Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeWhen Do Neural Nets Outperform Boosted Trees on Tabular Data?
Tabular data is one of the most commonly used types of data in machine learning. Despite recent advances in neural nets (NNs) for tabular data, there is still an active discussion on whether or not NNs generally outperform gradient-boosted decision trees (GBDTs) on tabular data, with several recent works arguing either that GBDTs consistently outperform NNs on tabular data, or vice versa. In this work, we take a step back and question the importance of this debate. To this end, we conduct the largest tabular data analysis to date, comparing 19 algorithms across 176 datasets, and we find that the 'NN vs. GBDT' debate is overemphasized: for a surprisingly high number of datasets, either the performance difference between GBDTs and NNs is negligible, or light hyperparameter tuning on a GBDT is more important than choosing between NNs and GBDTs. A remarkable exception is the recently-proposed prior-data fitted network, TabPFN: although it is effectively limited to training sets of size 3000, we find that it outperforms all other algorithms on average, even when randomly sampling 3000 training datapoints. Next, we analyze dozens of metafeatures to determine what properties of a dataset make NNs or GBDTs better-suited to perform well. For example, we find that GBDTs are much better than NNs at handling skewed or heavy-tailed feature distributions and other forms of dataset irregularities. Our insights act as a guide for practitioners to determine which techniques may work best on their dataset. Finally, with the goal of accelerating tabular data research, we release the TabZilla Benchmark Suite: a collection of the 36 'hardest' of the datasets we study. Our benchmark suite, codebase, and all raw results are available at https://github.com/naszilla/tabzilla.
On Scaling of Hall-Effect Thrusters Using Neural Nets
Hall-effect thrusters (HETs) are widely used for modern near-earth spacecraft propulsion and are vital for future deep-space missions. Methods of modeling HETs are developing rapidly. However, such methods are not yet precise enough and cannot reliably predict the parameters of a newly designed thruster, mostly due to the enormous computational cost of a HET plasma simulation. Another approach is to use scaling techniques based on available experimental data. This paper proposes an approach for scaling HETs using neural networks and other modern machine learning methods. The new scaling model was built with information from an extensive database of HET parameters collected from published papers. Predictions of the new scaling model are valid for the operating parameters domain covered by the database. During the design, this model can help HET developers estimate the performance of a newly-designed thruster. At the stage of experimental research, the model can be used to compare the achieved characteristics of the studied thruster with the level obtained by other developers. A comparison with the state-of-the-art HET scaling model is also presented.
Polynomial Regression As an Alternative to Neural Nets
Despite the success of neural networks (NNs), there is still a concern among many over their "black box" nature. Why do they work? Here we present a simple analytic argument that NNs are in fact essentially polynomial regression models. This view will have various implications for NNs, e.g. providing an explanation for why convergence problems arise in NNs, and it gives rough guidance on avoiding overfitting. In addition, we use this phenomenon to predict and confirm a multicollinearity property of NNs not previously reported in the literature. Most importantly, given this loose correspondence, one may choose to routinely use polynomial models instead of NNs, thus avoiding some major problems of the latter, such as having to set many tuning parameters and dealing with convergence issues. We present a number of empirical results; in each case, the accuracy of the polynomial approach matches or exceeds that of NN approaches. A many-featured, open-source software package, polyreg, is available.
TENG: Time-Evolving Natural Gradient for Solving PDEs With Deep Neural Nets Toward Machine Precision
Partial differential equations (PDEs) are instrumental for modeling dynamical systems in science and engineering. The advent of neural networks has initiated a significant shift in tackling these complexities though challenges in accuracy persist, especially for initial value problems. In this paper, we introduce the Time-Evolving Natural Gradient (TENG), generalizing time-dependent variational principles and optimization-based time integration, leveraging natural gradient optimization to obtain high accuracy in neural-network-based PDE solutions. Our comprehensive development includes algorithms like TENG-Euler and its high-order variants, such as TENG-Heun, tailored for enhanced precision and efficiency. TENG's effectiveness is further validated through its performance, surpassing current leading methods and achieving machine precision in step-by-step optimizations across a spectrum of PDEs, including the heat equation, Allen-Cahn equation, and Burgers' equation.
Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets
We prove rich algebraic structures of the solution space for 2-layer neural networks with quadratic activation and L_2 loss, trained on reasoning tasks in Abelian group (e.g., modular addition). Such a rich structure enables analytical construction of global optimal solutions from partial solutions that only satisfy part of the loss, despite its high nonlinearity. We coin the framework as CoGO (Composing Global Optimizers). Specifically, we show that the weight space over different numbers of hidden nodes of the 2-layer network is equipped with a semi-ring algebraic structure, and the loss function to be optimized consists of monomial potentials, which are ring homomorphism, allowing partial solutions to be composed into global ones by ring addition and multiplication. Our experiments show that around 95% of the solutions obtained by gradient descent match exactly our theoretical constructions. Although the global optimizers constructed only required a small number of hidden nodes, our analysis on gradient dynamics shows that over-parameterization asymptotically decouples training dynamics and is beneficial. We further show that training dynamics favors simpler solutions under weight decay, and thus high-order global optimizers such as perfect memorization are unfavorable.
Digits that are not: Generating new types through deep neural nets
For an artificial creative agent, an essential driver of the search for novelty is a value function which is often provided by the system designer or users. We argue that an important barrier for progress in creativity research is the inability of these systems to develop their own notion of value for novelty. We propose a notion of knowledge-driven creativity that circumvent the need for an externally imposed value function, allowing the system to explore based on what it has learned from a set of referential objects. The concept is illustrated by a specific knowledge model provided by a deep generative autoencoder. Using the described system, we train a knowledge model on a set of digit images and we use the same model to build coherent sets of new digits that do not belong to known digit types.
An analysis of full-size Russian complexly NER labelled corpus of Internet user reviews on the drugs based on deep learning and language neural nets
We present the full-size Russian complexly NER-labeled corpus of Internet user reviews, along with an evaluation of accuracy levels reached on this corpus by a set of advanced deep learning neural networks to extract the pharmacologically meaningful entities from Russian texts. The corpus annotation includes mentions of the following entities: Medication (33005 mentions), Adverse Drug Reaction (1778), Disease (17403), and Note (4490). Two of them - Medication and Disease - comprise a set of attributes. A part of the corpus has the coreference annotation with 1560 coreference chains in 300 documents. Special multi-label model based on a language model and the set of features is developed, appropriate for presented corpus labeling. The influence of the choice of different modifications of the models: word vector representations, types of language models pre-trained for Russian, text normalization styles, and other preliminary processing are analyzed. The sufficient size of our corpus allows to study the effects of particularities of corpus labeling and balancing entities in the corpus. As a result, the state of the art for the pharmacological entity extraction problem for Russian is established on a full-size labeled corpus. In case of the adverse drug reaction (ADR) recognition, it is 61.1 by the F1-exact metric that, as our analysis shows, is on par with the accuracy level for other language corpora with similar characteristics and the ADR representativnes. The evaluated baseline precision of coreference relation extraction on the corpus is 71, that is higher the results reached on other Russian corpora.
Neural Production Systems: Learning Rule-Governed Visual Dynamics
Visual environments are structured, consisting of distinct objects or entities. These entities have properties -- both visible and latent -- that determine the manner in which they interact with one another. To partition images into entities, deep-learning researchers have proposed structural inductive biases such as slot-based architectures. To model interactions among entities, equivariant graph neural nets (GNNs) are used, but these are not particularly well suited to the task for two reasons. First, GNNs do not predispose interactions to be sparse, as relationships among independent entities are likely to be. Second, GNNs do not factorize knowledge about interactions in an entity-conditional manner. As an alternative, we take inspiration from cognitive science and resurrect a classic approach, production systems, which consist of a set of rule templates that are applied by binding placeholder variables in the rules to specific entities. Rules are scored on their match to entities, and the best fitting rules are applied to update entity properties. In a series of experiments, we demonstrate that this architecture achieves a flexible, dynamic flow of control and serves to factorize entity-specific and rule-based information. This disentangling of knowledge achieves robust future-state prediction in rich visual environments, outperforming state-of-the-art methods using GNNs, and allows for the extrapolation from simple (few object) environments to more complex environments.
Learning how to explain neural networks: PatternNet and PatternAttribution
DeConvNet, Guided BackProp, LRP, were invented to better understand deep neural networks. We show that these methods do not produce the theoretically correct explanation for a linear model. Yet they are used on multi-layer networks with millions of parameters. This is a cause for concern since linear models are simple neural networks. We argue that explanation methods for neural nets should work reliably in the limit of simplicity, the linear models. Based on our analysis of linear models we propose a generalization that yields two explanation techniques (PatternNet and PatternAttribution) that are theoretically sound for linear models and produce improved explanations for deep networks.
MoreauGrad: Sparse and Robust Interpretation of Neural Networks via Moreau Envelope
Explaining the predictions of deep neural nets has been a topic of great interest in the computer vision literature. While several gradient-based interpretation schemes have been proposed to reveal the influential variables in a neural net's prediction, standard gradient-based interpretation frameworks have been commonly observed to lack robustness to input perturbations and flexibility for incorporating prior knowledge of sparsity and group-sparsity structures. In this work, we propose MoreauGrad as an interpretation scheme based on the classifier neural net's Moreau envelope. We demonstrate that MoreauGrad results in a smooth and robust interpretation of a multi-layer neural network and can be efficiently computed through first-order optimization methods. Furthermore, we show that MoreauGrad can be naturally combined with L_1-norm regularization techniques to output a sparse or group-sparse explanation which are prior conditions applicable to a wide range of deep learning applications. We empirically evaluate the proposed MoreauGrad scheme on standard computer vision datasets, showing the qualitative and quantitative success of the MoreauGrad approach in comparison to standard gradient-based interpretation methods.
Provably and Practically Efficient Neural Contextual Bandits
We consider the neural contextual bandit problem. In contrast to the existing work which primarily focuses on ReLU neural nets, we consider a general set of smooth activation functions. Under this more general setting, (i) we derive non-asymptotic error bounds on the difference between an overparameterized neural net and its corresponding neural tangent kernel, (ii) we propose an algorithm with a provably sublinear regret bound that is also efficient in the finite regime as demonstrated by empirical studies. The non-asymptotic error bounds may be of broader interest as a tool to establish the relation between the smoothness of the activation functions in neural contextual bandits and the smoothness of the kernels in kernel bandits.
Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval
This paper presents a new state-of-the-art for document image classification and retrieval, using features learned by deep convolutional neural networks (CNNs). In object and scene analysis, deep neural nets are capable of learning a hierarchical chain of abstraction from pixel inputs to concise and descriptive representations. The current work explores this capacity in the realm of document analysis, and confirms that this representation strategy is superior to a variety of popular hand-crafted alternatives. Experiments also show that (i) features extracted from CNNs are robust to compression, (ii) CNNs trained on non-document images transfer well to document analysis tasks, and (iii) enforcing region-specific feature-learning is unnecessary given sufficient training data. This work also makes available a new labelled subset of the IIT-CDIP collection, containing 400,000 document images across 16 categories, useful for training new CNNs for document analysis.
Efficient Memory Management for Deep Neural Net Inference
While deep neural net inference was considered a task for servers only, latest advances in technology allow the task of inference to be moved to mobile and embedded devices, desired for various reasons ranging from latency to privacy. These devices are not only limited by their compute power and battery, but also by their inferior physical memory and cache, and thus, an efficient memory manager becomes a crucial component for deep neural net inference at the edge. We explore various strategies to smartly share memory buffers among intermediate tensors in deep neural nets. Employing these can result in up to 11% smaller memory footprint than the state of the art.
On the Generalization and Approximation Capacities of Neural Controlled Differential Equations
Neural Controlled Differential Equations (NCDEs) are a state-of-the-art tool for supervised learning with irregularly sampled time series (Kidger, 2020). However, no theoretical analysis of their performance has been provided yet, and it remains unclear in particular how the irregularity of the time series affects their predictions. By merging the rich theory of controlled differential equations (CDE) and Lipschitz-based measures of the complexity of deep neural nets, we take a first step towards the theoretical understanding of NCDE. Our first result is a generalization bound for this class of predictors that depends on the regularity of the time series data. In a second time, we leverage the continuity of the flow of CDEs to provide a detailed analysis of both the sampling-induced bias and the approximation bias. Regarding this last result, we show how classical approximation results on neural nets may transfer to NCDEs. Our theoretical results are validated through a series of experiments.
