters, facilitates feature interaction between audio and visual modalities, ensuring alignment. Extensive experiments on the AIST++ and Landscape datasets demonstrate that AV-DiT achieves state-of-the-art performance in joint audio-visual generation with significantly fewer tunable parameters. Furthermore, our results highlight that a single shared image generative backbone with modality-specific adaptations is sufficient for constructing a joint audio-video generator. Our source code and pre-trained models will be released.
Zero-Shot Unsupervised and Text-Based Audio Editing Using DDPM Inversion
Editing signals using large pre-trained models, in a zero-shot manner, has recently seen rapid advancements in the image domain. However, this wave has yet to reach the audio domain. In this paper, we explore two zero-shot editing techniques for audio signals, which use DDPM inversion on pre-trained diffusion models. The first, adopted from the image domain, allows text-based editing. The second, is a novel approach for discovering semantically meaningful editing directions without supervision. When applied to music signals, this method exposes a range of musically interesting modifications, from controlling the participation of specific instruments to improvisations on the melody. Samples can be found on our examples page in https://hilamanor.github.io/AudioEditing/ and code can be found in https://github.com/hilamanor/AudioEditing/ .
IMTalker: Efficient Audio-driven Talking Face Generation with Implicit Motion Transfer
Talking face generation aims to synthesize realistic speaking portraits from a single image, yet existing methods often rely on explicit optical flow and local warping, which fail to model complex global motions and cause identity drift. We present IMTalker, a novel framework that achieves efficient and high-fidelity talking face generation through implicit motion transfer. The core idea is to replace traditional flow-based warping with a cross-attention mechanism that implicitly models motion discrepancy and identity alignment within a unified latent space, enabling robust global motion rendering. To further preserve speaker identity during cross-identity reenactment, we introduce an identity-adaptive module that projects motion latents into personalized spaces, ensuring clear disentanglement between motion and identity. In addition, a lightweight flow-matching motion generator produces vivid and controllable implicit motion vectors from audio, pose, and gaze cues. Extensive experiments demonstrate that IMTalker surpasses prior methods in motion accuracy, identity preservation, and audio-lip synchronization, achieving state-of-the-art quality with superior efficiency, operating at 40 FPS for video-driven and 42 FPS for audio-driven generation on an RTX 4090 GPU. We will release our code and pre-trained models to facilitate applications and future research.
mWhisper-Flamingo for Multilingual Audio-Visual Noise-Robust Speech Recognition
Audio-Visual Speech Recognition (AVSR) combines lip-based video with audio and can improve performance in noise, but most methods are trained only on English data. One limitation is the lack of large-scale multilingual video data, which makes it hard hard to train models from scratch. In this work, we propose mWhisper-Flamingo for multilingual AVSR which combines the strengths of a pre-trained audio model (Whisper) and video model (AV-HuBERT). To enable better multi-modal integration and improve the noisy multilingual performance, we introduce decoder modality dropout where the model is trained both on paired audio-visual inputs and separate audio/visual inputs. mWhisper-Flamingo achieves state-of-the-art WER on MuAViC, an AVSR dataset of 9 languages. Audio-visual mWhisper-Flamingo consistently outperforms audio-only Whisper on all languages in noisy conditions.
Towards Cross-Lingual Audio Abuse Detection in Low-Resource Settings with Few-Shot Learning
Online abusive content detection, particularly in low-resource settings and within the audio modality, remains underexplored. We investigate the potential of pre-trained audio representations for detecting abusive language in low-resource languages, in this case, in Indian languages using Few Shot Learning (FSL). Leveraging powerful representations from models such as Wav2Vec and Whisper, we explore cross-lingual abuse detection using the ADIMA dataset with FSL. Our approach integrates these representations within the Model-Agnostic Meta-Learning (MAML) framework to classify abusive language in 10 languages. We experiment with various shot sizes (50-200) evaluating the impact of limited data on performance. Additionally, a feature visualization study was conducted to better understand model behaviour. This study highlights the generalization ability of pre-trained models in low-resource scenarios and offers valuable insights into detecting abusive language in multilingual contexts.
