- KIGLIS: Smart Networks for Smart Cities Smart cities will be characterized by a variety of intelligent and networked services, each with specific requirements for the underlying network infrastructure. While smart city architectures and services have been studied extensively, little attention has been paid to the network technology. The KIGLIS research project, consisting of a consortium of companies, universities and research institutions, focuses on artificial intelligence for optimizing fiber-optic networks of a smart city, with a special focus on future mobility applications, such as automated driving. In this paper, we present early results on our process of collecting smart city requirements for communication networks, which will lead towards reference infrastructure and architecture solutions. Finally, we suggest directions in which artificial intelligence will improve smart city networks. 14 authors · May 14, 2021
- A neural network for forward and inverse nonlinear Fourier transforms for fiber optic communication We propose a neural network for both forward and inverse continuous nonlinear Fourier transforms, NFT and INFT respectively. We demonstrate the network's capability to perform NFT and INFT for a random mix of NFDM-QAM signals. The network transformations (NFT and INFT) exhibit true characteristics of these transformations; they are significantly different for low and high-power input pulses. The network shows adequate accuracy with an RMSE of 5e-3 for forward and 3e-2 for inverse transforms. We further show that the trained network can be used to perform general nonlinear Fourier transforms on arbitrary pulses beyond the training pulse types. 3 authors · Jul 14, 2024
- First Field-Trial Demonstration of L4 Autonomous Optical Network for Distributed AI Training Communication: An LLM-Powered Multi-AI-Agent Solution We demonstrate the first cross-domain cross-layer level-4 autonomous optical network via a multi-AI-agent system. Field trials show 98 percent task completion rate across the distributed AI training lifecycle-3.2x higher than single agents using state-of-the-art LLMs. 10 authors · Apr 1, 2025
- Compositionality in algorithms for smoothing Backward Filtering Forward Guiding (BFFG) is a bidirectional algorithm proposed in Mider et al. [2021] and studied more in depth in a general setting in Van der Meulen and Schauer [2022]. In category theory, optics have been proposed for modelling systems with bidirectional data flow. We connect BFFG with optics and prove that different ways of composing the building blocks of BFFG correspond to equivalent optics. 2 authors · Mar 24, 2023
- Investigation of intrinsic properties of high-quality fiber Fabry--Perot resonators Fiber Fabry--Perot (FFP) resonators of a few centimeters are optimized as a function of the reflectivity of the mirrors and the dimensions of the intra-cavity waveguide. Loaded quality factor in excess of 10^9, with an optimum of 4___x___10^9, together with an intrinsic quality factor larger than 10^10 and intrinsic finesse in the range of 10^5 have been measured. An application to the stabilization of laser frequency fluctuations is presented. 11 authors · Oct 16, 2025
- Privacy-Preserving Distributed Learning Framework for 6G Telecom Ecosystems We present a privacy-preserving distributed learning framework for telecom ecosystems in the 6G-era that enables the vision of shared ownership and governance of ML models, while protecting the privacy of the data owners. We demonstrate its benefits by applying it to the use-case of Quality of Transmission (QoT) estimation in multi-domain multi-vendor optical networks, where no data of individual domains is shared with the network management system (NMS). 3 authors · Aug 17, 2020
- An Architecture for Meeting Quality-of-Service Requirements in Multi-User Quantum Networks Quantum communication can enhance internet technology by enabling novel applications that are provably impossible classically. The successful execution of such applications relies on the generation of quantum entanglement between different users of the network which meets stringent performance requirements. Alongside traditional metrics such as throughput and jitter, one must ensure the generated entanglement is of sufficiently high quality. Meeting such performance requirements demands a careful orchestration of many devices in the network, giving rise to a fundamentally new scheduling problem. Furthermore, technological limitations of near-term quantum devices impose significant constraints on scheduling methods hoping to meet performance requirements. In this work, we propose the first end-to-end design of a centralized quantum network with multiple users that orchestrates the delivery of entanglement which meets quality-of-service (QoS) requirements of applications. We achieve this by using a centrally constructed schedule that manages usage of devices and ensures the coordinated execution of different quantum operations throughout the network. We use periodic task scheduling and resource-constrained project scheduling techniques, including a novel heuristic, to construct the schedules. Our simulations of four small networks using hardware-validated network parameters, and of a real-world fiber topology using futuristic parameters, illustrate trade-offs between traditional and quantum performance metrics. 2 authors · Nov 25, 2021