Medical Image Registration via Neural Fields
Image registration is an essential step in many medical image analysis tasks. Traditional methods for image registration are primarily optimization-driven, finding the optimal deformations that maximize the similarity between two images. Recent learning-based methods, trained to directly predict transformations between two images, run much faster, but suffer from performance deficiencies due to model generalization and the inefficiency in handling individual image specific deformations. Here we present a new neural net based image registration framework, called NIR (Neural Image Registration), which is based on optimization but utilizes deep neural nets to model deformations between image pairs. NIR represents the transformation between two images with a continuous function implemented via neural fields, receiving a 3D coordinate as input and outputting the corresponding deformation vector. NIR provides two ways of generating deformation field: directly output a displacement vector field for general deformable registration, or output a velocity vector field and integrate the velocity field to derive the deformation field for diffeomorphic image registration. The optimal registration is discovered by updating the parameters of the neural field via stochastic gradient descent. We describe several design choices that facilitate model optimization, including coordinate encoding, sinusoidal activation, coordinate sampling, and intensity sampling. Experiments on two 3D MR brain scan datasets demonstrate that NIR yields state-of-the-art performance in terms of both registration accuracy and regularity, while running significantly faster than traditional optimization-based methods.
Distilling the Knowledge in a Neural Network
A very simple way to improve the performance of almost any machine learning algorithm is to train many different models on the same data and then to average their predictions. Unfortunately, making predictions using a whole ensemble of models is cumbersome and may be too computationally expensive to allow deployment to a large number of users, especially if the individual models are large neural nets. Caruana and his collaborators have shown that it is possible to compress the knowledge in an ensemble into a single model which is much easier to deploy and we develop this approach further using a different compression technique. We achieve some surprising results on MNIST and we show that we can significantly improve the acoustic model of a heavily used commercial system by distilling the knowledge in an ensemble of models into a single model. We also introduce a new type of ensemble composed of one or more full models and many specialist models which learn to distinguish fine-grained classes that the full models confuse. Unlike a mixture of experts, these specialist models can be trained rapidly and in parallel.
Finding Alignments Between Interpretable Causal Variables and Distributed Neural Representations
Causal abstraction is a promising theoretical framework for explainable artificial intelligence that defines when an interpretable high-level causal model is a faithful simplification of a low-level deep learning system. However, existing causal abstraction methods have two major limitations: they require a brute-force search over alignments between the high-level model and the low-level one, and they presuppose that variables in the high-level model will align with disjoint sets of neurons in the low-level one. In this paper, we present distributed alignment search (DAS), which overcomes these limitations. In DAS, we find the alignment between high-level and low-level models using gradient descent rather than conducting a brute-force search, and we allow individual neurons to play multiple distinct roles by analyzing representations in non-standard bases-distributed representations. Our experiments show that DAS can discover internal structure that prior approaches miss. Overall, DAS removes previous obstacles to conducting causal abstraction analyses and allows us to find conceptual structure in trained neural nets.
Prototype Based Classification from Hierarchy to Fairness
Artificial neural nets can represent and classify many types of data but are often tailored to particular applications -- e.g., for "fair" or "hierarchical" classification. Once an architecture has been selected, it is often difficult for humans to adjust models for a new task; for example, a hierarchical classifier cannot be easily transformed into a fair classifier that shields a protected field. Our contribution in this work is a new neural network architecture, the concept subspace network (CSN), which generalizes existing specialized classifiers to produce a unified model capable of learning a spectrum of multi-concept relationships. We demonstrate that CSNs reproduce state-of-the-art results in fair classification when enforcing concept independence, may be transformed into hierarchical classifiers, or even reconcile fairness and hierarchy within a single classifier. The CSN is inspired by existing prototype-based classifiers that promote interpretability.
Active Self-Paced Learning for Cost-Effective and Progressive Face Identification
This paper aims to develop a novel cost-effective framework for face identification, which progressively maintains a batch of classifiers with the increasing face images of different individuals. By naturally combining two recently rising techniques: active learning (AL) and self-paced learning (SPL), our framework is capable of automatically annotating new instances and incorporating them into training under weak expert re-certification. We first initialize the classifier using a few annotated samples for each individual, and extract image features using the convolutional neural nets. Then, a number of candidates are selected from the unannotated samples for classifier updating, in which we apply the current classifiers ranking the samples by the prediction confidence. In particular, our approach utilizes the high-confidence and low-confidence samples in the self-paced and the active user-query way, respectively. The neural nets are later fine-tuned based on the updated classifiers. Such heuristic implementation is formulated as solving a concise active SPL optimization problem, which also advances the SPL development by supplementing a rational dynamic curriculum constraint. The new model finely accords with the "instructor-student-collaborative" learning mode in human education. The advantages of this proposed framework are two-folds: i) The required number of annotated samples is significantly decreased while the comparable performance is guaranteed. A dramatic reduction of user effort is also achieved over other state-of-the-art active learning techniques. ii) The mixture of SPL and AL effectively improves not only the classifier accuracy compared to existing AL/SPL methods but also the robustness against noisy data. We evaluate our framework on two challenging datasets, and demonstrate very promising results. (http://hcp.sysu.edu.cn/projects/aspl/)
Latent Space Explanation by Intervention
The success of deep neural nets heavily relies on their ability to encode complex relations between their input and their output. While this property serves to fit the training data well, it also obscures the mechanism that drives prediction. This study aims to reveal hidden concepts by employing an intervention mechanism that shifts the predicted class based on discrete variational autoencoders. An explanatory model then visualizes the encoded information from any hidden layer and its corresponding intervened representation. By the assessment of differences between the original representation and the intervened representation, one can determine the concepts that can alter the class, hence providing interpretability. We demonstrate the effectiveness of our approach on CelebA, where we show various visualizations for bias in the data and suggest different interventions to reveal and change bias.
A brain basis of dynamical intelligence for AI and computational neuroscience
The deep neural nets of modern artificial intelligence (AI) have not achieved defining features of biological intelligence, including abstraction, causal learning, and energy-efficiency. While scaling to larger models has delivered performance improvements for current applications, more brain-like capacities may demand new theories, models, and methods for designing artificial learning systems. Here, we argue that this opportunity to reassess insights from the brain should stimulate cooperation between AI research and theory-driven computational neuroscience (CN). To motivate a brain basis of neural computation, we present a dynamical view of intelligence from which we elaborate concepts of sparsity in network structure, temporal dynamics, and interactive learning. In particular, we suggest that temporal dynamics, as expressed through neural synchrony, nested oscillations, and flexible sequences, provide a rich computational layer for reading and updating hierarchical models distributed in long-term memory networks. Moreover, embracing agent-centered paradigms in AI and CN will accelerate our understanding of the complex dynamics and behaviors that build useful world models. A convergence of AI/CN theories and objectives will reveal dynamical principles of intelligence for brains and engineered learning systems. This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
On Occlusions in Video Action Detection: Benchmark Datasets And Training Recipes
This paper explores the impact of occlusions in video action detection. We facilitate this study by introducing five new benchmark datasets namely O-UCF and O-JHMDB consisting of synthetically controlled static/dynamic occlusions, OVIS-UCF and OVIS-JHMDB consisting of occlusions with realistic motions and Real-OUCF for occlusions in realistic-world scenarios. We formally confirm an intuitive expectation: existing models suffer a lot as occlusion severity is increased and exhibit different behaviours when occluders are static vs when they are moving. We discover several intriguing phenomenon emerging in neural nets: 1) transformers can naturally outperform CNN models which might have even used occlusion as a form of data augmentation during training 2) incorporating symbolic-components like capsules to such backbones allows them to bind to occluders never even seen during training and 3) Islands of agreement can emerge in realistic images/videos without instance-level supervision, distillation or contrastive-based objectives2(eg. video-textual training). Such emergent properties allow us to derive simple yet effective training recipes which lead to robust occlusion models inductively satisfying the first two stages of the binding mechanism (grouping/segregation). Models leveraging these recipes outperform existing video action-detectors under occlusion by 32.3% on O-UCF, 32.7% on O-JHMDB & 2.6% on Real-OUCF in terms of the vMAP metric. The code for this work has been released at https://github.com/rajatmodi62/OccludedActionBenchmark.
On the hardness of learning under symmetries
We study the problem of learning equivariant neural networks via gradient descent. The incorporation of known symmetries ("equivariance") into neural nets has empirically improved the performance of learning pipelines, in domains ranging from biology to computer vision. However, a rich yet separate line of learning theoretic research has demonstrated that actually learning shallow, fully-connected (i.e. non-symmetric) networks has exponential complexity in the correlational statistical query (CSQ) model, a framework encompassing gradient descent. In this work, we ask: are known problem symmetries sufficient to alleviate the fundamental hardness of learning neural nets with gradient descent? We answer this question in the negative. In particular, we give lower bounds for shallow graph neural networks, convolutional networks, invariant polynomials, and frame-averaged networks for permutation subgroups, which all scale either superpolynomially or exponentially in the relevant input dimension. Therefore, in spite of the significant inductive bias imparted via symmetry, actually learning the complete classes of functions represented by equivariant neural networks via gradient descent remains hard.
Computer vision for liquid samples in hospitals and medical labs using hierarchical image segmentation and relations prediction
This work explores the use of computer vision for image segmentation and classification of medical fluid samples in transparent containers (for example, tubes, syringes, infusion bags). Handling fluids such as infusion fluids, blood, and urine samples is a significant part of the work carried out in medical labs and hospitals. The ability to accurately identify and segment the liquids and the vessels that contain them from images can help in automating such processes. Modern computer vision typically involves training deep neural nets on large datasets of annotated images. This work presents a new dataset containing 1,300 annotated images of medical samples involving vessels containing liquids and solid material. The images are annotated with the type of liquid (e.g., blood, urine), the phase of the material (e.g., liquid, solid, foam, suspension), the type of vessel (e.g., syringe, tube, cup, infusion bottle/bag), and the properties of the vessel (transparent, opaque). In addition, vessel parts such as corks, labels, spikes, and valves are annotated. Relations and hierarchies between vessels and materials are also annotated, such as which vessel contains which material or which vessels are linked or contain each other. Three neural networks are trained on the dataset: One network learns to detect vessels, a second net detects the materials and parts inside each vessel, and a third net identifies relationships and connectivity between vessels.
Dichotomy of Early and Late Phase Implicit Biases Can Provably Induce Grokking
Recent work by Power et al. (2022) highlighted a surprising "grokking" phenomenon in learning arithmetic tasks: a neural net first "memorizes" the training set, resulting in perfect training accuracy but near-random test accuracy, and after training for sufficiently longer, it suddenly transitions to perfect test accuracy. This paper studies the grokking phenomenon in theoretical setups and shows that it can be induced by a dichotomy of early and late phase implicit biases. Specifically, when training homogeneous neural nets with large initialization and small weight decay on both classification and regression tasks, we prove that the training process gets trapped at a solution corresponding to a kernel predictor for a long time, and then a very sharp transition to min-norm/max-margin predictors occurs, leading to a dramatic change in test accuracy.
Robust Attentional Aggregation of Deep Feature Sets for Multi-view 3D Reconstruction
We study the problem of recovering an underlying 3D shape from a set of images. Existing learning based approaches usually resort to recurrent neural nets, e.g., GRU, or intuitive pooling operations, e.g., max/mean poolings, to fuse multiple deep features encoded from input images. However, GRU based approaches are unable to consistently estimate 3D shapes given different permutations of the same set of input images as the recurrent unit is permutation variant. It is also unlikely to refine the 3D shape given more images due to the long-term memory loss of GRU. Commonly used pooling approaches are limited to capturing partial information, e.g., max/mean values, ignoring other valuable features. In this paper, we present a new feed-forward neural module, named AttSets, together with a dedicated training algorithm, named FASet, to attentively aggregate an arbitrarily sized deep feature set for multi-view 3D reconstruction. The AttSets module is permutation invariant, computationally efficient and flexible to implement, while the FASet algorithm enables the AttSets based network to be remarkably robust and generalize to an arbitrary number of input images. We thoroughly evaluate FASet and the properties of AttSets on multiple large public datasets. Extensive experiments show that AttSets together with FASet algorithm significantly outperforms existing aggregation approaches.
Unsupervised Visual Representation Learning by Context Prediction
This work explores the use of spatial context as a source of free and plentiful supervisory signal for training a rich visual representation. Given only a large, unlabeled image collection, we extract random pairs of patches from each image and train a convolutional neural net to predict the position of the second patch relative to the first. We argue that doing well on this task requires the model to learn to recognize objects and their parts. We demonstrate that the feature representation learned using this within-image context indeed captures visual similarity across images. For example, this representation allows us to perform unsupervised visual discovery of objects like cats, people, and even birds from the Pascal VOC 2011 detection dataset. Furthermore, we show that the learned ConvNet can be used in the R-CNN framework and provides a significant boost over a randomly-initialized ConvNet, resulting in state-of-the-art performance among algorithms which use only Pascal-provided training set annotations.