SPEAR: A Unified SSL Framework for Learning Speech and Audio Representations
Self-Supervised Learning (SSL) excels at learning generic representations of acoustic signals, yet prevailing methods remain domain-specific, tailored to either speech or general audio, hindering the development of a unified representation model with a comprehensive capability over both domains. To address this, we present SPEAR (SPEech and Audio Representations), the first SSL framework to successfully learn unified speech and audio representations from a mixture of speech and audio data. SPEAR proposes a unified pre-training objective based on masked prediction of fine-grained discrete tokens for both speech and general audio. These tokens are derived from continuous speech and audio representations using a Multi-codebook Vector Quantisation (MVQ) method, retaining rich acoustic detail essential for modelling both speech and complex audio events. SPEAR is applied to pre-train both single-domain and unified speech-and-audio SSL models. Our speech-domain model establishes a new state-of-the-art on the SUPERB benchmark, a speech processing benchmark for SSL models, matching or surpassing the highly competitive WavLM Large on 12 out of 15 tasks with the same pre-training corpora and a similar model size. Crucially, our unified model learns complementary features and demonstrates comprehensive capabilities across two major benchmarks, SUPERB and HEAR, for evaluating audio representations. By further scaling up the model size and pre-training data, we present a unified model with 600M parameters that excels in both domains, establishing it as one of the most powerful and versatile open-source SSL models for auditory understanding. The inference code and pre-trained models will be made publicly available.
A Whisper transformer for audio captioning trained with synthetic captions and transfer learning
The field of audio captioning has seen significant advancements in recent years, driven by the availability of large-scale audio datasets and advancements in deep learning techniques. In this technical report, we present our approach to audio captioning, focusing on the use of a pretrained speech-to-text Whisper model and pretraining on synthetic captions. We discuss our training procedures and present our experiments' results, which include model size variations, dataset mixtures, and other hyperparameters. Our findings demonstrate the impact of different training strategies on the performance of the audio captioning model. Our code and trained models are publicly available on GitHub and Hugging Face Hub.
Audio Visual Language Maps for Robot Navigation
While interacting in the world is a multi-sensory experience, many robots continue to predominantly rely on visual perception to map and navigate in their environments. In this work, we propose Audio-Visual-Language Maps (AVLMaps), a unified 3D spatial map representation for storing cross-modal information from audio, visual, and language cues. AVLMaps integrate the open-vocabulary capabilities of multimodal foundation models pre-trained on Internet-scale data by fusing their features into a centralized 3D voxel grid. In the context of navigation, we show that AVLMaps enable robot systems to index goals in the map based on multimodal queries, e.g., textual descriptions, images, or audio snippets of landmarks. In particular, the addition of audio information enables robots to more reliably disambiguate goal locations. Extensive experiments in simulation show that AVLMaps enable zero-shot multimodal goal navigation from multimodal prompts and provide 50% better recall in ambiguous scenarios. These capabilities extend to mobile robots in the real world - navigating to landmarks referring to visual, audio, and spatial concepts. Videos and code are available at: https://avlmaps.github.io.
PAVE: Patching and Adapting Video Large Language Models
Pre-trained video large language models (Video LLMs) exhibit remarkable reasoning capabilities, yet adapting these models to new tasks involving additional modalities or data types (e.g., audio or 3D information) remains challenging. In this paper, we present PAVE, a flexible framework for adapting pre-trained Video LLMs to downstream tasks with side-channel signals, such as audio, 3D cues, or multi-view videos. PAVE introduces lightweight adapters, referred to as "patches," which add a small number of parameters and operations to a base model without modifying its architecture or pre-trained weights. In doing so, PAVE can effectively adapt the pre-trained base model to support diverse downstream tasks, including audio-visual question answering, 3D reasoning, multi-view video recognition, and high frame rate video understanding. Across these tasks, PAVE significantly enhances the performance of the base model, surpassing state-of-the-art task-specific models while incurring a minor cost of ~0.1% additional FLOPs and parameters. Further, PAVE supports multi-task learning and generalizes well across different Video LLMs. Our code is available at https://github.com/dragonlzm/PAVE.
Efficient Supervised Training of Audio Transformers for Music Representation Learning
In this work, we address music representation learning using convolution-free transformers. We build on top of existing spectrogram-based audio transformers such as AST and train our models on a supervised task using patchout training similar to PaSST. In contrast to previous works, we study how specific design decisions affect downstream music tagging tasks instead of focusing on the training task. We assess the impact of initializing the models with different pre-trained weights, using various input audio segment lengths, using learned representations from different blocks and tokens of the transformer for downstream tasks, and applying patchout at inference to speed up feature extraction. We find that 1) initializing the model from ImageNet or AudioSet weights and using longer input segments are beneficial both for the training and downstream tasks, 2) the best representations for the considered downstream tasks are located in the middle blocks of the transformer, and 3) using patchout at inference allows faster processing than our convolutional baselines while maintaining superior performance. The resulting models, MAEST, are publicly available and obtain the best performance among open models in music tagging tasks.
