Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDECOR:Decomposition and Projection of Text Embeddings for Text-to-Image Customization
Text-to-image (T2I) models can effectively capture the content or style of reference images to perform high-quality customization. A representative technique for this is fine-tuning using low-rank adaptations (LoRA), which enables efficient model customization with reference images. However, fine-tuning with a limited number of reference images often leads to overfitting, resulting in issues such as prompt misalignment or content leakage. These issues prevent the model from accurately following the input prompt or generating undesired objects during inference. To address this problem, we examine the text embeddings that guide the diffusion model during inference. This study decomposes the text embedding matrix and conducts a component analysis to understand the embedding space geometry and identify the cause of overfitting. Based on this, we propose DECOR, which projects text embeddings onto a vector space orthogonal to undesired token vectors, thereby reducing the influence of unwanted semantics in the text embeddings. Experimental results demonstrate that DECOR outperforms state-of-the-art customization models and achieves Pareto frontier performance across text and visual alignment evaluation metrics. Furthermore, it generates images more faithful to the input prompts, showcasing its effectiveness in addressing overfitting and enhancing text-to-image customization.
How Do Language Models Compose Functions?
While large language models (LLMs) appear to be increasingly capable of solving compositional tasks, it is an open question whether they do so using compositional mechanisms. In this work, we investigate how feedforward LLMs solve two-hop factual recall tasks, which can be expressed compositionally as g(f(x)). We first confirm that modern LLMs continue to suffer from the "compositionality gap": i.e. their ability to compute both z = f(x) and y = g(z) does not entail their ability to compute the composition y = g(f(x)). Then, using logit lens on their residual stream activations, we identify two processing mechanisms, one which solves tasks compositionally, computing f(x) along the way to computing g(f(x)), and one which solves them directly, without any detectable signature of the intermediate variable f(x). Finally, we find that which mechanism is employed appears to be related to the embedding space geometry, with the idiomatic mechanism being dominant in cases where there exists a linear mapping from x to g(f(x)) in the embedding spaces. We fully release our data and code at: https://github.com/apoorvkh/composing-functions .
CoDiEmb: A Collaborative yet Distinct Framework for Unified Representation Learning in Information Retrieval and Semantic Textual Similarity
Learning unified text embeddings that excel across diverse downstream tasks is a central goal in representation learning, yet negative transfer remains a persistent obstacle. This challenge is particularly pronounced when jointly training a single encoder for Information Retrieval (IR) and Semantic Textual Similarity (STS), two essential but fundamentally disparate tasks for which naive co-training typically yields steep performance trade-offs. We argue that resolving this conflict requires systematically decoupling task-specific learning signals throughout the training pipeline. To this end, we introduce CoDiEmb, a unified framework that reconciles the divergent requirements of IR and STS in a collaborative yet distinct manner. CoDiEmb integrates three key innovations for effective joint optimization: (1) Task-specialized objectives paired with a dynamic sampler that forms single-task batches and balances per-task updates, thereby preventing gradient interference. For IR, we employ a contrastive loss with multiple positives and hard negatives, augmented by cross-device sampling. For STS, we adopt order-aware objectives that directly optimize correlation and ranking consistency. (2) A delta-guided model fusion strategy that computes fine-grained merging weights for checkpoints by analyzing each parameter's deviation from its pre-trained initialization, proving more effective than traditional Model Soups. (3) An efficient, single-stage training pipeline that is simple to implement and converges stably. Extensive experiments on 15 standard IR and STS benchmarks across three base encoders validate CoDiEmb. Our results and analysis demonstrate that the framework not only mitigates cross-task trade-offs but also measurably improves the geometric properties of the embedding space.