PINN surrogate of Li-ion battery models for parameter inference. Part I: Implementation and multi-fidelity hierarchies for the single-particle model
To plan and optimize energy storage demands that account for Li-ion battery aging dynamics, techniques need to be developed to diagnose battery internal states accurately and rapidly. This study seeks to reduce the computational resources needed to determine a battery's internal states by replacing physics-based Li-ion battery models -- such as the single-particle model (SPM) and the pseudo-2D (P2D) model -- with a physics-informed neural network (PINN) surrogate. The surrogate model makes high-throughput techniques, such as Bayesian calibration, tractable to determine battery internal parameters from voltage responses. This manuscript is the first of a two-part series that introduces PINN surrogates of Li-ion battery models for parameter inference (i.e., state-of-health diagnostics). In this first part, a method is presented for constructing a PINN surrogate of the SPM. A multi-fidelity hierarchical training, where several neural nets are trained with multiple physics-loss fidelities is shown to significantly improve the surrogate accuracy when only training on the governing equation residuals. The implementation is made available in a companion repository (https://github.com/NREL/pinnstripes). The techniques used to develop a PINN surrogate of the SPM are extended in Part II for the PINN surrogate for the P2D battery model, and explore the Bayesian calibration capabilities of both surrogates.
An Extended Study of Human-like Behavior under Adversarial Training
Neural networks have a number of shortcomings. Amongst the severest ones is the sensitivity to distribution shifts which allows models to be easily fooled into wrong predictions by small perturbations to inputs that are often imperceivable to humans and do not have to carry semantic meaning. Adversarial training poses a partial solution to address this issue by training models on worst-case perturbations. Yet, recent work has also pointed out that the reasoning in neural networks is different from humans. Humans identify objects by shape, while neural nets mainly employ texture cues. Exemplarily, a model trained on photographs will likely fail to generalize to datasets containing sketches. Interestingly, it was also shown that adversarial training seems to favorably increase the shift toward shape bias. In this work, we revisit this observation and provide an extensive analysis of this effect on various architectures, the common ell_2- and ell_infty-training, and Transformer-based models. Further, we provide a possible explanation for this phenomenon from a frequency perspective.
Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization
Nonconvex optimization is central in solving many machine learning problems, in which block-wise structure is commonly encountered. In this work, we propose cyclic block coordinate methods for nonconvex optimization problems with non-asymptotic gradient norm guarantees. Our convergence analysis is based on a gradient Lipschitz condition with respect to a Mahalanobis norm, inspired by a recent progress on cyclic block coordinate methods. In deterministic settings, our convergence guarantee matches the guarantee of (full-gradient) gradient descent, but with the gradient Lipschitz constant being defined w.r.t.~a Mahalanobis norm. In stochastic settings, we use recursive variance reduction to decrease the per-iteration cost and match the arithmetic operation complexity of current optimal stochastic full-gradient methods, with a unified analysis for both finite-sum and infinite-sum cases. We prove a faster linear convergence result when a Polyak-{\L}ojasiewicz (P{\L}) condition holds. To our knowledge, this work is the first to provide non-asymptotic convergence guarantees -- variance-reduced or not -- for a cyclic block coordinate method in general composite (smooth + nonsmooth) nonconvex settings. Our experimental results demonstrate the efficacy of the proposed cyclic scheme in training deep neural nets.
Probabilistic Integral Circuits
Continuous latent variables (LVs) are a key ingredient of many generative models, as they allow modelling expressive mixtures with an uncountable number of components. In contrast, probabilistic circuits (PCs) are hierarchical discrete mixtures represented as computational graphs composed of input, sum and product units. Unlike continuous LV models, PCs provide tractable inference but are limited to discrete LVs with categorical (i.e. unordered) states. We bridge these model classes by introducing probabilistic integral circuits (PICs), a new language of computational graphs that extends PCs with integral units representing continuous LVs. In the first place, PICs are symbolic computational graphs and are fully tractable in simple cases where analytical integration is possible. In practice, we parameterise PICs with light-weight neural nets delivering an intractable hierarchical continuous mixture that can be approximated arbitrarily well with large PCs using numerical quadrature. On several distribution estimation benchmarks, we show that such PIC-approximating PCs systematically outperform PCs commonly learned via expectation-maximization or SGD.
Low-Switching Policy Gradient with Exploration via Online Sensitivity Sampling
Policy optimization methods are powerful algorithms in Reinforcement Learning (RL) for their flexibility to deal with policy parameterization and ability to handle model misspecification. However, these methods usually suffer from slow convergence rates and poor sample complexity. Hence it is important to design provably sample efficient algorithms for policy optimization. Yet, recent advances for this problems have only been successful in tabular and linear setting, whose benign structures cannot be generalized to non-linearly parameterized policies. In this paper, we address this problem by leveraging recent advances in value-based algorithms, including bounded eluder-dimension and online sensitivity sampling, to design a low-switching sample-efficient policy optimization algorithm, LPO, with general non-linear function approximation. We show that, our algorithm obtains an varepsilon-optimal policy with only O(text{poly(d)}{varepsilon^3}) samples, where varepsilon is the suboptimality gap and d is a complexity measure of the function class approximating the policy. This drastically improves previously best-known sample bound for policy optimization algorithms, O(text{poly(d)}{varepsilon^8}). Moreover, we empirically test our theory with deep neural nets to show the benefits of the theoretical inspiration.
Layer Collaboration in the Forward-Forward Algorithm
Backpropagation, which uses the chain rule, is the de-facto standard algorithm for optimizing neural networks nowadays. Recently, Hinton (2022) proposed the forward-forward algorithm, a promising alternative that optimizes neural nets layer-by-layer, without propagating gradients throughout the network. Although such an approach has several advantages over back-propagation and shows promising results, the fact that each layer is being trained independently limits the optimization process. Specifically, it prevents the network's layers from collaborating to learn complex and rich features. In this work, we study layer collaboration in the forward-forward algorithm. We show that the current version of the forward-forward algorithm is suboptimal when considering information flow in the network, resulting in a lack of collaboration between layers of the network. We propose an improved version that supports layer collaboration to better utilize the network structure, while not requiring any additional assumptions or computations. We empirically demonstrate the efficacy of the proposed version when considering both information flow and objective metrics. Additionally, we provide a theoretical motivation for the proposed method, inspired by functional entropy theory.
From Perception to Programs: Regularize, Overparameterize, and Amortize
Toward combining inductive reasoning with perception abilities, we develop techniques for neurosymbolic program synthesis where perceptual input is first parsed by neural nets into a low-dimensional interpretable representation, which is then processed by a synthesized program. We explore several techniques for relaxing the problem and jointly learning all modules end-to-end with gradient descent: multitask learning; amortized inference; overparameterization; and a differentiable strategy for penalizing lengthy programs. Collectedly this toolbox improves the stability of gradient-guided program search, and suggests ways of learning both how to perceive input as discrete abstractions, and how to symbolically process those abstractions as programs.
Leveraging recent advances in Pre-Trained Language Models forEye-Tracking Prediction
Cognitively inspired Natural Language Pro-cessing uses human-derived behavioral datalike eye-tracking data, which reflect the seman-tic representations of language in the humanbrain to augment the neural nets to solve arange of tasks spanning syntax and semanticswith the aim of teaching machines about lan-guage processing mechanisms. In this paper,we use the ZuCo 1.0 and ZuCo 2.0 dataset con-taining the eye-gaze features to explore differ-ent linguistic models to directly predict thesegaze features for each word with respect to itssentence. We tried different neural networkmodels with the words as inputs to predict thetargets. And after lots of experimentation andfeature engineering finally devised a novel ar-chitecture consisting of RoBERTa Token Clas-sifier with a dense layer on top for languagemodeling and a stand-alone model consistingof dense layers followed by a transformer layerfor the extra features we engineered. Finally,we took the mean of the outputs of both thesemodels to make the final predictions. We eval-uated the models using mean absolute error(MAE) and the R2 score for each target.
Dissecting FLOPs along input dimensions for GreenAI cost estimations
The term GreenAI refers to a novel approach to Deep Learning, that is more aware of the ecological impact and the computational efficiency of its methods. The promoters of GreenAI suggested the use of Floating Point Operations (FLOPs) as a measure of the computational cost of Neural Networks; however, that measure does not correlate well with the energy consumption of hardware equipped with massively parallel processing units like GPUs or TPUs. In this article, we propose a simple refinement of the formula used to compute floating point operations for convolutional layers, called {\alpha}-FLOPs, explaining and correcting the traditional discrepancy with respect to different layers, and closer to reality. The notion of {\alpha}-FLOPs relies on the crucial insight that, in case of inputs with multiple dimensions, there is no reason to believe that the speedup offered by parallelism will be uniform along all different axes.
Proving the Potential of Skeleton Based Action Recognition to Automate the Analysis of Manual Processes
In manufacturing sectors such as textiles and electronics, manual processes are a fundamental part of production. The analysis and monitoring of the processes is necessary for efficient production design. Traditional methods for analyzing manual processes are complex, expensive, and inflexible. Compared to established approaches such as Methods-Time-Measurement (MTM), machine learning (ML) methods promise: Higher flexibility, self-sufficient & permanent use, lower costs. In this work, based on a video stream, the current motion class in a manual assembly process is detected. With information on the current motion, Key-Performance-Indicators (KPIs) can be derived easily. A skeleton-based action recognition approach is taken, as this field recently shows major success in machine vision tasks. For skeleton-based action recognition in manual assembly, no sufficient pre-work could be found. Therefore, a ML pipeline is developed, to enable extensive research on different (pre-) processing methods and neural nets. Suitable well generalizing approaches are found, proving the potential of ML to enhance analyzation of manual processes. Models detect the current motion, performed by an operator in manual assembly, but the results can be transferred to all kinds of manual processes.
Evidential Turing Processes
A probabilistic classifier with reliable predictive uncertainties i) fits successfully to the target domain data, ii) provides calibrated class probabilities in difficult regions of the target domain (e.g.\ class overlap), and iii) accurately identifies queries coming out of the target domain and rejects them. We introduce an original combination of Evidential Deep Learning, Neural Processes, and Neural Turing Machines capable of providing all three essential properties mentioned above for total uncertainty quantification. We observe our method on five classification tasks to be the only one that can excel all three aspects of total calibration with a single standalone predictor. Our unified solution delivers an implementation-friendly and compute efficient recipe for safety clearance and provides intellectual economy to an investigation of algorithmic roots of epistemic awareness in deep neural nets.
Structure Learning for Neural Module Networks
Neural Module Networks, originally proposed for the task of visual question answering, are a class of neural network architectures that involve human-specified neural modules, each designed for a specific form of reasoning. In current formulations of such networks only the parameters of the neural modules and/or the order of their execution is learned. In this work, we further expand this approach and also learn the underlying internal structure of modules in terms of the ordering and combination of simple and elementary arithmetic operators. Our results show that one is indeed able to simultaneously learn both internal module structure and module sequencing without extra supervisory signals for module execution sequencing. With this approach, we report performance comparable to models using hand-designed modules.
A Tutorial on Deep Neural Networks for Intelligent Systems
Developing Intelligent Systems involves artificial intelligence approaches including artificial neural networks. Here, we present a tutorial of Deep Neural Networks (DNNs), and some insights about the origin of the term "deep"; references to deep learning are also given. Restricted Boltzmann Machines, which are the core of DNNs, are discussed in detail. An example of a simple two-layer network, performing unsupervised learning for unlabeled data, is shown. Deep Belief Networks (DBNs), which are used to build networks with more than two layers, are also described. Moreover, examples for supervised learning with DNNs performing simple prediction and classification tasks, are presented and explained. This tutorial includes two intelligent pattern recognition applications: hand- written digits (benchmark known as MNIST) and speech recognition.
Deep Learning for Symbolic Mathematics
Neural networks have a reputation for being better at solving statistical or approximate problems than at performing calculations or working with symbolic data. In this paper, we show that they can be surprisingly good at more elaborated tasks in mathematics, such as symbolic integration and solving differential equations. We propose a syntax for representing mathematical problems, and methods for generating large datasets that can be used to train sequence-to-sequence models. We achieve results that outperform commercial Computer Algebra Systems such as Matlab or Mathematica.
Simultaneous Weight and Architecture Optimization for Neural Networks
Neural networks are trained by choosing an architecture and training the parameters. The choice of architecture is often by trial and error or with Neural Architecture Search (NAS) methods. While NAS provides some automation, it often relies on discrete steps that optimize the architecture and then train the parameters. We introduce a novel neural network training framework that fundamentally transforms the process by learning architecture and parameters simultaneously with gradient descent. With the appropriate setting of the loss function, it can discover sparse and compact neural networks for given datasets. Central to our approach is a multi-scale encoder-decoder, in which the encoder embeds pairs of neural networks with similar functionalities close to each other (irrespective of their architectures and weights). To train a neural network with a given dataset, we randomly sample a neural network embedding in the embedding space and then perform gradient descent using our custom loss function, which incorporates a sparsity penalty to encourage compactness. The decoder generates a neural network corresponding to the embedding. Experiments demonstrate that our framework can discover sparse and compact neural networks maintaining a high performance.