Parameter-Efficient Transfer Learning of Audio Spectrogram Transformers
The common modus operandi of fine-tuning large pre-trained Transformer models entails the adaptation of all their parameters (i.e., full fine-tuning). While achieving striking results on multiple tasks, this approach becomes unfeasible as the model size and the number of downstream tasks increase. In natural language processing and computer vision, parameter-efficient approaches like prompt-tuning and adapters have emerged as solid alternatives by fine-tuning only a small number of extra parameters, without sacrificing performance accuracy. Specifically, adapters, due to their flexibility, have recently garnered significant attention, leading to several variants. For audio classification tasks, the Audio Spectrogram Transformer model shows impressive results. However, surprisingly, how to efficiently adapt it to several downstream tasks has not been tackled before. In this paper, we bridge this gap and present a detailed investigation of common parameter-efficient methods, revealing that adapters consistently outperform the other methods across four benchmarks. This trend is also confirmed in few-shot learning settings and when the total number of trainable parameters increases, demonstrating adapters superior scalability. We finally study the best adapter configuration, as well as the role of residual connections in the learning process. Our code is available at: https://github.com/umbertocappellazzo/PETL AST.
Fun-Audio-Chat Technical Report
Recent advancements in joint speech-text models show great potential for seamless voice interactions. However, existing models face critical challenges: temporal resolution mismatch between speech tokens (25Hz) and text tokens (~3Hz) dilutes semantic information, incurs high computational costs, and causes catastrophic forgetting of text LLM knowledge. We introduce Fun-Audio-Chat, a Large Audio Language Model addressing these limitations via two innovations from our previous work DrVoice. First, Dual-Resolution Speech Representations (DRSR): the Shared LLM processes audio at efficient 5Hz (via token grouping), while the Speech Refined Head generates high-quality tokens at 25Hz, balancing efficiency (~50% GPU reduction) and quality. Second, Core-Cocktail Training, a two-stage fine-tuning with intermediate merging that mitigates catastrophic forgetting. We then apply Multi-Task DPO Training to enhance robustness, audio understanding, instruction-following and voice empathy. This multi-stage post-training enables Fun-Audio-Chat to retain text LLM knowledge while gaining powerful audio understanding, reasoning, and generation. Unlike recent LALMs requiring large-scale audio-text pre-training, Fun-Audio-Chat leverages pre-trained models and extensive post-training. Fun-Audio-Chat 8B and MoE 30B-A3B achieve competitive performance on Speech-to-Text and Speech-to-Speech tasks, ranking top among similar-scale models on Spoken QA benchmarks. They also achieve competitive to superior performance on Audio Understanding, Speech Function Calling, Instruction-Following and Voice Empathy. We develop Fun-Audio-Chat-Duplex, a full-duplex variant with strong performance on Spoken QA and full-duplex interactions. We open-source Fun-Audio-Chat-8B with training and inference code, and provide an interactive demo.
Generative Pre-trained Speech Language Model with Efficient Hierarchical Transformer
While recent advancements in speech language models have achieved significant progress, they face remarkable challenges in modeling the long acoustic sequences of neural audio codecs. In this paper, we introduce Generative Pre-trained Speech Transformer (GPST), a hierarchical transformer designed for efficient speech language modeling. GPST quantizes audio waveforms into two distinct types of discrete speech representations and integrates them within a hierarchical transformer architecture, allowing for a unified one-stage generation process and enhancing Hi-Res audio generation capabilities. By training on large corpora of speeches in an end-to-end unsupervised manner, GPST can generate syntactically consistent speech with diverse speaker identities. Given a brief 3-second prompt, GPST can produce natural and coherent personalized speech, demonstrating in-context learning abilities. Moreover, our approach can be easily extended to spoken cross-lingual speech generation by incorporating multi-lingual semantic tokens and universal acoustic tokens. Experimental results indicate that GPST significantly outperforms the existing speech language models in terms of word error rate, speech quality, and speaker similarity. See https://youngsheen.github.io/GPST/demo for demo samples.