GASLITEing the Retrieval: Exploring Vulnerabilities in Dense Embedding-based Search
Dense embedding-based text retrievalx2013retrieval of relevant passages from corpora via deep learning encodingsx2013has emerged as a powerful method attaining state-of-the-art search results and popularizing the use of Retrieval Augmented Generation (RAG). Still, like other search methods, embedding-based retrieval may be susceptible to search-engine optimization (SEO) attacks, where adversaries promote malicious content by introducing adversarial passages to corpora. To faithfully assess and gain insights into the susceptibility of such systems to SEO, this work proposes the GASLITE attack, a mathematically principled gradient-based search method for generating adversarial passages without relying on the corpus content or modifying the model. Notably, GASLITE's passages (1) carry adversary-chosen information while (2) achieving high retrieval ranking for a selected query distribution when inserted to corpora. We use GASLITE to extensively evaluate retrievers' robustness, testing nine advanced models under varied threat models, while focusing on realistic adversaries targeting queries on a specific concept (e.g., a public figure). We found GASLITE consistently outperformed baselines by geq140% success rate, in all settings. Particularly, adversaries using GASLITE require minimal effort to manipulate search resultsx2013by injecting a negligible amount of adversarial passages (leq0.0001% of the corpus), they could make them visible in the top-10 results for 61-100% of unseen concept-specific queries against most evaluated models. Inspecting variance in retrievers' robustness, we identify key factors that may contribute to models' susceptibility to SEO, including specific properties in the embedding space's geometry.
Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds
Rapid growth of high-dimensional datasets in fields such as single-cell RNA sequencing and spatial genomics has led to unprecedented opportunities for scientific discovery, but it also presents unique computational and statistical challenges. Traditional methods struggle with geometry-aware data generation, interpolation along meaningful trajectories, and transporting populations via feasible paths. To address these issues, we introduce Geometry-Aware Generative Autoencoder (GAGA), a novel framework that combines extensible manifold learning with generative modeling. GAGA constructs a neural network embedding space that respects the intrinsic geometries discovered by manifold learning and learns a novel warped Riemannian metric on the data space. This warped metric is derived from both the points on the data manifold and negative samples off the manifold, allowing it to characterize a meaningful geometry across the entire latent space. Using this metric, GAGA can uniformly sample points on the manifold, generate points along geodesics, and interpolate between populations across the learned manifold using geodesic-guided flows. GAGA shows competitive performance in simulated and real-world datasets, including a 30% improvement over the state-of-the-art methods in single-cell population-level trajectory inference.
The Geometry of Numerical Reasoning: Language Models Compare Numeric Properties in Linear Subspaces
This paper investigates whether large language models (LLMs) utilize numerical attributes encoded in a low-dimensional subspace of the embedding space when answering logical comparison questions (e.g., Was Cristiano born before Messi?). We first identified these subspaces using partial least squares regression, which effectively encodes the numerical attributes associated with the entities in comparison prompts. Further, we demonstrate causality by intervening in these subspaces to manipulate hidden states, thereby altering the LLM's comparison outcomes. Experimental results show that our findings hold for different numerical attributes, indicating that LLMs utilize the linearly encoded information for numerical reasoning.
Structuring Representation Geometry with Rotationally Equivariant Contrastive Learning
Self-supervised learning converts raw perceptual data such as images to a compact space where simple Euclidean distances measure meaningful variations in data. In this paper, we extend this formulation by adding additional geometric structure to the embedding space by enforcing transformations of input space to correspond to simple (i.e., linear) transformations of embedding space. Specifically, in the contrastive learning setting, we introduce an equivariance objective and theoretically prove that its minima forces augmentations on input space to correspond to rotations on the spherical embedding space. We show that merely combining our equivariant loss with a non-collapse term results in non-trivial representations, without requiring invariance to data augmentations. Optimal performance is achieved by also encouraging approximate invariance, where input augmentations correspond to small rotations. Our method, CARE: Contrastive Augmentation-induced Rotational Equivariance, leads to improved performance on downstream tasks, and ensures sensitivity in embedding space to important variations in data (e.g., color) that standard contrastive methods do not achieve. Code is available at https://github.com/Sharut/CARE.