- Deep Learning with Coherent Nanophotonic Circuits Artificial Neural Networks are computational network models inspired by signal processing in the brain. These models have dramatically improved the performance of many learning tasks, including speech and object recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made to develop electronic architectures tuned to implement artificial neural networks that improve upon both computational speed and energy efficiency. Here, we propose a new architecture for a fully-optical neural network that, using unique advantages of optics, promises a computational speed enhancement of at least two orders of magnitude over the state-of-the-art and three orders of magnitude in power efficiency for conventional learning tasks. We experimentally demonstrate essential parts of our architecture using a programmable nanophotonic processor. 11 authors · Oct 7, 2016
1 Priority Flow Admission and Routing in SDN: Exact and Heuristic Approaches This paper proposes a novel admission and routing scheme which takes into account arbitrarily assigned priorities for network flows. The presented approach leverages the centralized Software Defined Networking (SDN) capabilities in order to do so. Exact and heuristic approaches to the stated Priority Flow Admission and Routing (PFAR) problem are provided. The exact approach which provides an optimal solution is based on Integer Linear Programming (ILP). Given the potentially long running time required to find an exact and optimal solution, a heuristic approach is proposed; this approach is based on Genetic Algorithms (GAs). In order to effectively estimate the performance of the proposed approaches, a simulator that is capable of generating semi-random network topologies and flows has been developed. Experimental results for large problem instances (up 50 network nodes and thousands of network flows), show that: i) an optimal solution can be often found in few seconds (even milliseconds), and ii) the heuristic approach yields close-to-optimal solutions (approximately 95\% of the optimal) in a fixed amount of time; these experimental results demonstrate the pertinence of the proposed approaches. 4 authors · Sep 22, 2020
1 Outdoor-to-Indoor 28 GHz Wireless Measurements in Manhattan: Path Loss, Environmental Effects, and 90% Coverage Outdoor-to-indoor (OtI) signal propagation further challenges the already tight link budgets at millimeter-wave (mmWave). To gain insight into OtI mmWave scenarios at 28 GHz, we conducted an extensive measurement campaign consisting of over 2,200 link measurements. In total, 43 OtI scenarios were measured in West Harlem, New York City, covering seven highly diverse buildings. The measured OtI path gain can vary by up to 40 dB for a given link distance, and the empirical path gain model for all data shows an average of 30 dB excess loss over free space at distances beyond 50 m, with an RMS fitting error of 11.7 dB. The type of glass is found to be the single dominant feature for OtI loss, with 20 dB observed difference between empirical path gain models for scenarios with low-loss and high-loss glass. The presence of scaffolding, tree foliage, or elevated subway tracks, as well as difference in floor height are each found to have an impact between 5-10 dB. We show that for urban buildings with high-loss glass, OtI coverage can support 500 Mbps for 90% of indoor user equipment (UEs) with a base station (BS) antenna placed up to 49 m away. For buildings with low-loss glass, such as our case study covering multiple classrooms of a public school, data rates over 2.5/1.2 Gbps are possible from a BS 68/175 m away from the school building, when a line-of-sight path is available. We expect these results to be useful for the deployment of mmWave networks in dense urban environments as well as the development of relevant scheduling and beam management algorithms. 15 authors · May 19, 2022
1 Computational metrics and parameters of an injection-locked large area semiconductor laser for neural network computing Artificial neural networks have become a staple computing technique in many fields. Yet, they present fundamental differences with classical computing hardware in the way they process information. Photonic implementations of neural network architectures potentially offer fundamental advantages over their electronic counterparts in terms of speed, processing parallelism, scalability and energy efficiency. Scalable and high performance photonic neural networks (PNNs) have been demonstrated, yet they remain scarce. In this work, we study the performance of such a scalable, fully parallel and autonomous PNN based on a large area vertical-cavity surface-emitting laser (LA-VCSEL). We show how the performance varies with different physical parameters, namely, injection wavelength, injection power, and bias current. Furthermore, we link these physical parameters to the general computational measures of consistency and dimensionality. We present a general method of gauging dimensionality in high dimensional nonlinear systems subject to noise, which could be applied to many systems in the context of neuromorphic computing. Our work will inform future implementations of spatially multiplexed VCSEL PNNs. 6 authors · Dec 16, 2021