Overcoming catastrophic forgetting in neural networks
The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Neural networks are not, in general, capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks which they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on the MNIST hand written digit dataset and by learning several Atari 2600 games sequentially.
Neural Architecture Search with Reinforcement Learning
Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
A Primer on Neural Network Models for Natural Language Processing
Over the past few years, neural networks have re-emerged as powerful machine-learning models, yielding state-of-the-art results in fields such as image recognition and speech processing. More recently, neural network models started to be applied also to textual natural language signals, again with very promising results. This tutorial surveys neural network models from the perspective of natural language processing research, in an attempt to bring natural-language researchers up to speed with the neural techniques. The tutorial covers input encoding for natural language tasks, feed-forward networks, convolutional networks, recurrent networks and recursive networks, as well as the computation graph abstraction for automatic gradient computation.
Distilling a Neural Network Into a Soft Decision Tree
Deep neural networks have proved to be a very effective way to perform classification tasks. They excel when the input data is high dimensional, the relationship between the input and the output is complicated, and the number of labeled training examples is large. But it is hard to explain why a learned network makes a particular classification decision on a particular test case. This is due to their reliance on distributed hierarchical representations. If we could take the knowledge acquired by the neural net and express the same knowledge in a model that relies on hierarchical decisions instead, explaining a particular decision would be much easier. We describe a way of using a trained neural net to create a type of soft decision tree that generalizes better than one learned directly from the training data.
Apuntes de Redes Neuronales Artificiales
These handouts are designed for people who is just starting involved with the topic artificial neural networks. We show how it works a single artificial neuron (McCulloch & Pitt model), mathematically and graphically. We do explain the delta rule, a learning algorithm to find the neuron weights. We also present some examples in MATLAB/Octave. There are examples for classification task for lineal and non-lineal problems. At the end, we present an artificial neural network, a feed-forward neural network along its learning algorithm backpropagation. ----- Estos apuntes est\'an dise\~nados para personas que por primera vez se introducen en el tema de las redes neuronales artificiales. Se muestra el funcionamiento b\'asico de una neurona, matem\'aticamente y gr\'aficamente. Se explica la Regla Delta, algoritmo deaprendizaje para encontrar los pesos de una neurona. Tambi\'en se muestran ejemplos en MATLAB/Octave. Hay ejemplos para problemas de clasificaci\'on, para problemas lineales y no-lineales. En la parte final se muestra la arquitectura de red neuronal artificial conocida como backpropagation.
Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning
A wide range of scientific problems, such as those described by continuous-time dynamical systems and partial differential equations (PDEs), are naturally formulated on function spaces. While function spaces are typically infinite-dimensional, deep learning has predominantly advanced through applications in computer vision and natural language processing that focus on mappings between finite-dimensional spaces. Such fundamental disparities in the nature of the data have limited neural networks from achieving a comparable level of success in scientific applications as seen in other fields. Neural operators are a principled way to generalize neural networks to mappings between function spaces, offering a pathway to replicate deep learning's transformative impact on scientific problems. For instance, neural operators can learn solution operators for entire classes of PDEs, e.g., physical systems with different boundary conditions, coefficient functions, and geometries. A key factor in deep learning's success has been the careful engineering of neural architectures through extensive empirical testing. Translating these neural architectures into neural operators allows operator learning to enjoy these same empirical optimizations. However, prior neural operator architectures have often been introduced as standalone models, not directly derived as extensions of existing neural network architectures. In this paper, we identify and distill the key principles for constructing practical implementations of mappings between infinite-dimensional function spaces. Using these principles, we propose a recipe for converting several popular neural architectures into neural operators with minimal modifications. This paper aims to guide practitioners through this process and details the steps to make neural operators work in practice. Our code can be found at https://github.com/neuraloperator/NNs-to-NOs
Neural Networks are Decision Trees
In this manuscript, we show that any neural network with any activation function can be represented as a decision tree. The representation is equivalence and not an approximation, thus keeping the accuracy of the neural network exactly as is. We believe that this work provides better understanding of neural networks and paves the way to tackle their black-box nature. We share equivalent trees of some neural networks and show that besides providing interpretability, tree representation can also achieve some computational advantages for small networks. The analysis holds both for fully connected and convolutional networks, which may or may not also include skip connections and/or normalizations.
A Modern Self-Referential Weight Matrix That Learns to Modify Itself
The weight matrix (WM) of a neural network (NN) is its program. The programs of many traditional NNs are learned through gradient descent in some error function, then remain fixed. The WM of a self-referential NN, however, can keep rapidly modifying all of itself during runtime. In principle, such NNs can meta-learn to learn, and meta-meta-learn to meta-learn to learn, and so on, in the sense of recursive self-improvement. While NN architectures potentially capable of implementing such behaviour have been proposed since the '90s, there have been few if any practical studies. Here we revisit such NNs, building upon recent successes of fast weight programmers and closely related linear Transformers. We propose a scalable self-referential WM (SRWM) that learns to use outer products and the delta update rule to modify itself. We evaluate our SRWM in supervised few-shot learning and in multi-task reinforcement learning with procedurally generated game environments. Our experiments demonstrate both practical applicability and competitive performance of the proposed SRWM. Our code is public.
Deep Learning with Coherent Nanophotonic Circuits
Artificial Neural Networks are computational network models inspired by signal processing in the brain. These models have dramatically improved the performance of many learning tasks, including speech and object recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made to develop electronic architectures tuned to implement artificial neural networks that improve upon both computational speed and energy efficiency. Here, we propose a new architecture for a fully-optical neural network that, using unique advantages of optics, promises a computational speed enhancement of at least two orders of magnitude over the state-of-the-art and three orders of magnitude in power efficiency for conventional learning tasks. We experimentally demonstrate essential parts of our architecture using a programmable nanophotonic processor.
Generalizable Neural Fields as Partially Observed Neural Processes
Neural fields, which represent signals as a function parameterized by a neural network, are a promising alternative to traditional discrete vector or grid-based representations. Compared to discrete representations, neural representations both scale well with increasing resolution, are continuous, and can be many-times differentiable. However, given a dataset of signals that we would like to represent, having to optimize a separate neural field for each signal is inefficient, and cannot capitalize on shared information or structures among signals. Existing generalization methods view this as a meta-learning problem and employ gradient-based meta-learning to learn an initialization which is then fine-tuned with test-time optimization, or learn hypernetworks to produce the weights of a neural field. We instead propose a new paradigm that views the large-scale training of neural representations as a part of a partially-observed neural process framework, and leverage neural process algorithms to solve this task. We demonstrate that this approach outperforms both state-of-the-art gradient-based meta-learning approaches and hypernetwork approaches.
LESnets (Large-Eddy Simulation nets): Physics-informed neural operator for large-eddy simulation of turbulence
Acquisition of large datasets for three-dimensional (3D) partial differential equations are usually very expensive. Physics-informed neural operator (PINO) eliminates the high costs associated with generation of training datasets, and shows great potential in a variety of partial differential equations. In this work, we employ physics-informed neural operator, encoding the large-eddy simulation (LES) equations directly into the neural operator for simulating three-dimensional incompressible turbulent flows. We develop the LESnets (Large-Eddy Simulation nets) by adding large-eddy simulation equations to two different data-driven models, including Fourier neural operator (FNO) and implicit Fourier neural operator (IFNO) without using label data. Notably, by leveraging only PDE constraints to learn the spatio-temporal dynamics problem, LESnets retains the computational efficiency of data-driven approaches while obviating the necessity for data. Meanwhile, using large-eddy simulation equations as PDE constraints makes it possible to efficiently predict complex turbulence at coarse grids. We investigate the performance of the LESnets with two standard three-dimensional turbulent flows: decaying homogeneous isotropic turbulence and temporally evolving turbulent mixing layer. In the numerical experiments, the LESnets model shows a similar or even better accuracy as compared to traditional large-eddy simulation and data-driven models of FNO and IFNO. Moreover, the well-trained LESnets is significantly faster than traditional LES, and has a similar efficiency as the data-driven FNO and IFNO models. Thus, physics-informed neural operators have a strong potential for 3D nonlinear engineering applications.
Learning towards Minimum Hyperspherical Energy
Neural networks are a powerful class of nonlinear functions that can be trained end-to-end on various applications. While the over-parametrization nature in many neural networks renders the ability to fit complex functions and the strong representation power to handle challenging tasks, it also leads to highly correlated neurons that can hurt the generalization ability and incur unnecessary computation cost. As a result, how to regularize the network to avoid undesired representation redundancy becomes an important issue. To this end, we draw inspiration from a well-known problem in physics -- Thomson problem, where one seeks to find a state that distributes N electrons on a unit sphere as evenly as possible with minimum potential energy. In light of this intuition, we reduce the redundancy regularization problem to generic energy minimization, and propose a minimum hyperspherical energy (MHE) objective as generic regularization for neural networks. We also propose a few novel variants of MHE, and provide some insights from a theoretical point of view. Finally, we apply neural networks with MHE regularization to several challenging tasks. Extensive experiments demonstrate the effectiveness of our intuition, by showing the superior performance with MHE regularization.
Graph Neural Networks for Learning Equivariant Representations of Neural Networks
Neural networks that process the parameters of other neural networks find applications in domains as diverse as classifying implicit neural representations, generating neural network weights, and predicting generalization errors. However, existing approaches either overlook the inherent permutation symmetry in the neural network or rely on intricate weight-sharing patterns to achieve equivariance, while ignoring the impact of the network architecture itself. In this work, we propose to represent neural networks as computational graphs of parameters, which allows us to harness powerful graph neural networks and transformers that preserve permutation symmetry. Consequently, our approach enables a single model to encode neural computational graphs with diverse architectures. We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations, predicting generalization performance, and learning to optimize, while consistently outperforming state-of-the-art methods. The source code is open-sourced at https://github.com/mkofinas/neural-graphs.
Training neural networks without backpropagation using particles
Neural networks are a group of neurons stacked together in multiple layers to mimic the biological neurons in a human brain. Neural networks have been trained using the backpropagation algorithm based on gradient descent strategy for several decades. Several variants have been developed to improve the backpropagation algorithm. The loss function for the neural network is optimized through backpropagation, but several local minima exist in the manifold of the constructed neural network. We obtain several solutions matching the minima. The gradient descent strategy cannot avoid the problem of local minima and gets stuck in the minima due to the initialization. Particle swarm optimization (PSO) was proposed to select the best local minima among the search space of the loss function. The search space is limited to the instantiated particles in the PSO algorithm, and sometimes it cannot select the best solution. In the proposed approach, we overcome the problem of gradient descent and the limitation of the PSO algorithm by training individual neurons separately, capable of collectively solving the problem as a group of neurons forming a network. Our code and data are available at https://github.com/dipkmr/train-nn-wobp/
Graph Metanetworks for Processing Diverse Neural Architectures
Neural networks efficiently encode learned information within their parameters. Consequently, many tasks can be unified by treating neural networks themselves as input data. When doing so, recent studies demonstrated the importance of accounting for the symmetries and geometry of parameter spaces. However, those works developed architectures tailored to specific networks such as MLPs and CNNs without normalization layers, and generalizing such architectures to other types of networks can be challenging. In this work, we overcome these challenges by building new metanetworks - neural networks that take weights from other neural networks as input. Put simply, we carefully build graphs representing the input neural networks and process the graphs using graph neural networks. Our approach, Graph Metanetworks (GMNs), generalizes to neural architectures where competing methods struggle, such as multi-head attention layers, normalization layers, convolutional layers, ResNet blocks, and group-equivariant linear layers. We prove that GMNs are expressive and equivariant to parameter permutation symmetries that leave the input neural network functions unchanged. We validate the effectiveness of our method on several metanetwork tasks over diverse neural network architectures.
Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions
Deep neural networks are widely used for classification. These deep models often suffer from a lack of interpretability -- they are particularly difficult to understand because of their non-linear nature. As a result, neural networks are often treated as "black box" models, and in the past, have been trained purely to optimize the accuracy of predictions. In this work, we create a novel network architecture for deep learning that naturally explains its own reasoning for each prediction. This architecture contains an autoencoder and a special prototype layer, where each unit of that layer stores a weight vector that resembles an encoded training input. The encoder of the autoencoder allows us to do comparisons within the latent space, while the decoder allows us to visualize the learned prototypes. The training objective has four terms: an accuracy term, a term that encourages every prototype to be similar to at least one encoded input, a term that encourages every encoded input to be close to at least one prototype, and a term that encourages faithful reconstruction by the autoencoder. The distances computed in the prototype layer are used as part of the classification process. Since the prototypes are learned during training, the learned network naturally comes with explanations for each prediction, and the explanations are loyal to what the network actually computes.