Controllable Music Production with Diffusion Models and Guidance Gradients
We demonstrate how conditional generation from diffusion models can be used to tackle a variety of realistic tasks in the production of music in 44.1kHz stereo audio with sampling-time guidance. The scenarios we consider include continuation, inpainting and regeneration of musical audio, the creation of smooth transitions between two different music tracks, and the transfer of desired stylistic characteristics to existing audio clips. We achieve this by applying guidance at sampling time in a simple framework that supports both reconstruction and classification losses, or any combination of the two. This approach ensures that generated audio can match its surrounding context, or conform to a class distribution or latent representation specified relative to any suitable pre-trained classifier or embedding model.
UniVerse-1: Unified Audio-Video Generation via Stitching of Experts
We introduce UniVerse-1, a unified, Veo-3-like model capable of simultaneously generating coordinated audio and video. To enhance training efficiency, we bypass training from scratch and instead employ a stitching of experts (SoE) technique. This approach deeply fuses the corresponding blocks of pre-trained video and music generation experts models, thereby fully leveraging their foundational capabilities. To ensure accurate annotations and temporal alignment for both ambient sounds and speech with video content, we developed an online annotation pipeline that processes the required training data and generates labels during training process. This strategy circumvents the performance degradation often caused by misalignment text-based annotations. Through the synergy of these techniques, our model, after being finetuned on approximately 7,600 hours of audio-video data, produces results with well-coordinated audio-visuals for ambient sounds generation and strong alignment for speech generation. To systematically evaluate our proposed method, we introduce Verse-Bench, a new benchmark dataset. In an effort to advance research in audio-video generation and to close the performance gap with state-of-the-art models such as Veo3, we make our model and code publicly available. We hope this contribution will benefit the broader research community. Project page: https://dorniwang.github.io/UniVerse-1/.
Audio-Enhanced Text-to-Video Retrieval using Text-Conditioned Feature Alignment
Text-to-video retrieval systems have recently made significant progress by utilizing pre-trained models trained on large-scale image-text pairs. However, most of the latest methods primarily focus on the video modality while disregarding the audio signal for this task. Nevertheless, a recent advancement by ECLIPSE has improved long-range text-to-video retrieval by developing an audiovisual video representation. Nonetheless, the objective of the text-to-video retrieval task is to capture the complementary audio and video information that is pertinent to the text query rather than simply achieving better audio and video alignment. To address this issue, we introduce TEFAL, a TExt-conditioned Feature ALignment method that produces both audio and video representations conditioned on the text query. Instead of using only an audiovisual attention block, which could suppress the audio information relevant to the text query, our approach employs two independent cross-modal attention blocks that enable the text to attend to the audio and video representations separately. Our proposed method's efficacy is demonstrated on four benchmark datasets that include audio: MSR-VTT, LSMDC, VATEX, and Charades, and achieves better than state-of-the-art performance consistently across the four datasets. This is attributed to the additional text-query-conditioned audio representation and the complementary information it adds to the text-query-conditioned video representation.
Ovi: Twin Backbone Cross-Modal Fusion for Audio-Video Generation
Audio-video generation has often relied on complex multi-stage architectures or sequential synthesis of sound and visuals. We introduce Ovi, a unified paradigm for audio-video generation that models the two modalities as a single generative process. By using blockwise cross-modal fusion of twin-DiT modules, Ovi achieves natural synchronization and removes the need for separate pipelines or post hoc alignment. To facilitate fine-grained multimodal fusion modeling, we initialize an audio tower with an architecture identical to that of a strong pretrained video model. Trained from scratch on hundreds of thousands of hours of raw audio, the audio tower learns to generate realistic sound effects, as well as speech that conveys rich speaker identity and emotion. Fusion is obtained by jointly training the identical video and audio towers via blockwise exchange of timing (via scaled-RoPE embeddings) and semantics (through bidirectional cross-attention) on a vast video corpus. Our model enables cinematic storytelling with natural speech and accurate, context-matched sound effects, producing movie-grade video clips. All the demos, code and model weights are published at https://aaxwaz.github.io/Ovi
ONE-PEACE: Exploring One General Representation Model Toward Unlimited Modalities
In this work, we explore a scalable way for building a general representation model toward unlimited modalities. We release ONE-PEACE, a highly extensible model with 4B parameters that can seamlessly align and integrate representations across vision, audio, and language modalities. The architecture of ONE-PEACE comprises modality adapters, shared self-attention layers, and modality FFNs. This design allows for the easy extension of new modalities by adding adapters and FFNs, while also enabling multi-modal fusion through self-attention layers. To pretrain ONE-PEACE, we develop two modality-agnostic pretraining tasks, cross-modal aligning contrast and intra-modal denoising contrast, which align the semantic space of different modalities and capture fine-grained details within modalities concurrently. With the scaling-friendly architecture and pretraining tasks, ONE-PEACE has the potential to expand to unlimited modalities. Without using any vision or language pretrained model for initialization, ONE-PEACE achieves leading results on a wide range of uni-modal and multi-modal tasks, including image classification (ImageNet), semantic segmentation (ADE20K), audio-text retrieval (AudioCaps, Clotho), audio classification (ESC-50, FSD50K, VGGSound), audio question answering (AVQA), image-text retrieval (MSCOCO, Flickr30K), and visual grounding (RefCOCO/+/g). Code is available at https://github.com/OFA-Sys/ONE-PEACE.
