new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Synthetic Modelling of Polarized Dust Emission in Intermediate-Mass YSOs: I: Constraining the Role of Iron Inclusions and Inelastic Relaxation on Grain Alignment with ALMA Polarization

Iron inclusions embedded inside dust grains play a crucial role in both internal alignment (IA) via Barnett relaxation and external alignment via the MAgnetically Enhanced RAdiative Torque (MRAT) mechanism. Moreover, inelastic relaxation is predicted to dominate over Barnett relaxation in driving the IA of micron-sized and very large grains above 10mu m (VLGs). Yet, a detailed modeling of polarized thermal dust emission from Class 0/I Young Stellar Objects (YSOs) taking into account these effects and their observational constraints is still lacking. In this paper, we update the POLARIS code and use it to perform synthetic dust polarization modeling for MHD simulations of an intermediate-mass YSO. Results will be post-processed with CASA to confront ALMA polarimetric observations. We found that to reproduce the high polarization degree of p sim 5-30% observed in protostellar envelopes by ALMA, micron-sized and VLGs must contain iron inclusions with N_{rm cl} sim 5 - 10^{3} iron atoms per cluster, assuming 30% of iron abundance locked inside dust grains under the cluster form. Inside the inner sim 500 au region, inelastic relaxation must participate in driving the grain internal alignment, and grains must contain larger iron inclusions of N_{rm cl} sim 10^{2}-10^{4} and grow beyond geq 10mu m to reproduce sim 3-10% of dust polarization observed by ALMA. But given such a combination, the internal alignment and MRAT efficiency acting on VLGs still decrease toward the center, inducing the decrease of p(%) with increasing gas density, reaching p sim 1% inside the disk.

  • 5 authors
·
Jul 14, 2024

Variance Reduced Halpern Iteration for Finite-Sum Monotone Inclusions

Machine learning approaches relying on such criteria as adversarial robustness or multi-agent settings have raised the need for solving game-theoretic equilibrium problems. Of particular relevance to these applications are methods targeting finite-sum structure, which generically arises in empirical variants of learning problems in these contexts. Further, methods with computable approximation errors are highly desirable, as they provide verifiable exit criteria. Motivated by these applications, we study finite-sum monotone inclusion problems, which model broad classes of equilibrium problems. Our main contributions are variants of the classical Halpern iteration that employ variance reduction to obtain improved complexity guarantees in which n component operators in the finite sum are ``on average'' either cocoercive or Lipschitz continuous and monotone, with parameter L. The resulting oracle complexity of our methods, which provide guarantees for the last iterate and for a (computable) operator norm residual, is mathcal{O}( n + nLvarepsilon^{-1}), which improves upon existing methods by a factor up to n. This constitutes the first variance reduction-type result for general finite-sum monotone inclusions and for more specific problems such as convex-concave optimization when operator norm residual is the optimality measure. We further argue that, up to poly-logarithmic factors, this complexity is unimprovable in the monotone Lipschitz setting; i.e., the provided result is near-optimal.

  • 3 authors
·
Oct 4, 2023

Faces of highest weight modules and the universal Weyl polyhedron

Let V be a highest weight module over a Kac-Moody algebra g, and let conv V denote the convex hull of its weights. We determine the combinatorial isomorphism type of conv V, i.e. we completely classify the faces and their inclusions. In the special case where g is semisimple, this brings closure to a question studied by Cellini-Marietti [IMRN 2015] for the adjoint representation, and by Khare [J. Algebra 2016; Trans. Amer. Math. Soc. 2017] for most modules. The determination of faces of finite-dimensional modules up to the Weyl group action and some of their inclusions also appears in previous work of Satake [Ann. of Math. 1960], Borel-Tits [IHES Publ. Math. 1965], Vinberg [Izv. Akad. Nauk 1990], and Casselman [Austral. Math. Soc. 1997]. For any subset of the simple roots, we introduce a remarkable convex cone which we call the universal Weyl polyhedron, which controls the convex hulls of all modules parabolically induced from the corresponding Levi factor. Namely, the combinatorial isomorphism type of the cone stores the classification of faces for all such highest weight modules, as well as how faces degenerate as the highest weight gets increasingly singular. To our knowledge, this cone is new in finite and infinite type. We further answer a question of Michel Brion, by showing that the localization of conv V along a face is always the convex hull of the weights of a parabolically induced module. Finally, as we determine the inclusion relations between faces representation-theoretically from the set of weights, without recourse to convexity, we answer a similar question for highest weight modules over symmetrizable quantum groups.

  • 2 authors
·
Oct 31, 2016

Ming-UniVision: Joint Image Understanding and Generation with a Unified Continuous Tokenizer

Visual tokenization remains a core challenge in unifying visual understanding and generation within the autoregressive paradigm. Existing methods typically employ tokenizers in discrete latent spaces to align with the tokens from large language models, where the quantization errors can limit semantic expressiveness and degrade the capability of vision-language understanding. To address this, we introduce MingTok, a new family of visual tokenizers with a continuous latent space, for unified autoregressive generation and understanding. While understanding tasks favor discriminative high-dimensional features, generation tasks prefer compact low-level codes. Thus, to reconcile these competing demands, MingTok adopts a three-stage sequential architecture involving low-level encoding, semantic expansion, and visual reconstruction. Built on top of it, Ming-UniVision eliminates the need for task-specific visual representations, and unifies diverse vision-language tasks under a single autoregrsssive prediction paradigm. By formulating both understanding and generation as next-token prediction in a shared continuous space, it seamlessly supports multi-round, in-context tasks such as iterative understanding, generation and editing. Empirically, we find that using a unified continuous visual representation reconciles the competing requirements on the tokenizers by the understanding and generation tasks, thereby leading to state-of-the-art level performance across both domains. We hope our findings will facilitate unified visual tokenization in the continuous domain. Inference code and model weights are released to benefit community.

inclusionAI inclusionAI
·
Oct 7, 2025 3