Compositional Deep Learning
Neural networks have become an increasingly popular tool for solving many real-world problems. They are a general framework for differentiable optimization which includes many other machine learning approaches as special cases. In this thesis we build a category-theoretic formalism around a class of neural networks exemplified by CycleGAN. CycleGAN is a collection of neural networks, closed under composition, whose inductive bias is increased by enforcing composition invariants, i.e. cycle-consistencies. Inspired by Functorial Data Migration, we specify the interconnection of these networks using a categorical schema, and network instances as set-valued functors on this schema. We also frame neural network architectures, datasets, models, and a number of other concepts in a categorical setting and thus show a special class of functors, rather than functions, can be learned using gradient descent. We use the category-theoretic framework to conceive a novel neural network architecture whose goal is to learn the task of object insertion and object deletion in images with unpaired data. We test the architecture on three different datasets and obtain promising results.
LEMUR Neural Network Dataset: Towards Seamless AutoML
Neural networks are fundamental in artificial intelligence, driving progress in computer vision and natural language processing. High-quality datasets are crucial for their development, and there is growing interest in datasets composed of neural networks themselves to support benchmarking, automated machine learning (AutoML), and model analysis. We introduce LEMUR, an open source dataset of neural network models with well-structured code for diverse architectures across tasks such as object detection, image classification, segmentation, and natural language processing. LEMUR is primarily designed to provide a rich source of structured model representations and associated performance data, enabling the fine-tuning of large language models for AutoML applications. Leveraging Python and PyTorch, LEMUR enables seamless extension to new datasets and models while maintaining consistency. It integrates an Optuna-powered framework for evaluation, hyperparameter optimization, statistical analysis, and graphical insights. LEMUR VR extension enables the seamless deployment of models in virtual reality, optimizing their performance on resource-constrained devices. Providing tools for model evaluation, preprocessing, and database management, LEMUR supports researchers and practitioners in developing, testing, and analyzing neural networks. It offers an API that delivers comprehensive information about neural network models and their complete performance statistics with a single request, which can be used in experiments with code-generating large language models. The LEMUR and its plugins are accessible as open source projects under the MIT license at https://github.com/ABrain-One/nn-dataset, https://github.com/ABrain-One/nn-plots and https://github.com/ABrain-One/nn-vr.
Equivariant Architectures for Learning in Deep Weight Spaces
Designing machine learning architectures for processing neural networks in their raw weight matrix form is a newly introduced research direction. Unfortunately, the unique symmetry structure of deep weight spaces makes this design very challenging. If successful, such architectures would be capable of performing a wide range of intriguing tasks, from adapting a pre-trained network to a new domain to editing objects represented as functions (INRs or NeRFs). As a first step towards this goal, we present here a novel network architecture for learning in deep weight spaces. It takes as input a concatenation of weights and biases of a pre-trained MLP and processes it using a composition of layers that are equivariant to the natural permutation symmetry of the MLP's weights: Changing the order of neurons in intermediate layers of the MLP does not affect the function it represents. We provide a full characterization of all affine equivariant and invariant layers for these symmetries and show how these layers can be implemented using three basic operations: pooling, broadcasting, and fully connected layers applied to the input in an appropriate manner. We demonstrate the effectiveness of our architecture and its advantages over natural baselines in a variety of learning tasks.
Neural network approach to classifying alarming student responses to online assessment
Automated scoring engines are increasingly being used to score the free-form text responses that students give to questions. Such engines are not designed to appropriately deal with responses that a human reader would find alarming such as those that indicate an intention to self-harm or harm others, responses that allude to drug abuse or sexual abuse or any response that would elicit concern for the student writing the response. Our neural network models have been designed to help identify these anomalous responses from a large collection of typical responses that students give. The responses identified by the neural network can be assessed for urgency, severity, and validity more quickly by a team of reviewers than otherwise possible. Given the anomalous nature of these types of responses, our goal is to maximize the chance of flagging these responses for review given the constraint that only a fixed percentage of responses can viably be assessed by a team of reviewers.
NeuralArTS: Structuring Neural Architecture Search with Type Theory
Neural Architecture Search (NAS) algorithms automate the task of finding optimal deep learning architectures given an initial search space of possible operations. Developing these search spaces is usually a manual affair with pre-optimized search spaces being more efficient, rather than searching from scratch. In this paper we present a new framework called Neural Architecture Type System (NeuralArTS) that categorizes the infinite set of network operations in a structured type system. We further demonstrate how NeuralArTS can be applied to convolutional layers and propose several future directions.
MgNO: Efficient Parameterization of Linear Operators via Multigrid
In this work, we propose a concise neural operator architecture for operator learning. Drawing an analogy with a conventional fully connected neural network, we define the neural operator as follows: the output of the i-th neuron in a nonlinear operator layer is defined by mathcal O_i(u) = sigmaleft( sum_j mathcal W_{ij} u + mathcal B_{ij}right). Here, mathcal W_{ij} denotes the bounded linear operator connecting j-th input neuron to i-th output neuron, and the bias mathcal B_{ij} takes the form of a function rather than a scalar. Given its new universal approximation property, the efficient parameterization of the bounded linear operators between two neurons (Banach spaces) plays a critical role. As a result, we introduce MgNO, utilizing multigrid structures to parameterize these linear operators between neurons. This approach offers both mathematical rigor and practical expressivity. Additionally, MgNO obviates the need for conventional lifting and projecting operators typically required in previous neural operators. Moreover, it seamlessly accommodates diverse boundary conditions. Our empirical observations reveal that MgNO exhibits superior ease of training compared to other CNN-based models, while also displaying a reduced susceptibility to overfitting when contrasted with spectral-type neural operators. We demonstrate the efficiency and accuracy of our method with consistently state-of-the-art performance on different types of partial differential equations (PDEs).
Neural Turing Machines
We extend the capabilities of neural networks by coupling them to external memory resources, which they can interact with by attentional processes. The combined system is analogous to a Turing Machine or Von Neumann architecture but is differentiable end-to-end, allowing it to be efficiently trained with gradient descent. Preliminary results demonstrate that Neural Turing Machines can infer simple algorithms such as copying, sorting, and associative recall from input and output examples.
Magnitude Invariant Parametrizations Improve Hypernetwork Learning
Hypernetworks, neural networks that predict the parameters of another neural network, are powerful models that have been successfully used in diverse applications from image generation to multi-task learning. Unfortunately, existing hypernetworks are often challenging to train. Training typically converges far more slowly than for non-hypernetwork models, and the rate of convergence can be very sensitive to hyperparameter choices. In this work, we identify a fundamental and previously unidentified problem that contributes to the challenge of training hypernetworks: a magnitude proportionality between the inputs and outputs of the hypernetwork. We demonstrate both analytically and empirically that this can lead to unstable optimization, thereby slowing down convergence, and sometimes even preventing any learning. We present a simple solution to this problem using a revised hypernetwork formulation that we call Magnitude Invariant Parametrizations (MIP). We demonstrate the proposed solution on several hypernetwork tasks, where it consistently stabilizes training and achieves faster convergence. Furthermore, we perform a comprehensive ablation study including choices of activation function, normalization strategies, input dimensionality, and hypernetwork architecture; and find that MIP improves training in all scenarios. We provide easy-to-use code that can turn existing networks into MIP-based hypernetworks.
Towards flexible perception with visual memory
Training a neural network is a monolithic endeavor, akin to carving knowledge into stone: once the process is completed, editing the knowledge in a network is nearly impossible, since all information is distributed across the network's weights. We here explore a simple, compelling alternative by marrying the representational power of deep neural networks with the flexibility of a database. Decomposing the task of image classification into image similarity (from a pre-trained embedding) and search (via fast nearest neighbor retrieval from a knowledge database), we build a simple and flexible visual memory that has the following key capabilities: (1.) The ability to flexibly add data across scales: from individual samples all the way to entire classes and billion-scale data; (2.) The ability to remove data through unlearning and memory pruning; (3.) An interpretable decision-mechanism on which we can intervene to control its behavior. Taken together, these capabilities comprehensively demonstrate the benefits of an explicit visual memory. We hope that it might contribute to a conversation on how knowledge should be represented in deep vision models -- beyond carving it in ``stone'' weights.
Fast weight programming and linear transformers: from machine learning to neurobiology
Recent advances in artificial neural networks for machine learning, and language modeling in particular, have established a family of recurrent neural network (RNN) architectures that, unlike conventional RNNs with vector-form hidden states, use two-dimensional (2D) matrix-form hidden states. Such 2D-state RNNs, known as Fast Weight Programmers (FWPs), can be interpreted as a neural network whose synaptic weights (called fast weights) dynamically change over time as a function of input observations, and serve as short-term memory storage; corresponding synaptic weight modifications are controlled or programmed by another network (the programmer) whose parameters are trained (e.g., by gradient descent). In this Primer, we review the technical foundations of FWPs, their computational characteristics, and their connections to transformers and state space models. We also discuss connections between FWPs and models of synaptic plasticity in the brain, suggesting a convergence of natural and artificial intelligence.
Symbolic Synthesis of Neural Networks
Neural networks adapt very well to distributed and continuous representations, but struggle to generalize from small amounts of data. Symbolic systems commonly achieve data efficient generalization by exploiting modularity to benefit from local and discrete features of a representation. These features allow symbolic programs to be improved one module at a time and to experience combinatorial growth in the values they can successfully process. However, it is difficult to design a component that can be used to form symbolic abstractions and which is adequately overparametrized to learn arbitrary high-dimensional transformations. I present Graph-based Symbolically Synthesized Neural Networks (G-SSNNs), a class of neural modules that operate on representations modified with synthesized symbolic programs to include a fixed set of local and discrete features. I demonstrate that the choice of injected features within a G-SSNN module modulates the data efficiency and generalization of baseline neural models, creating predictable patterns of both heightened and curtailed generalization. By training G-SSNNs, we also derive information about desirable semantics of symbolic programs without manual engineering. This information is compact and amenable to abstraction, but can also be flexibly recontextualized for other high-dimensional settings. In future work, I will investigate data efficient generalization and the transferability of learned symbolic representations in more complex G-SSNN designs based on more complex classes of symbolic programs. Experimental code and data are available at https://github.com/shlomenu/symbolically_synthesized_networks .
Three Decades of Activations: A Comprehensive Survey of 400 Activation Functions for Neural Networks
Neural networks have proven to be a highly effective tool for solving complex problems in many areas of life. Recently, their importance and practical usability have further been reinforced with the advent of deep learning. One of the important conditions for the success of neural networks is the choice of an appropriate activation function introducing non-linearity into the model. Many types of these functions have been proposed in the literature in the past, but there is no single comprehensive source containing their exhaustive overview. The absence of this overview, even in our experience, leads to redundancy and the unintentional rediscovery of already existing activation functions. To bridge this gap, our paper presents an extensive survey involving 400 activation functions, which is several times larger in scale than previous surveys. Our comprehensive compilation also references these surveys; however, its main goal is to provide the most comprehensive overview and systematization of previously published activation functions with links to their original sources. The secondary aim is to update the current understanding of this family of functions.
Wide and Deep Neural Networks Achieve Optimality for Classification
While neural networks are used for classification tasks across domains, a long-standing open problem in machine learning is determining whether neural networks trained using standard procedures are optimal for classification, i.e., whether such models minimize the probability of misclassification for arbitrary data distributions. In this work, we identify and construct an explicit set of neural network classifiers that achieve optimality. Since effective neural networks in practice are typically both wide and deep, we analyze infinitely wide networks that are also infinitely deep. In particular, using the recent connection between infinitely wide neural networks and Neural Tangent Kernels, we provide explicit activation functions that can be used to construct networks that achieve optimality. Interestingly, these activation functions are simple and easy to implement, yet differ from commonly used activations such as ReLU or sigmoid. More generally, we create a taxonomy of infinitely wide and deep networks and show that these models implement one of three well-known classifiers depending on the activation function used: (1) 1-nearest neighbor (model predictions are given by the label of the nearest training example); (2) majority vote (model predictions are given by the label of the class with greatest representation in the training set); or (3) singular kernel classifiers (a set of classifiers containing those that achieve optimality). Our results highlight the benefit of using deep networks for classification tasks, in contrast to regression tasks, where excessive depth is harmful.
Malware Detection by Eating a Whole EXE
In this work we introduce malware detection from raw byte sequences as a fruitful research area to the larger machine learning community. Building a neural network for such a problem presents a number of interesting challenges that have not occurred in tasks such as image processing or NLP. In particular, we note that detection from raw bytes presents a sequence problem with over two million time steps and a problem where batch normalization appear to hinder the learning process. We present our initial work in building a solution to tackle this problem, which has linear complexity dependence on the sequence length, and allows for interpretable sub-regions of the binary to be identified. In doing so we will discuss the many challenges in building a neural network to process data at this scale, and the methods we used to work around them.