Robust AI-Generated Text Detection by Restricted Embeddings
Growing amount and quality of AI-generated texts makes detecting such content more difficult. In most real-world scenarios, the domain (style and topic) of generated data and the generator model are not known in advance. In this work, we focus on the robustness of classifier-based detectors of AI-generated text, namely their ability to transfer to unseen generators or semantic domains. We investigate the geometry of the embedding space of Transformer-based text encoders and show that clearing out harmful linear subspaces helps to train a robust classifier, ignoring domain-specific spurious features. We investigate several subspace decomposition and feature selection strategies and achieve significant improvements over state of the art methods in cross-domain and cross-generator transfer. Our best approaches for head-wise and coordinate-based subspace removal increase the mean out-of-distribution (OOD) classification score by up to 9% and 14% in particular setups for RoBERTa and BERT embeddings respectively. We release our code and data: https://github.com/SilverSolver/RobustATD
The Geometry of Reasoning: Flowing Logics in Representation Space
We study how large language models (LLMs) ``think'' through their representation space. We propose a novel geometric framework that models an LLM's reasoning as flows -- embedding trajectories evolving where logic goes. We disentangle logical structure from semantics by employing the same natural deduction propositions with varied semantic carriers, allowing us to test whether LLMs internalize logic beyond surface form. This perspective connects reasoning with geometric quantities such as position, velocity, and curvature, enabling formal analysis in representation and concept spaces. Our theory establishes: (1) LLM reasoning corresponds to smooth flows in representation space, and (2) logical statements act as local controllers of these flows' velocities. Using learned representation proxies, we design controlled experiments to visualize and quantify reasoning flows, providing empirical validation of our theoretical framework. Our work serves as both a conceptual foundation and practical tools for studying reasoning phenomenon, offering a new lens for interpretability and formal analysis of LLMs' behavior.
ArtiLatent: Realistic Articulated 3D Object Generation via Structured Latents
We propose ArtiLatent, a generative framework that synthesizes human-made 3D objects with fine-grained geometry, accurate articulation, and realistic appearance. Our approach jointly models part geometry and articulation dynamics by embedding sparse voxel representations and associated articulation properties, including joint type, axis, origin, range, and part category, into a unified latent space via a variational autoencoder. A latent diffusion model is then trained over this space to enable diverse yet physically plausible sampling. To reconstruct photorealistic 3D shapes, we introduce an articulation-aware Gaussian decoder that accounts for articulation-dependent visibility changes (e.g., revealing the interior of a drawer when opened). By conditioning appearance decoding on articulation state, our method assigns plausible texture features to regions that are typically occluded in static poses, significantly improving visual realism across articulation configurations. Extensive experiments on furniture-like objects from PartNet-Mobility and ACD datasets demonstrate that ArtiLatent outperforms existing approaches in geometric consistency and appearance fidelity. Our framework provides a scalable solution for articulated 3D object synthesis and manipulation.
Demystifying Network Foundation Models
This work presents a systematic investigation into the latent knowledge encoded within Network Foundation Models (NFMs) that focuses on hidden representations analysis rather than pure downstream task performance. Different from existing efforts, we analyze the models through a three-part evaluation: Embedding Geometry Analysis to assess representation space utilization, Metric Alignment Assessment to measure correspondence with domain-expert features, and Causal Sensitivity Testing to evaluate robustness to protocol perturbations. Using five diverse network datasets spanning controlled and real-world environments, we evaluate four state-of-the-art NFMs, revealing that they all exhibit significant anisotropy, inconsistent feature sensitivity patterns, an inability to separate the high-level context, payload dependency, and other properties. Our work identifies numerous limitations across all models and demonstrates that addressing them can significantly improve model performance (by up to +0.35 F_1 score without architectural changes).