Weakly-supervised Audio Separation via Bi-modal Semantic Similarity
Conditional sound separation in multi-source audio mixtures without having access to single source sound data during training is a long standing challenge. Existing mix-and-separate based methods suffer from significant performance drop with multi-source training mixtures due to the lack of supervision signal for single source separation cases during training. However, in the case of language-conditional audio separation, we do have access to corresponding text descriptions for each audio mixture in our training data, which can be seen as (rough) representations of the audio samples in the language modality. To this end, in this paper, we propose a generic bi-modal separation framework which can enhance the existing unsupervised frameworks to separate single-source signals in a target modality (i.e., audio) using the easily separable corresponding signals in the conditioning modality (i.e., language), without having access to single-source samples in the target modality during training. We empirically show that this is well within reach if we have access to a pretrained joint embedding model between the two modalities (i.e., CLAP). Furthermore, we propose to incorporate our framework into two fundamental scenarios to enhance separation performance. First, we show that our proposed methodology significantly improves the performance of purely unsupervised baselines by reducing the distribution shift between training and test samples. In particular, we show that our framework can achieve 71% boost in terms of Signal-to-Distortion Ratio (SDR) over the baseline, reaching 97.5% of the supervised learning performance. Second, we show that we can further improve the performance of the supervised learning itself by 17% if we augment it by our proposed weakly-supervised framework, that enables a powerful semi-supervised framework for audio separation.
Masked Autoencoders with Multi-Window Local-Global Attention Are Better Audio Learners
In this work, we propose a Multi-Window Masked Autoencoder (MW-MAE) fitted with a novel Multi-Window Multi-Head Attention (MW-MHA) module that facilitates the modelling of local-global interactions in every decoder transformer block through attention heads of several distinct local and global windows. Empirical results on ten downstream audio tasks show that MW-MAEs consistently outperform standard MAEs in overall performance and learn better general-purpose audio representations, along with demonstrating considerably better scaling characteristics. Investigating attention distances and entropies reveals that MW-MAE encoders learn heads with broader local and global attention. Analyzing attention head feature representations through Projection Weighted Canonical Correlation Analysis (PWCCA) shows that attention heads with the same window sizes across the decoder layers of the MW-MAE learn correlated feature representations which enables each block to independently capture local and global information, leading to a decoupled decoder feature hierarchy. Code for feature extraction and downstream experiments along with pre-trained models will be released publically.
Auto-AVSR: Audio-Visual Speech Recognition with Automatic Labels
Audio-visual speech recognition has received a lot of attention due to its robustness against acoustic noise. Recently, the performance of automatic, visual, and audio-visual speech recognition (ASR, VSR, and AV-ASR, respectively) has been substantially improved, mainly due to the use of larger models and training sets. However, accurate labelling of datasets is time-consuming and expensive. Hence, in this work, we investigate the use of automatically-generated transcriptions of unlabelled datasets to increase the training set size. For this purpose, we use publicly-available pre-trained ASR models to automatically transcribe unlabelled datasets such as AVSpeech and VoxCeleb2. Then, we train ASR, VSR and AV-ASR models on the augmented training set, which consists of the LRS2 and LRS3 datasets as well as the additional automatically-transcribed data. We demonstrate that increasing the size of the training set, a recent trend in the literature, leads to reduced WER despite using noisy transcriptions. The proposed model achieves new state-of-the-art performance on AV-ASR on LRS2 and LRS3. In particular, it achieves a WER of 0.9% on LRS3, a relative improvement of 30% over the current state-of-the-art approach, and outperforms methods that have been trained on non-publicly available datasets with 26 times more training data.