- Telecom Foundation Models: Applications, Challenges, and Future Trends Telecom networks are becoming increasingly complex, with diversified deployment scenarios, multi-standards, and multi-vendor support. The intricate nature of the telecom network ecosystem presents challenges to effectively manage, operate, and optimize networks. To address these hurdles, Artificial Intelligence (AI) has been widely adopted to solve different tasks in telecom networks. However, these conventional AI models are often designed for specific tasks, rely on extensive and costly-to-collect labeled data that require specialized telecom expertise for development and maintenance. The AI models usually fail to generalize and support diverse deployment scenarios and applications. In contrast, Foundation Models (FMs) show effective generalization capabilities in various domains in language, vision, and decision-making tasks. FMs can be trained on multiple data modalities generated from the telecom ecosystem and leverage specialized domain knowledge. Moreover, FMs can be fine-tuned to solve numerous specialized tasks with minimal task-specific labeled data and, in some instances, are able to leverage context to solve previously unseen problems. At the dawn of 6G, this paper investigates the potential opportunities of using FMs to shape the future of telecom technologies and standards. In particular, the paper outlines a conceptual process for developing Telecom FMs (TFMs) and discusses emerging opportunities for orchestrating specialized TFMs for network configuration, operation, and maintenance. Finally, the paper discusses the limitations and challenges of developing and deploying TFMs. 4 authors · Aug 2, 2024
- Paving the Way towards 800 Gbps Quantum-Secured Optical Channel Deployment in Mission-Critical Environments This article describes experimental research studies conducted towards understanding the implementation aspects of high-capacity quantum-secured optical channels in mission-critical metro-scale operational environments using Quantum Key Distribution (QKD) technology. To the best of our knowledge, this is the first time that an 800 Gbps quantum-secured optical channel -- along with several other Dense Wavelength Division Multiplexed (DWDM) channels on the C-band and multiplexed with the QKD channel on the O-band -- was established at distances up to 100 km, with secret key-rates relevant for practical industry use cases. In addition, during the course of these trials, transporting a blockchain application over this established channel was utilized as a demonstration of securing a financial transaction in transit over a quantum-secured optical channel. The findings of this research pave the way towards the deployment of QKD-secured optical channels in high-capacity, metro-scale, mission-critical operational environments, such as Inter-Data Center Interconnects. 19 authors · Feb 15, 2022
- Driving Enhanced Exciton Transfer by Automatic Differentiation We model and study the processes of excitation, absorption, and transfer in various networks. The model consists of a harmonic oscillator representing a single-mode radiation field, a qubit acting as an antenna, a network through which the excitation propagates, and a qubit at the end serving as a sink. We investigate how off-resonant excitations can be optimally absorbed and transmitted through the network. Three strategies are considered: optimising network energies, adjusting the couplings between the radiation field, the antenna, and the network, or introducing and optimising driving fields at the start and end of the network. These strategies are tested on three different types of network with increasing complexity: nearest-neighbour and star configurations, and one associated with the Fenna-Matthews-Olson complex. The results show that, among the various strategies, the introduction of driving fields is the most effective, leading to a significant increase in the probability of reaching the sink in a given time. This result remains stable across networks of varying dimensionalities and types, and the driving process requires only a few parameters to be effective. 6 authors · Nov 26, 2024
- Hertz-rate metropolitan quantum teleportation Quantum teleportation can transfer an unknown quantum state between distant quantum nodes, which holds great promise in enabling large-scale quantum networks. To advance the full potential of quantum teleportation, quantum states must be faithfully transferred at a high rate over long distance. Despite recent impressive advances, a high-rate quantum teleportation system across metropolitan fiber networks is extremely desired. Here, we demonstrate a quantum teleportation system which transfers quantum states carried by independent photons at a rate of 7.1pm0.4 Hz over 64-km-long fiber channel. An average single-photon fidelity of geqslant 90.6pm2.6% is achieved, which exceeds the maximum fidelity of 2/3 in classical regime. Our result marks an important milestone towards quantum networks and opens the door to exploring quantum entanglement based informatic applications for the future quantum internet. 15 authors · Mar 24, 2023
1 Rewrite the Stars Recent studies have drawn attention to the untapped potential of the "star operation" (element-wise multiplication) in network design. While intuitive explanations abound, the foundational rationale behind its application remains largely unexplored. Our study attempts to reveal the star operation's ability to map inputs into high-dimensional, non-linear feature spaces -- akin to kernel tricks -- without widening the network. We further introduce StarNet, a simple yet powerful prototype, demonstrating impressive performance and low latency under compact network structure and efficient budget. Like stars in the sky, the star operation appears unremarkable but holds a vast universe of potential. Our work encourages further exploration across tasks, with codes available at https://github.com/ma-xu/Rewrite-the-Stars. 5 authors · Mar 29, 2024