Neural Circuit Diagrams: Robust Diagrams for the Communication, Implementation, and Analysis of Deep Learning Architectures
Diagrams matter. Unfortunately, the deep learning community has no standard method for diagramming architectures. The current combination of linear algebra notation and ad-hoc diagrams fails to offer the necessary precision to understand architectures in all their detail. However, this detail is critical for faithful implementation, mathematical analysis, further innovation, and ethical assurances. I present neural circuit diagrams, a graphical language tailored to the needs of communicating deep learning architectures. Neural circuit diagrams naturally keep track of the changing arrangement of data, precisely show how operations are broadcast over axes, and display the critical parallel behavior of linear operations. A lingering issue with existing diagramming methods is the inability to simultaneously express the detail of axes and the free arrangement of data, which neural circuit diagrams solve. Their compositional structure is analogous to code, creating a close correspondence between diagrams and implementation. In this work, I introduce neural circuit diagrams for an audience of machine learning researchers. After introducing neural circuit diagrams, I cover a host of architectures to show their utility and breed familiarity. This includes the transformer architecture, convolution (and its difficult-to-explain extensions), residual networks, the U-Net, and the vision transformer. I include a Jupyter notebook that provides evidence for the close correspondence between diagrams and code. Finally, I examine backpropagation using neural circuit diagrams. I show their utility in providing mathematical insight and analyzing algorithms' time and space complexities.
Can We Scale Transformers to Predict Parameters of Diverse ImageNet Models?
Pretraining a neural network on a large dataset is becoming a cornerstone in machine learning that is within the reach of only a few communities with large-resources. We aim at an ambitious goal of democratizing pretraining. Towards that goal, we train and release a single neural network that can predict high quality ImageNet parameters of other neural networks. By using predicted parameters for initialization we are able to boost training of diverse ImageNet models available in PyTorch. When transferred to other datasets, models initialized with predicted parameters also converge faster and reach competitive final performance.
Early Neuron Alignment in Two-layer ReLU Networks with Small Initialization
This paper studies the problem of training a two-layer ReLU network for binary classification using gradient flow with small initialization. We consider a training dataset with well-separated input vectors: Any pair of input data with the same label are positively correlated, and any pair with different labels are negatively correlated. Our analysis shows that, during the early phase of training, neurons in the first layer try to align with either the positive data or the negative data, depending on its corresponding weight on the second layer. A careful analysis of the neurons' directional dynamics allows us to provide an O(log n{mu}) upper bound on the time it takes for all neurons to achieve good alignment with the input data, where n is the number of data points and mu measures how well the data are separated. After the early alignment phase, the loss converges to zero at a O(1{t}) rate, and the weight matrix on the first layer is approximately low-rank. Numerical experiments on the MNIST dataset illustrate our theoretical findings.
On the Benefits of Biophysical Synapses
The approximation capability of ANNs and their RNN instantiations, is strongly correlated with the number of parameters packed into these networks. However, the complexity barrier for human understanding, is arguably related to the number of neurons and synapses in the networks, and to the associated nonlinear transformations. In this paper we show that the use of biophysical synapses, as found in LTCs, have two main benefits. First, they allow to pack more parameters for a given number of neurons and synapses. Second, they allow to formulate the nonlinear-network transformation, as a linear system with state-dependent coefficients. Both increase interpretability, as for a given task, they allow to learn a system linear in its input features, that is smaller in size compared to the state of the art. We substantiate the above claims on various time-series prediction tasks, but we believe that our results are applicable to any feedforward or recurrent ANN.
Bit-wise Training of Neural Network Weights
We introduce an algorithm where the individual bits representing the weights of a neural network are learned. This method allows training weights with integer values on arbitrary bit-depths and naturally uncovers sparse networks, without additional constraints or regularization techniques. We show better results than the standard training technique with fully connected networks and similar performance as compared to standard training for convolutional and residual networks. By training bits in a selective manner we found that the biggest contribution to achieving high accuracy is given by the first three most significant bits, while the rest provide an intrinsic regularization. As a consequence more than 90\% of a network can be used to store arbitrary codes without affecting its accuracy. These codes may be random noise, binary files or even the weights of previously trained networks.
Dense Hebbian neural networks: a replica symmetric picture of supervised learning
We consider dense, associative neural-networks trained by a teacher (i.e., with supervision) and we investigate their computational capabilities analytically, via statistical-mechanics of spin glasses, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters such as quality and quantity of the training dataset, network storage and noise, that is valid in the limit of large network size and structureless datasets: these networks may work in a ultra-storage regime (where they can handle a huge amount of patterns, if compared with shallow neural networks) or in a ultra-detection regime (where they can perform pattern recognition at prohibitive signal-to-noise ratios, if compared with shallow neural networks). Guided by the random theory as a reference framework, we also test numerically learning, storing and retrieval capabilities shown by these networks on structured datasets as MNist and Fashion MNist. As technical remarks, from the analytic side, we implement large deviations and stability analysis within Guerra's interpolation to tackle the not-Gaussian distributions involved in the post-synaptic potentials while, from the computational counterpart, we insert Plefka approximation in the Monte Carlo scheme, to speed up the evaluation of the synaptic tensors, overall obtaining a novel and broad approach to investigate supervised learning in neural networks, beyond the shallow limit, in general.
Neural Arithmetic Units
Neural networks can approximate complex functions, but they struggle to perform exact arithmetic operations over real numbers. The lack of inductive bias for arithmetic operations leaves neural networks without the underlying logic necessary to extrapolate on tasks such as addition, subtraction, and multiplication. We present two new neural network components: the Neural Addition Unit (NAU), which can learn exact addition and subtraction; and the Neural Multiplication Unit (NMU) that can multiply subsets of a vector. The NMU is, to our knowledge, the first arithmetic neural network component that can learn to multiply elements from a vector, when the hidden size is large. The two new components draw inspiration from a theoretical analysis of recently proposed arithmetic components. We find that careful initialization, restricting parameter space, and regularizing for sparsity is important when optimizing the NAU and NMU. Our proposed units NAU and NMU, compared with previous neural units, converge more consistently, have fewer parameters, learn faster, can converge for larger hidden sizes, obtain sparse and meaningful weights, and can extrapolate to negative and small values.
Synthesizing the preferred inputs for neurons in neural networks via deep generator networks
Deep neural networks (DNNs) have demonstrated state-of-the-art results on many pattern recognition tasks, especially vision classification problems. Understanding the inner workings of such computational brains is both fascinating basic science that is interesting in its own right - similar to why we study the human brain - and will enable researchers to further improve DNNs. One path to understanding how a neural network functions internally is to study what each of its neurons has learned to detect. One such method is called activation maximization (AM), which synthesizes an input (e.g. an image) that highly activates a neuron. Here we dramatically improve the qualitative state of the art of activation maximization by harnessing a powerful, learned prior: a deep generator network (DGN). The algorithm (1) generates qualitatively state-of-the-art synthetic images that look almost real, (2) reveals the features learned by each neuron in an interpretable way, (3) generalizes well to new datasets and somewhat well to different network architectures without requiring the prior to be relearned, and (4) can be considered as a high-quality generative method (in this case, by generating novel, creative, interesting, recognizable images).
Pointer Networks
We introduce a new neural architecture to learn the conditional probability of an output sequence with elements that are discrete tokens corresponding to positions in an input sequence. Such problems cannot be trivially addressed by existent approaches such as sequence-to-sequence and Neural Turing Machines, because the number of target classes in each step of the output depends on the length of the input, which is variable. Problems such as sorting variable sized sequences, and various combinatorial optimization problems belong to this class. Our model solves the problem of variable size output dictionaries using a recently proposed mechanism of neural attention. It differs from the previous attention attempts in that, instead of using attention to blend hidden units of an encoder to a context vector at each decoder step, it uses attention as a pointer to select a member of the input sequence as the output. We call this architecture a Pointer Net (Ptr-Net). We show Ptr-Nets can be used to learn approximate solutions to three challenging geometric problems -- finding planar convex hulls, computing Delaunay triangulations, and the planar Travelling Salesman Problem -- using training examples alone. Ptr-Nets not only improve over sequence-to-sequence with input attention, but also allow us to generalize to variable size output dictionaries. We show that the learnt models generalize beyond the maximum lengths they were trained on. We hope our results on these tasks will encourage a broader exploration of neural learning for discrete problems.
Neural Comprehension: Language Models with Compiled Neural Networks
Language models have achieved impressive results in natural language processing tasks, but their ability to perform symbolic operations and arithmetic operations, remains limited, which attribute to their learn the rules implicitly from data. We explore how to incorporate compiled neural networks (CoNNs) which weight is specially designed, into the architecture of language models to enable the language model trained by gradient to obtain fully rule comprehension ability. The incorporation of compiled neural networks offers a promising direction for improving the performance of language models on compound tasks, particularly in areas that require a deeper comprehension of abstract rules beyond recognizing patterns in training data. Our method, which call "Neural Comprehension", helps language models achieve absolute accuracy in symbolic operations, thereby enhancing their ability for rule reasoning, symbolic reasoning, and arithmetic reasoning. Our code is publicly available at: https://github.com/WENGSYX/Neural-Comprehension.
Foundation Models Secretly Understand Neural Network Weights: Enhancing Hypernetwork Architectures with Foundation Models
Large pre-trained models, or foundation models, have shown impressive performance when adapted to a variety of downstream tasks, often out-performing specialized models. Hypernetworks, neural networks that generate some or all of the parameters of another neural network, have become an increasingly important technique for conditioning and generalizing implicit neural representations (INRs), which represent signals or objects such as audio or 3D shapes using a neural network. However, despite the potential benefits of incorporating foundation models in hypernetwork methods, this research direction has not been investigated, likely due to the dissimilarity of the weight generation task with other visual tasks. To address this gap, we (1) show how foundation models can improve hypernetworks with Transformer-based architectures, (2) provide an empirical analysis of the benefits of foundation models for hypernetworks through the lens of the generalizable INR task, showing that leveraging foundation models improves performance, generalizability, and data efficiency across a variety of algorithms and modalities. We also provide further analysis in examining the design space of foundation model-based hypernetworks, including examining the choice of foundation models, algorithms, and the effect of scaling foundation models.
The "something something" video database for learning and evaluating visual common sense
Neural networks trained on datasets such as ImageNet have led to major advances in visual object classification. One obstacle that prevents networks from reasoning more deeply about complex scenes and situations, and from integrating visual knowledge with natural language, like humans do, is their lack of common sense knowledge about the physical world. Videos, unlike still images, contain a wealth of detailed information about the physical world. However, most labelled video datasets represent high-level concepts rather than detailed physical aspects about actions and scenes. In this work, we describe our ongoing collection of the "something-something" database of video prediction tasks whose solutions require a common sense understanding of the depicted situation. The database currently contains more than 100,000 videos across 174 classes, which are defined as caption-templates. We also describe the challenges in crowd-sourcing this data at scale.
Neural Redshift: Random Networks are not Random Functions
Our understanding of the generalization capabilities of neural networks (NNs) is still incomplete. Prevailing explanations are based on implicit biases of gradient descent (GD) but they cannot account for the capabilities of models from gradient-free methods nor the simplicity bias recently observed in untrained networks. This paper seeks other sources of generalization in NNs. Findings. To understand the inductive biases provided by architectures independently from GD, we examine untrained, random-weight networks. Even simple MLPs show strong inductive biases: uniform sampling in weight space yields a very biased distribution of functions in terms of complexity. But unlike common wisdom, NNs do not have an inherent "simplicity bias". This property depends on components such as ReLUs, residual connections, and layer normalizations. Alternative architectures can be built with a bias for any level of complexity. Transformers also inherit all these properties from their building blocks. Implications. We provide a fresh explanation for the success of deep learning independent from gradient-based training. It points at promising avenues for controlling the solutions implemented by trained models.
Audio Spectrogram Representations for Processing with Convolutional Neural Networks
One of the decisions that arise when designing a neural network for any application is how the data should be represented in order to be presented to, and possibly generated by, a neural network. For audio, the choice is less obvious than it seems to be for visual images, and a variety of representations have been used for different applications including the raw digitized sample stream, hand-crafted features, machine discovered features, MFCCs and variants that include deltas, and a variety of spectral representations. This paper reviews some of these representations and issues that arise, focusing particularly on spectrograms for generating audio using neural networks for style transfer.