Stereo-Talker: Audio-driven 3D Human Synthesis with Prior-Guided Mixture-of-Experts
This paper introduces Stereo-Talker, a novel one-shot audio-driven human video synthesis system that generates 3D talking videos with precise lip synchronization, expressive body gestures, temporally consistent photo-realistic quality, and continuous viewpoint control. The process follows a two-stage approach. In the first stage, the system maps audio input to high-fidelity motion sequences, encompassing upper-body gestures and facial expressions. To enrich motion diversity and authenticity, large language model (LLM) priors are integrated with text-aligned semantic audio features, leveraging LLMs' cross-modal generalization power to enhance motion quality. In the second stage, we improve diffusion-based video generation models by incorporating a prior-guided Mixture-of-Experts (MoE) mechanism: a view-guided MoE focuses on view-specific attributes, while a mask-guided MoE enhances region-based rendering stability. Additionally, a mask prediction module is devised to derive human masks from motion data, enhancing the stability and accuracy of masks and enabling mask guiding during inference. We also introduce a comprehensive human video dataset with 2,203 identities, covering diverse body gestures and detailed annotations, facilitating broad generalization. The code, data, and pre-trained models will be released for research purposes.
Audio-AdapterFusion: A Task-ID-free Approach for Efficient and Non-Destructive Multi-task Speech Recognition
Adapters are an efficient, composable alternative to full fine-tuning of pre-trained models and help scale the deployment of large ASR models to many tasks. In practice, a task ID is commonly prepended to the input during inference to route to single-task adapters for the specified task. However, one major limitation of this approach is that the task ID may not be known during inference, rendering it unsuitable for most multi-task settings. To address this, we propose three novel task-ID-free methods to combine single-task adapters in multi-task ASR and investigate two learning algorithms for training. We evaluate our methods on 10 test sets from 4 diverse ASR tasks and show that our methods are non-destructive and parameter-efficient. While only updating 17% of the model parameters, our methods can achieve an 8% mean WER improvement relative to full fine-tuning and are on-par with task-ID adapter routing.
EzAudio: Enhancing Text-to-Audio Generation with Efficient Diffusion Transformer
Latent diffusion models have shown promising results in text-to-audio (T2A) generation tasks, yet previous models have encountered difficulties in generation quality, computational cost, diffusion sampling, and data preparation. In this paper, we introduce EzAudio, a transformer-based T2A diffusion model, to handle these challenges. Our approach includes several key innovations: (1) We build the T2A model on the latent space of a 1D waveform Variational Autoencoder (VAE), avoiding the complexities of handling 2D spectrogram representations and using an additional neural vocoder. (2) We design an optimized diffusion transformer architecture specifically tailored for audio latent representations and diffusion modeling, which enhances convergence speed, training stability, and memory usage, making the training process easier and more efficient. (3) To tackle data scarcity, we adopt a data-efficient training strategy that leverages unlabeled data for learning acoustic dependencies, audio caption data annotated by audio-language models for text-to-audio alignment learning, and human-labeled data for fine-tuning. (4) We introduce a classifier-free guidance (CFG) rescaling method that simplifies EzAudio by achieving strong prompt alignment while preserving great audio quality when using larger CFG scores, eliminating the need to struggle with finding the optimal CFG score to balance this trade-off. EzAudio surpasses existing open-source models in both objective metrics and subjective evaluations, delivering realistic listening experiences while maintaining a streamlined model structure, low training costs, and an easy-to-follow training pipeline. Code, data, and pre-trained models are released at: https://haidog-yaqub.github.io/EzAudio-Page/.