- Prime Collective Communications Library -- Technical Report This report presents the Prime Collective Communications Library (PCCL), a novel fault-tolerant collective communication library designed for distributed ML workloads over the public internet. PCCL introduces a new programming model that enables dynamic peer joining and failure recovery. The library implements efficient collective operations like all-reduce while providing robust fault tolerance mechanisms that allow the system to continue operating even when peers fail or join during ongoing operations. We demonstrate that PCCL's design enables practical solutions to dynamic membership challenges in workloads with repeated operations and deterministic state advancement. Our implementation passes extensive stress tests across all major operating systems, showing reliable operation even under rapid peer churn and concurrent collective operations. By dispatching to multiple connections, we can efficiently utilize cross-continental long-fat-pipe TCP WAN links, in our experiments achieving up to 45 Gbit/s of bandwidth utilization across Europe and 25 Gbit/s across North America and Europe. PCCL's architecture enables easy implementation of distributed low-communication optimization strategies like DiLoCo, which significantly reduce communication frequency. Combined with quantization, this leads to a significant reduction in the bandwidth required for distributed training workloads. PCCL also allows for concurrent collective operations, which enables optimization strategies like async DiLoCo, which can completely hide communication overhead by implementing one-step delayed parameter updates. PCCL can facilitate exact bit-parity of the shared state across peers in all cases induced by graceful or abrupt peer churn. While PCCL exposes a C99 API, Python bindings are available which are compatible with PyTorch alongside FSDP. PCCL is available under the open source MIT license. 5 authors · May 20, 2025
- Modeling Temperature, Frequency, and Strain Effects on the Linear Electro-Optic Coefficients of Ferroelectric Oxides An electro-optic modulator offers the function of modulating the propagation of light in a material with electric field and enables seamless connection between electronics-based computing and photonics-based communication. The search for materials with large electro-optic coefficients and low optical loss is critical to increase the efficiency and minimize the size of electro-optic devices. We present a semi-empirical method to compute the electro-optic coefficients of ferroelectric materials by combining first-principles density-functional theory calculations with Landau-Devonshire phenomenological modeling. We apply the method to study the electro-optic constants, also called Pockels coefficients, of three paradigmatic ferroelectric oxides: BaTiO3, LiNbO3, and LiTaO3. We present their temperature-, frequency- and strain-dependent electro-optic tensors calculated using our method. The predicted electro-optic constants agree with the experimental results, where available, and provide benchmarks for experimental verification. 5 authors · Jun 5, 2021
- All you need for horizontal slicing in 5G network The telecommunication field has seen unprecedented growth in the last decade that has led to the release of several generations that have been committed to satisfy users by increasing the data rate and reducing the latency, especially in the 5G network. With fully commercialized 5G networks that is already launched in many country, Software-defined network (SDN) and network function virtualization (NFV) will facilitate the implementation of NS. SDN and NFV will serve as the basis for NS, allowing efficient use of both physical and virtual resources. This paper makes it possible to analyze, propose an efficient model, and utilize all of the available resources of the 5G network. 3 authors · Jul 23, 2022
1 Short-Term Flow-Based Bandwidth Forecasting using Machine Learning This paper proposes a novel framework to predict traffic flows' bandwidth ahead of time. Modern network management systems share a common issue: the network situation evolves between the moment the decision is made and the moment when actions (countermeasures) are applied. This framework converts packets from real-life traffic into flows containing relevant features. Machine learning models, including Decision Tree, Random Forest, XGBoost, and Deep Neural Network, are trained on these data to predict the bandwidth at the next time instance for every flow. Predictions can be fed to the management system instead of current flows bandwidth in order to take decisions on a more accurate network state. Experiments were performed on 981,774 flows and 15 different time windows (from 0.03s to 4s). They show that the Random Forest is the best performing and most reliable model, with a predictive performance consistently better than relying on the current bandwidth (+19.73% in mean absolute error and +18.00% in root mean square error). Experimental results indicate that this framework can help network management systems to take more informed decisions using a predicted network state. 4 authors · Nov 29, 2020
- Solitons near avoided mode crossing in χ^{(2)} nanowaveguides We present a model for chi^{(2)} waveguides accounting for three modes, two of which make an avoided crossing at the second harmonic wavelength. We introduce two linearly coupled pure modes and adjust the coupling to replicate the waveguide dispersion near the avoided crossing. Analysis of the nonlinear system reveals continuous wave (CW) solutions across much of the parameter-space and prevalence of its modulational instability. We also predict the existence of the avoided-crossing solitons, and study peculiarities of their dynamics and spectral properties, which include formation of a pedestal in the pulse tails and associated pronounced spectral peaks. Mapping these solitons onto the linear dispersion diagrams, we make connections between their existence and CW existence and stability. We also simulate the two-color soliton generation from a single frequency pump pulse to back up its formation and stability properties. 3 authors · Aug 19, 2021