Qualitatively characterizing neural network optimization problems
Training neural networks involves solving large-scale non-convex optimization problems. This task has long been believed to be extremely difficult, with fear of local minima and other obstacles motivating a variety of schemes to improve optimization, such as unsupervised pretraining. However, modern neural networks are able to achieve negligible training error on complex tasks, using only direct training with stochastic gradient descent. We introduce a simple analysis technique to look for evidence that such networks are overcoming local optima. We find that, in fact, on a straight path from initialization to solution, a variety of state of the art neural networks never encounter any significant obstacles.
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
While it is widely known that neural networks are universal approximators of continuous functions, a less known and perhaps more powerful result is that a neural network with a single hidden layer can approximate accurately any nonlinear continuous operator. This universal approximation theorem is suggestive of the potential application of neural networks in learning nonlinear operators from data. However, the theorem guarantees only a small approximation error for a sufficient large network, and does not consider the important optimization and generalization errors. To realize this theorem in practice, we propose deep operator networks (DeepONets) to learn operators accurately and efficiently from a relatively small dataset. A DeepONet consists of two sub-networks, one for encoding the input function at a fixed number of sensors x_i, i=1,dots,m (branch net), and another for encoding the locations for the output functions (trunk net). We perform systematic simulations for identifying two types of operators, i.e., dynamic systems and partial differential equations, and demonstrate that DeepONet significantly reduces the generalization error compared to the fully-connected networks. We also derive theoretically the dependence of the approximation error in terms of the number of sensors (where the input function is defined) as well as the input function type, and we verify the theorem with computational results. More importantly, we observe high-order error convergence in our computational tests, namely polynomial rates (from half order to fourth order) and even exponential convergence with respect to the training dataset size.
einspace: Searching for Neural Architectures from Fundamental Operations
Neural architecture search (NAS) finds high performing networks for a given task. Yet the results of NAS are fairly prosaic; they did not e.g. create a shift from convolutional structures to transformers. This is not least because the search spaces in NAS often aren't diverse enough to include such transformations a priori. Instead, for NAS to provide greater potential for fundamental design shifts, we need a novel expressive search space design which is built from more fundamental operations. To this end, we introduce einspace, a search space based on a parameterised probabilistic context-free grammar. Our space is versatile, supporting architectures of various sizes and complexities, while also containing diverse network operations which allow it to model convolutions, attention components and more. It contains many existing competitive architectures, and provides flexibility for discovering new ones. Using this search space, we perform experiments to find novel architectures as well as improvements on existing ones on the diverse Unseen NAS datasets. We show that competitive architectures can be obtained by searching from scratch, and we consistently find large improvements when initialising the search with strong baselines. We believe that this work is an important advancement towards a transformative NAS paradigm where search space expressivity and strategic search initialisation play key roles.
Neural Operator: Learning Maps Between Function Spaces
The classical development of neural networks has primarily focused on learning mappings between finite dimensional Euclidean spaces or finite sets. We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces. We formulate the neural operator as a composition of linear integral operators and nonlinear activation functions. We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator. The proposed neural operators are also discretization-invariant, i.e., they share the same model parameters among different discretization of the underlying function spaces. Furthermore, we introduce four classes of efficient parameterization, viz., graph neural operators, multi-pole graph neural operators, low-rank neural operators, and Fourier neural operators. An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations (PDEs). We consider standard PDEs such as the Burgers, Darcy subsurface flow, and the Navier-Stokes equations, and show that the proposed neural operators have superior performance compared to existing machine learning based methodologies, while being several orders of magnitude faster than conventional PDE solvers.
Alice's Adventures in a Differentiable Wonderland -- Volume I, A Tour of the Land
Neural networks surround us, in the form of large language models, speech transcription systems, molecular discovery algorithms, robotics, and much more. Stripped of anything else, neural networks are compositions of differentiable primitives, and studying them means learning how to program and how to interact with these models, a particular example of what is called differentiable programming. This primer is an introduction to this fascinating field imagined for someone, like Alice, who has just ventured into this strange differentiable wonderland. I overview the basics of optimizing a function via automatic differentiation, and a selection of the most common designs for handling sequences, graphs, texts, and audios. The focus is on a intuitive, self-contained introduction to the most important design techniques, including convolutional, attentional, and recurrent blocks, hoping to bridge the gap between theory and code (PyTorch and JAX) and leaving the reader capable of understanding some of the most advanced models out there, such as large language models (LLMs) and multimodal architectures.
Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures
Despite being the workhorse of deep learning, the backpropagation algorithm is no panacea. It enforces sequential layer updates, thus preventing efficient parallelization of the training process. Furthermore, its biological plausibility is being challenged. Alternative schemes have been devised; yet, under the constraint of synaptic asymmetry, none have scaled to modern deep learning tasks and architectures. Here, we challenge this perspective, and study the applicability of Direct Feedback Alignment to neural view synthesis, recommender systems, geometric learning, and natural language processing. In contrast with previous studies limited to computer vision tasks, our findings show that it successfully trains a large range of state-of-the-art deep learning architectures, with performance close to fine-tuned backpropagation. At variance with common beliefs, our work supports that challenging tasks can be tackled in the absence of weight transport.
Deep Learning for Functional Data Analysis with Adaptive Basis Layers
Despite their widespread success, the application of deep neural networks to functional data remains scarce today. The infinite dimensionality of functional data means standard learning algorithms can be applied only after appropriate dimension reduction, typically achieved via basis expansions. Currently, these bases are chosen a priori without the information for the task at hand and thus may not be effective for the designated task. We instead propose to adaptively learn these bases in an end-to-end fashion. We introduce neural networks that employ a new Basis Layer whose hidden units are each basis functions themselves implemented as a micro neural network. Our architecture learns to apply parsimonious dimension reduction to functional inputs that focuses only on information relevant to the target rather than irrelevant variation in the input function. Across numerous classification/regression tasks with functional data, our method empirically outperforms other types of neural networks, and we prove that our approach is statistically consistent with low generalization error. Code is available at: https://github.com/jwyyy/AdaFNN.
Neural Arithmetic Logic Units
Neural networks can learn to represent and manipulate numerical information, but they seldom generalize well outside of the range of numerical values encountered during training. To encourage more systematic numerical extrapolation, we propose an architecture that represents numerical quantities as linear activations which are manipulated using primitive arithmetic operators, controlled by learned gates. We call this module a neural arithmetic logic unit (NALU), by analogy to the arithmetic logic unit in traditional processors. Experiments show that NALU-enhanced neural networks can learn to track time, perform arithmetic over images of numbers, translate numerical language into real-valued scalars, execute computer code, and count objects in images. In contrast to conventional architectures, we obtain substantially better generalization both inside and outside of the range of numerical values encountered during training, often extrapolating orders of magnitude beyond trained numerical ranges.
Untrained neural networks can demonstrate memorization-independent abstract reasoning
The nature of abstract reasoning is a matter of debate. Modern artificial neural network (ANN) models, like large language models, demonstrate impressive success when tested on abstract reasoning problems. However, it has been argued that their success reflects some form of memorization of similar problems (data contamination) rather than a general-purpose abstract reasoning capability. This concern is supported by evidence of brittleness, and the requirement of extensive training. In our study, we explored whether abstract reasoning can be achieved using the toolbox of ANNs, without prior training. Specifically, we studied an ANN model in which the weights of a naive network are optimized during the solution of the problem, using the problem data itself, rather than any prior knowledge. We tested this modeling approach on visual reasoning problems and found that it performs relatively well. Crucially, this success does not rely on memorization of similar problems. We further suggest an explanation of how it works. Finally, as problem solving is performed by changing the ANN weights, we explored the connection between problem solving and the accumulation of knowledge in the ANNs.
A Brief Review of Hypernetworks in Deep Learning
Hypernetworks, or hypernets in short, are neural networks that generate weights for another neural network, known as the target network. They have emerged as a powerful deep learning technique that allows for greater flexibility, adaptability, dynamism, faster training, information sharing, and model compression etc. Hypernets have shown promising results in a variety of deep learning problems, including continual learning, causal inference, transfer learning, weight pruning, uncertainty quantification, zero-shot learning, natural language processing, and reinforcement learning etc. Despite their success across different problem settings, currently, there is no review available to inform the researchers about the developments and to help in utilizing hypernets. To fill this gap, we review the progress in hypernets. We present an illustrative example to train deep neural networks using hypernets and propose categorizing hypernets based on five design criteria as inputs, outputs, variability of inputs and outputs, and architecture of hypernets. We also review applications of hypernets across different deep learning problem settings, followed by a discussion of general scenarios where hypernets can be effectively employed. Finally, we discuss the challenges and future directions that remain under-explored in the field of hypernets. We believe that hypernetworks have the potential to revolutionize the field of deep learning. They offer a new way to design and train neural networks, and they have the potential to improve the performance of deep learning models on a variety of tasks. Through this review, we aim to inspire further advancements in deep learning through hypernetworks.
Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
In this paper we propose to study generalization of neural networks on small algorithmically generated datasets. In this setting, questions about data efficiency, memorization, generalization, and speed of learning can be studied in great detail. In some situations we show that neural networks learn through a process of "grokking" a pattern in the data, improving generalization performance from random chance level to perfect generalization, and that this improvement in generalization can happen well past the point of overfitting. We also study generalization as a function of dataset size and find that smaller datasets require increasing amounts of optimization for generalization. We argue that these datasets provide a fertile ground for studying a poorly understood aspect of deep learning: generalization of overparametrized neural networks beyond memorization of the finite training dataset.
Convergent Learning: Do different neural networks learn the same representations?
Recent success in training deep neural networks have prompted active investigation into the features learned on their intermediate layers. Such research is difficult because it requires making sense of non-linear computations performed by millions of parameters, but valuable because it increases our ability to understand current models and create improved versions of them. In this paper we investigate the extent to which neural networks exhibit what we call convergent learning, which is when the representations learned by multiple nets converge to a set of features which are either individually similar between networks or where subsets of features span similar low-dimensional spaces. We propose a specific method of probing representations: training multiple networks and then comparing and contrasting their individual, learned representations at the level of neurons or groups of neurons. We begin research into this question using three techniques to approximately align different neural networks on a feature level: a bipartite matching approach that makes one-to-one assignments between neurons, a sparse prediction approach that finds one-to-many mappings, and a spectral clustering approach that finds many-to-many mappings. This initial investigation reveals a few previously unknown properties of neural networks, and we argue that future research into the question of convergent learning will yield many more. The insights described here include (1) that some features are learned reliably in multiple networks, yet other features are not consistently learned; (2) that units learn to span low-dimensional subspaces and, while these subspaces are common to multiple networks, the specific basis vectors learned are not; (3) that the representation codes show evidence of being a mix between a local code and slightly, but not fully, distributed codes across multiple units.
EvilModel: Hiding Malware Inside of Neural Network Models
Delivering malware covertly and evasively is critical to advanced malware campaigns. In this paper, we present a new method to covertly and evasively deliver malware through a neural network model. Neural network models are poorly explainable and have a good generalization ability. By embedding malware in neurons, the malware can be delivered covertly, with minor or no impact on the performance of neural network. Meanwhile, because the structure of the neural network model remains unchanged, it can pass the security scan of antivirus engines. Experiments show that 36.9MB of malware can be embedded in a 178MB-AlexNet model within 1% accuracy loss, and no suspicion is raised by anti-virus engines in VirusTotal, which verifies the feasibility of this method. With the widespread application of artificial intelligence, utilizing neural networks for attacks becomes a forwarding trend. We hope this work can provide a reference scenario for the defense on neural network-assisted attacks.
ONNX-Net: Towards Universal Representations and Instant Performance Prediction for Neural Architectures
Neural architecture search (NAS) automates the design process of high-performing architectures, but remains bottlenecked by expensive performance evaluation. Most existing studies that achieve faster evaluation are mostly tied to cell-based search spaces and graph encodings tailored to those individual search spaces, limiting their flexibility and scalability when applied to more expressive search spaces. In this work, we aim to close the gap of individual search space restrictions and search space dependent network representations. We present ONNX-Bench, a benchmark consisting of a collection of neural networks in a unified format based on ONNX files. ONNX-Bench includes all open-source NAS-bench-based neural networks, resulting in a total size of more than 600k {architecture, accuracy} pairs. This benchmark allows creating a shared neural network representation, ONNX-Net, able to represent any neural architecture using natural language descriptions acting as an input to a performance predictor. This text-based encoding can accommodate arbitrary layer types, operation parameters, and heterogeneous topologies, enabling a single surrogate to generalise across all neural architectures rather than being confined to cell-based search spaces. Experiments show strong zero-shot performance across disparate search spaces using only a small amount of pretraining samples, enabling the unprecedented ability to evaluate any neural network architecture instantly.