SALMONN: Towards Generic Hearing Abilities for Large Language Models
Hearing is arguably an essential ability of artificial intelligence (AI) agents in the physical world, which refers to the perception and understanding of general auditory information consisting of at least three types of sounds: speech, audio events, and music. In this paper, we propose SALMONN, a speech audio language music open neural network, built by integrating a pre-trained text-based large language model (LLM) with speech and audio encoders into a single multimodal model. SALMONN enables the LLM to directly process and understand general audio inputs and achieve competitive performances on a number of speech and audio tasks used in training, such as automatic speech recognition and translation, auditory-information-based question answering, emotion recognition, speaker verification, and music and audio captioning etc. SALMONN also has a diverse set of emergent abilities unseen in the training, which includes but is not limited to speech translation to untrained languages, speech-based slot filling, spoken-query-based question answering, audio-based storytelling, and speech audio co-reasoning etc. The presence of the cross-modal emergent abilities is studied, and a novel few-shot activation tuning approach is proposed to activate such abilities of SALMONN. To our knowledge, SALMONN is the first model of its type and can be regarded as a step towards AI with generic hearing abilities. An interactive demo of SALMONN is available at \url{https://github.com/bytedance/SALMONN}, and the training code and model checkpoints will be released upon acceptance.
FoleyGen: Visually-Guided Audio Generation
Recent advancements in audio generation have been spurred by the evolution of large-scale deep learning models and expansive datasets. However, the task of video-to-audio (V2A) generation continues to be a challenge, principally because of the intricate relationship between the high-dimensional visual and auditory data, and the challenges associated with temporal synchronization. In this study, we introduce FoleyGen, an open-domain V2A generation system built on a language modeling paradigm. FoleyGen leverages an off-the-shelf neural audio codec for bidirectional conversion between waveforms and discrete tokens. The generation of audio tokens is facilitated by a single Transformer model, which is conditioned on visual features extracted from a visual encoder. A prevalent problem in V2A generation is the misalignment of generated audio with the visible actions in the video. To address this, we explore three novel visual attention mechanisms. We further undertake an exhaustive evaluation of multiple visual encoders, each pretrained on either single-modal or multi-modal tasks. The experimental results on VGGSound dataset show that our proposed FoleyGen outperforms previous systems across all objective metrics and human evaluations.
X-Streamer: Unified Human World Modeling with Audiovisual Interaction
We introduce X-Streamer, an end-to-end multimodal human world modeling framework for building digital human agents capable of infinite interactions across text, speech, and video within a single unified architecture. Starting from a single portrait, X-Streamer enables real-time, open-ended video calls driven by streaming multimodal inputs. At its core is a Thinker-Actor dual-transformer architecture that unifies multimodal understanding and generation, turning a static portrait into persistent and intelligent audiovisual interactions. The Thinker module perceives and reasons over streaming user inputs, while its hidden states are translated by the Actor into synchronized multimodal streams in real time. Concretely, the Thinker leverages a pretrained large language-speech model, while the Actor employs a chunk-wise autoregressive diffusion model that cross-attends to the Thinker's hidden states to produce time-aligned multimodal responses with interleaved discrete text and audio tokens and continuous video latents. To ensure long-horizon stability, we design inter- and intra-chunk attentions with time-aligned multimodal positional embeddings for fine-grained cross-modality alignment and context retention, further reinforced by chunk-wise diffusion forcing and global identity referencing. X-Streamer runs in real time on two A100 GPUs, sustaining hours-long consistent video chat experiences from arbitrary portraits and paving the way toward unified world modeling of interactive digital humans.
Make-An-Audio 2: Temporal-Enhanced Text-to-Audio Generation
Large diffusion models have been successful in text-to-audio (T2A) synthesis tasks, but they often suffer from common issues such as semantic misalignment and poor temporal consistency due to limited natural language understanding and data scarcity. Additionally, 2D spatial structures widely used in T2A works lead to unsatisfactory audio quality when generating variable-length audio samples since they do not adequately prioritize temporal information. To address these challenges, we propose Make-an-Audio 2, a latent diffusion-based T2A method that builds on the success of Make-an-Audio. Our approach includes several techniques to improve semantic alignment and temporal consistency: Firstly, we use pre-trained large language models (LLMs) to parse the text into structured <event & order> pairs for better temporal information capture. We also introduce another structured-text encoder to aid in learning semantic alignment during the diffusion denoising process. To improve the performance of variable length generation and enhance the temporal information extraction, we design a feed-forward Transformer-based diffusion denoiser. Finally, we use LLMs to augment and transform a large amount of audio-label data into audio-text datasets to alleviate the problem of scarcity of temporal data. Extensive experiments show that our method outperforms baseline models in both objective and subjective metrics, and achieves significant gains in temporal information understanding, semantic consistency, and sound quality.