- Security Implications and Mitigation Strategies in MPLS Networks Multiprotocol Label Switching (MPLS) is a high-performance telecommunications technology that directs data from one network node to another based on short path labels rather than long network addresses. Its efficiency and scalability have made it a popular choice for large-scale and enterprise networks. However, as MPLS networks grow and evolve, they encounter various security challenges. This paper explores the security implications associated with MPLS networks, including risks such as label spoofing, traffic interception, and denial of service attacks. Additionally, it evaluates advanced mitigation strategies to address these vulnerabilities, leveraging mathematical models and security protocols to enhance MPLS network resilience. By integrating theoretical analysis with practical solutions, this paper aims to provide a comprehensive understanding of MPLS security and propose effective methods for safeguarding network infrastructure. 1 authors · Sep 4, 2024
- Satellite Connectivity Prediction for Fast-Moving Platforms Satellite connectivity is gaining increased attention as the demand for seamless internet access, especially in transportation and remote areas, continues to grow. For fast-moving objects such as aircraft, vehicles, or trains, satellite connectivity is critical due to their mobility and frequent presence in areas without terrestrial coverage. Maintaining reliable connectivity in these cases requires frequent switching between satellite beams, constellations, or orbits. To enhance user experience and address challenges like long switching times, Machine Learning (ML) algorithms can analyze historical connectivity data and predict network quality at specific locations. This allows for proactive measures, such as network switching before connectivity issues arise. In this paper, we analyze a real dataset of communication between a Geostationary Orbit (GEO) satellite and aircraft over multiple flights, using ML to predict signal quality. Our prediction model achieved an F1 score of 0.97 on the test data, demonstrating the accuracy of machine learning in predicting signal quality during flight. By enabling seamless broadband service, including roaming between different satellite constellations and providers, our model addresses the need for real-time predictions of signal quality. This approach can further be adapted to automate satellite and beam-switching mechanisms to improve overall communication efficiency. The model can also be retrained and applied to any moving object with satellite connectivity, using customized datasets, including connected vehicles and trains. 2 authors · Jul 22, 2025
- Generating arbitrary polarization states by manipulating the thicknesses of a pair of uniaxial birefringent plates We report an optical method of generating arbitrary polarization states by manipulating the thicknesses of a pair of uniaxial birefringent plates, the optical axes of which are set at a crossing angle of {\pi}/4. The method has the remarkable feature of being able to generate a distribution of arbitrary polarization states in a group of highly discrete spectra without spatially separating the individual spectral components. The target polarization-state distribution is obtained as an optimal solution through an exploration. Within a realistic exploration range, a sufficient number of near-optimal solutions are found. This property is also reproduced well by a concise model based on a distribution of exploration points on a Poincar\'e sphere, showing that the number of near-optimal solutions behaves according to a power law with respect to the number of spectral components of concern. As a typical example of an application, by applying this method to a set of phase-locked highly discrete spectra, we numerically demonstrate the continuous generation of a vector-like optical electric field waveform, the helicity of which is alternated within a single optical cycle in the time domain. 4 authors · Aug 1, 2023
2 Designing Network Design Spaces In this work, we present a new network design paradigm. Our goal is to help advance the understanding of network design and discover design principles that generalize across settings. Instead of focusing on designing individual network instances, we design network design spaces that parametrize populations of networks. The overall process is analogous to classic manual design of networks, but elevated to the design space level. Using our methodology we explore the structure aspect of network design and arrive at a low-dimensional design space consisting of simple, regular networks that we call RegNet. The core insight of the RegNet parametrization is surprisingly simple: widths and depths of good networks can be explained by a quantized linear function. We analyze the RegNet design space and arrive at interesting findings that do not match the current practice of network design. The RegNet design space provides simple and fast networks that work well across a wide range of flop regimes. Under comparable training settings and flops, the RegNet models outperform the popular EfficientNet models while being up to 5x faster on GPUs. 5 authors · Mar 30, 2020