Neural Architecture Search: Insights from 1000 Papers
In the past decade, advances in deep learning have resulted in breakthroughs in a variety of areas, including computer vision, natural language understanding, speech recognition, and reinforcement learning. Specialized, high-performing neural architectures are crucial to the success of deep learning in these areas. Neural architecture search (NAS), the process of automating the design of neural architectures for a given task, is an inevitable next step in automating machine learning and has already outpaced the best human-designed architectures on many tasks. In the past few years, research in NAS has been progressing rapidly, with over 1000 papers released since 2020 (Deng and Lindauer, 2021). In this survey, we provide an organized and comprehensive guide to neural architecture search. We give a taxonomy of search spaces, algorithms, and speedup techniques, and we discuss resources such as benchmarks, best practices, other surveys, and open-source libraries.
A Survey of Quantization Methods for Efficient Neural Network Inference
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
An Introduction to Convolutional Neural Networks
The field of machine learning has taken a dramatic twist in recent times, with the rise of the Artificial Neural Network (ANN). These biologically inspired computational models are able to far exceed the performance of previous forms of artificial intelligence in common machine learning tasks. One of the most impressive forms of ANN architecture is that of the Convolutional Neural Network (CNN). CNNs are primarily used to solve difficult image-driven pattern recognition tasks and with their precise yet simple architecture, offers a simplified method of getting started with ANNs. This document provides a brief introduction to CNNs, discussing recently published papers and newly formed techniques in developing these brilliantly fantastic image recognition models. This introduction assumes you are familiar with the fundamentals of ANNs and machine learning.
Multi-column Deep Neural Networks for Image Classification
Traditional methods of computer vision and machine learning cannot match human performance on tasks such as the recognition of handwritten digits or traffic signs. Our biologically plausible deep artificial neural network architectures can. Small (often minimal) receptive fields of convolutional winner-take-all neurons yield large network depth, resulting in roughly as many sparsely connected neural layers as found in mammals between retina and visual cortex. Only winner neurons are trained. Several deep neural columns become experts on inputs preprocessed in different ways; their predictions are averaged. Graphics cards allow for fast training. On the very competitive MNIST handwriting benchmark, our method is the first to achieve near-human performance. On a traffic sign recognition benchmark it outperforms humans by a factor of two. We also improve the state-of-the-art on a plethora of common image classification benchmarks.
PROSE: Predicting Operators and Symbolic Expressions using Multimodal Transformers
Approximating nonlinear differential equations using a neural network provides a robust and efficient tool for various scientific computing tasks, including real-time predictions, inverse problems, optimal controls, and surrogate modeling. Previous works have focused on embedding dynamical systems into networks through two approaches: learning a single solution operator (i.e., the mapping from input parametrized functions to solutions) or learning the governing system of equations (i.e., the constitutive model relative to the state variables). Both of these approaches yield different representations for the same underlying data or function. Additionally, observing that families of differential equations often share key characteristics, we seek one network representation across a wide range of equations. Our method, called Predicting Operators and Symbolic Expressions (PROSE), learns maps from multimodal inputs to multimodal outputs, capable of generating both numerical predictions and mathematical equations. By using a transformer structure and a feature fusion approach, our network can simultaneously embed sets of solution operators for various parametric differential equations using a single trained network. Detailed experiments demonstrate that the network benefits from its multimodal nature, resulting in improved prediction accuracy and better generalization. The network is shown to be able to handle noise in the data and errors in the symbolic representation, including noisy numerical values, model misspecification, and erroneous addition or deletion of terms. PROSE provides a new neural network framework for differential equations which allows for more flexibility and generality in learning operators and governing equations from data.
Accelerating Training with Neuron Interaction and Nowcasting Networks
Neural network training can be accelerated when a learnable update rule is used in lieu of classic adaptive optimizers (e.g. Adam). However, learnable update rules can be costly and unstable to train and use. A simpler recently proposed approach to accelerate training is to use Adam for most of the optimization steps and periodically, only every few steps, nowcast (predict future) parameters. We improve this approach by Neuron interaction and Nowcasting (NiNo) networks. NiNo leverages neuron connectivity and graph neural networks to more accurately nowcast parameters by learning in a supervised way from a set of training trajectories over multiple tasks. We show that in some networks, such as Transformers, neuron connectivity is non-trivial. By accurately modeling neuron connectivity, we allow NiNo to accelerate Adam training by up to 50\% in vision and language tasks.
Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond
Deep learning sometimes appears to work in unexpected ways. In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network consisting of a sequence of first-order approximations telescoping out into a single empirically operational tool for practical analysis. Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena in the literature -- including double descent, grokking, linear mode connectivity, and the challenges of applying deep learning on tabular data -- highlighting that this model allows us to construct and extract metrics that help predict and understand the a priori unexpected performance of neural networks. We also demonstrate that this model presents a pedagogical formalism allowing us to isolate components of the training process even in complex contemporary settings, providing a lens to reason about the effects of design choices such as architecture & optimization strategy, and reveals surprising parallels between neural network learning and gradient boosting.
An Informal Introduction to Multiplet Neural Networks
In the artificial neuron, I replace the dot product with the weighted Lehmer mean, which may emulate different cases of a generalized mean. The single neuron instance is replaced by a multiplet of neurons which have the same averaging weights. A group of outputs feed forward, in lieu of the single scalar. The generalization parameter is typically set to a different value for each neuron in the multiplet. I further extend the concept to a multiplet taken from the Gini mean. Derivatives with respect to the weight parameters and with respect to the two generalization parameters are given. Some properties of the network are investigated, showing the capacity to emulate the classical exclusive-or problem organically in two layers and perform some multiplication and division. The network can instantiate truncated power series and variants, which can be used to approximate different functions, provided that parameters are constrained. Moreover, a mean case slope score is derived that can facilitate a learning-rate novelty based on homogeneity of the selected elements. The multiplet neuron equation provides a way to segment regularization timeframes and approaches.
Dense Hebbian neural networks: a replica symmetric picture of unsupervised learning
We consider dense, associative neural-networks trained with no supervision and we investigate their computational capabilities analytically, via a statistical-mechanics approach, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters such as the quality and quantity of the training dataset and the network storage, valid in the limit of large network size and structureless datasets. Moreover, we establish a bridge between macroscopic observables standardly used in statistical mechanics and loss functions typically used in the machine learning. As technical remarks, from the analytic side, we implement large deviations and stability analysis within Guerra's interpolation to tackle the not-Gaussian distributions involved in the post-synaptic potentials while, from the computational counterpart, we insert Plefka approximation in the Monte Carlo scheme, to speed up the evaluation of the synaptic tensors, overall obtaining a novel and broad approach to investigate neural networks in general.
Translate your gibberish: black-box adversarial attack on machine translation systems
Neural networks are deployed widely in natural language processing tasks on the industrial scale, and perhaps the most often they are used as compounds of automatic machine translation systems. In this work, we present a simple approach to fool state-of-the-art machine translation tools in the task of translation from Russian to English and vice versa. Using a novel black-box gradient-free tensor-based optimizer, we show that many online translation tools, such as Google, DeepL, and Yandex, may both produce wrong or offensive translations for nonsensical adversarial input queries and refuse to translate seemingly benign input phrases. This vulnerability may interfere with understanding a new language and simply worsen the user's experience while using machine translation systems, and, hence, additional improvements of these tools are required to establish better translation.
Kolmogorov-Arnold Network Autoencoders
Deep learning models have revolutionized various domains, with Multi-Layer Perceptrons (MLPs) being a cornerstone for tasks like data regression and image classification. However, a recent study has introduced Kolmogorov-Arnold Networks (KANs) as promising alternatives to MLPs, leveraging activation functions placed on edges rather than nodes. This structural shift aligns KANs closely with the Kolmogorov-Arnold representation theorem, potentially enhancing both model accuracy and interpretability. In this study, we explore the efficacy of KANs in the context of data representation via autoencoders, comparing their performance with traditional Convolutional Neural Networks (CNNs) on the MNIST, SVHN, and CIFAR-10 datasets. Our results demonstrate that KAN-based autoencoders achieve competitive performance in terms of reconstruction accuracy, thereby suggesting their viability as effective tools in data analysis tasks.
Neural Generation of Regular Expressions from Natural Language with Minimal Domain Knowledge
This paper explores the task of translating natural language queries into regular expressions which embody their meaning. In contrast to prior work, the proposed neural model does not utilize domain-specific crafting, learning to translate directly from a parallel corpus. To fully explore the potential of neural models, we propose a methodology for collecting a large corpus of regular expression, natural language pairs. Our resulting model achieves a performance gain of 19.6% over previous state-of-the-art models.
Quadratic models for understanding neural network dynamics
While neural networks can be approximated by linear models as their width increases, certain properties of wide neural networks cannot be captured by linear models. In this work we show that recently proposed Neural Quadratic Models can exhibit the "catapult phase" [Lewkowycz et al. 2020] that arises when training such models with large learning rates. We then empirically show that the behaviour of neural quadratic models parallels that of neural networks in generalization, especially in the catapult phase regime. Our analysis further demonstrates that quadratic models can be an effective tool for analysis of neural networks.
Supervised Learning with Quantum-Inspired Tensor Networks
Tensor networks are efficient representations of high-dimensional tensors which have been very successful for physics and mathematics applications. We demonstrate how algorithms for optimizing such networks can be adapted to supervised learning tasks by using matrix product states (tensor trains) to parameterize models for classifying images. For the MNIST data set we obtain less than 1% test set classification error. We discuss how the tensor network form imparts additional structure to the learned model and suggest a possible generative interpretation.
Diffusion Nets
Non-linear manifold learning enables high-dimensional data analysis, but requires out-of-sample-extension methods to process new data points. In this paper, we propose a manifold learning algorithm based on deep learning to create an encoder, which maps a high-dimensional dataset and its low-dimensional embedding, and a decoder, which takes the embedded data back to the high-dimensional space. Stacking the encoder and decoder together constructs an autoencoder, which we term a diffusion net, that performs out-of-sample-extension as well as outlier detection. We introduce new neural net constraints for the encoder, which preserves the local geometry of the points, and we prove rates of convergence for the encoder. Also, our approach is efficient in both computational complexity and memory requirements, as opposed to previous methods that require storage of all training points in both the high-dimensional and the low-dimensional spaces to calculate the out-of-sample-extension and the pre-image.
High-Performance Neural Networks for Visual Object Classification
We present a fast, fully parameterizable GPU implementation of Convolutional Neural Network variants. Our feature extractors are neither carefully designed nor pre-wired, but rather learned in a supervised way. Our deep hierarchical architectures achieve the best published results on benchmarks for object classification (NORB, CIFAR10) and handwritten digit recognition (MNIST), with error rates of 2.53%, 19.51%, 0.35%, respectively. Deep nets trained by simple back-propagation perform better than more shallow ones. Learning is surprisingly rapid. NORB is completely trained within five epochs. Test error rates on MNIST drop to 2.42%, 0.97% and 0.48% after 1, 3 and 17 epochs, respectively.
Memory Networks
We describe a new class of learning models called memory networks. Memory networks reason with inference components combined with a long-term memory component; they learn how to use these jointly. The long-term memory can be read and written to, with the goal of using it for prediction. We investigate these models in the context of question answering (QA) where the long-term memory effectively acts as a (dynamic) knowledge base, and the output is a textual response. We evaluate them on a large-scale QA task, and a smaller, but more complex, toy task generated from a simulated world. In the latter, we show the reasoning power of such models by chaining multiple supporting sentences to answer questions that require understanding the intension of verbs.
The Effectiveness of Data Augmentation in Image Classification using Deep Learning
In this paper, we explore and compare multiple solutions to the problem of data augmentation in image classification. Previous work has demonstrated the effectiveness of data augmentation through simple techniques, such as cropping, rotating, and flipping input images. We artificially constrain our access to data to a small subset of the ImageNet dataset, and compare each data augmentation technique in turn. One of the more successful data augmentations strategies is the traditional transformations mentioned above. We also experiment with GANs to generate images of different styles. Finally, we propose a method to allow a neural net to learn augmentations that best improve the classifier, which we call neural augmentation. We discuss the successes and shortcomings of this method on various datasets.
Full-Gradient Representation for Neural Network Visualization
We introduce a new tool for interpreting neural net responses, namely full-gradients, which decomposes the neural net response into input sensitivity and per-neuron sensitivity components. This is the first proposed representation which satisfies two key properties: completeness and weak dependence, which provably cannot be satisfied by any saliency map-based interpretability method. For convolutional nets, we also propose an approximate saliency map representation, called FullGrad, obtained by aggregating the full-gradient components. We experimentally evaluate the usefulness of FullGrad in explaining model behaviour with two quantitative tests: pixel perturbation and remove-and-retrain. Our experiments reveal that our method explains model behaviour correctly, and more comprehensively than other methods in the literature. Visual inspection also reveals that our saliency maps are sharper and more tightly confined to object regions than other methods.