FLM-Audio: Natural Monologues Improves Native Full-Duplex Chatbots via Dual Training
Full-duplex dialog models are designed to listen and speak simultaneously with rapid responses to fast-changing user input. Among existing approaches, native full-duplex models merges different channels (e.g. listen and speak) in a single time step, overcoming the high response latency inherent to time-division multiplexing time-division multiplexing (TDM) alternatives. Yet, a key challenge remains: aligning textual monologues with audio streams that operate at different bitrates. The prevailing solution relies on word-level alignment, but this can degrade the language ability of large pre-trained models. Moreover, it requires highly accurate timestamps for every token, which introduces cascading errors and increases pre-processing costs. In this paper, we propose textual monologues in continuous tokens sequence, namely "natural" monologues, which mimics humanoid cognitive behavior in dialogs. For temporal alignment, we alternate the position of the natural monologue - leading or trailing the audio - across different training stages. This "dual" training paradigm proves highly effective in building FLM-Audio, our 7B spoken dialog model that demonstrates superior responsiveness, duplexity, and chatting experiences, as confirmed by experimental results.
WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling
Language models have been effectively applied to modeling natural signals, such as images, video, speech, and audio. A crucial component of these models is the codec tokenizer, which compresses high-dimensional natural signals into lower-dimensional discrete tokens. In this paper, we introduce WavTokenizer, which offers several advantages over previous SOTA acoustic codec models in the audio domain: 1)extreme compression. By compressing the layers of quantizers and the temporal dimension of the discrete codec, one-second audio of 24kHz sampling rate requires only a single quantizer with 40 or 75 tokens. 2)improved subjective quality. Despite the reduced number of tokens, WavTokenizer achieves state-of-the-art reconstruction quality with outstanding UTMOS scores and inherently contains richer semantic information. Specifically, we achieve these results by designing a broader VQ space, extended contextual windows, and improved attention networks, as well as introducing a powerful multi-scale discriminator and an inverse Fourier transform structure. We conducted extensive reconstruction experiments in the domains of speech, audio, and music. WavTokenizer exhibited strong performance across various objective and subjective metrics compared to state-of-the-art models. We also tested semantic information, VQ utilization, and adaptability to generative models. Comprehensive ablation studies confirm the necessity of each module in WavTokenizer. The related code, demos, and pre-trained models are available at https://github.com/jishengpeng/WavTokenizer.
SpeechVerse: A Large-scale Generalizable Audio Language Model
Large language models (LLMs) have shown incredible proficiency in performing tasks that require semantic understanding of natural language instructions. Recently, many works have further expanded this capability to perceive multimodal audio and text inputs, but their capabilities are often limited to specific fine-tuned tasks such as automatic speech recognition and translation. We therefore develop SpeechVerse, a robust multi-task training and curriculum learning framework that combines pre-trained speech and text foundation models via a small set of learnable parameters, while keeping the pre-trained models frozen during training. The models are instruction finetuned using continuous latent representations extracted from the speech foundation model to achieve optimal zero-shot performance on a diverse range of speech processing tasks using natural language instructions. We perform extensive benchmarking that includes comparing our model performance against traditional baselines across several datasets and tasks. Furthermore, we evaluate the model's capability for generalized instruction following by testing on out-of-domain datasets, novel prompts, and unseen tasks. Our empirical experiments reveal that our multi-task SpeechVerse model is even superior to conventional task-specific baselines on 9 out of the 11 tasks.
Self-Supervised Contrastive Learning for Robust Audio-Sheet Music Retrieval Systems
Linking sheet music images to audio recordings remains a key problem for the development of efficient cross-modal music retrieval systems. One of the fundamental approaches toward this task is to learn a cross-modal embedding space via deep neural networks that is able to connect short snippets of audio and sheet music. However, the scarcity of annotated data from real musical content affects the capability of such methods to generalize to real retrieval scenarios. In this work, we investigate whether we can mitigate this limitation with self-supervised contrastive learning, by exposing a network to a large amount of real music data as a pre-training step, by contrasting randomly augmented views of snippets of both modalities, namely audio and sheet images. Through a number of experiments on synthetic and real piano data, we show that pre-trained models are able to retrieve snippets with better precision in all scenarios and pre-training configurations. Encouraged by these results, we employ the snippet embeddings in the higher-level task of cross-modal piece identification and conduct more experiments on several retrieval configurations. In this task, we observe that the retrieval quality improves from 30% up to 100% when real music data is present. We then conclude by arguing for the potential of self-supervised contrastive learning for alleviating the annotated data scarcity in multi-modal music retrieval models.