Triple-stream Deep Metric Learning of Great Ape Behavioural Actions
We propose the first metric learning system for the recognition of great ape behavioural actions. Our proposed triple stream embedding architecture works on camera trap videos taken directly in the wild and demonstrates that the utilisation of an explicit DensePose-C chimpanzee body part segmentation stream effectively complements traditional RGB appearance and optical flow streams. We evaluate system variants with different feature fusion techniques and long-tail recognition approaches. Results and ablations show performance improvements of ~12% in top-1 accuracy over previous results achieved on the PanAf-500 dataset containing 180,000 manually annotated frames across nine behavioural actions. Furthermore, we provide a qualitative analysis of our findings and augment the metric learning system with long-tail recognition techniques showing that average per class accuracy -- critical in the domain -- can be improved by ~23% compared to the literature on that dataset. Finally, since our embedding spaces are constructed as metric, we provide first data-driven visualisations of the great ape behavioural action spaces revealing emerging geometry and topology. We hope that the work sparks further interest in this vital application area of computer vision for the benefit of endangered great apes.
mini-vec2vec: Scaling Universal Geometry Alignment with Linear Transformations
We build upon vec2vec, a procedure designed to align text embedding spaces without parallel data. vec2vec finds a near-perfect alignment, but it is expensive and unstable. We present mini-vec2vec, a simple and efficient alternative that requires substantially lower computational cost and is highly robust. Moreover, the learned mapping is a linear transformation. Our method consists of three main stages: a tentative matching of pseudo-parallel embedding vectors, transformation fitting, and iterative refinement. Our linear alternative exceeds the original instantiation of vec2vec by orders of magnitude in efficiency, while matching or exceeding their results. The method's stability and interpretable algorithmic steps facilitate scaling and unlock new opportunities for adoption in new domains and fields.
Semantic Grounding Index: Geometric Bounds on Context Engagement in RAG Systems
When retrieval-augmented generation (RAG) systems hallucinate, what geometric trace does this leave in embedding space? We introduce the Semantic Grounding Index (SGI), defined as the ratio of angular distances from the response to the question versus the context on the unit hypersphere S^{d-1}.Our central finding is semantic laziness: hallucinated responses remain angularly proximate to questions rather than departing toward retrieved contexts. On HaluEval (n=5,000), we observe large effect sizes (Cohen's d ranging from 0.92 to 1.28) across five embedding models with mean cross-model correlation r=0.85. Crucially, we derive from the spherical triangle inequality that SGI's discriminative power should increase with question-context angular separation θ(q,c)-a theoretical prediction confirmed empirically: effect size rises monotonically from d=0.61 -low θ(q,c), to d=1.27 -high θ(q,c), with AUC improving from 0.72 to 0.83. Subgroup analysis reveals that SGI excels on long responses (d=2.05) and short questions (d=1.22), while remaining robust across context lengths. Calibration analysis yields ECE=0.10, indicating SGI scores can serve as probability estimates, not merely rankings. A critical negative result on TruthfulQA (AUC=0.478) establishes that angular geometry measures topical engagement rather than factual accuracy. SGI provides computationally efficient, theoretically grounded infrastructure for identifying responses that warrant verification in production RAG deployments.
CURVALID: Geometrically-guided Adversarial Prompt Detection
Adversarial prompts capable of jailbreaking large language models (LLMs) and inducing undesirable behaviours pose a significant obstacle to their safe deployment. Current mitigation strategies rely on activating built-in defence mechanisms or fine-tuning the LLMs, but the fundamental distinctions between adversarial and benign prompts are yet to be understood. In this work, we introduce CurvaLID, a novel defense framework that efficiently detects adversarial prompts by leveraging their geometric properties. It is agnostic to the type of LLM, offering a unified detection framework across diverse adversarial prompts and LLM architectures. CurvaLID builds on the geometric analysis of text prompts to uncover their underlying differences. We theoretically extend the concept of curvature via the Whewell equation into an n-dimensional word embedding space, enabling us to quantify local geometric properties, including semantic shifts and curvature in the underlying manifolds. Additionally, we employ Local Intrinsic Dimensionality (LID) to capture geometric features of text prompts within adversarial subspaces. Our findings reveal that adversarial prompts differ fundamentally from benign prompts in terms of their geometric characteristics. Our results demonstrate that CurvaLID delivers superior detection and rejection of adversarial queries, paving the way for safer LLM deployment. The source code can be found at https://github.com/Cancanxxx/CurvaLID
MaxInfo: A Training-Free Key-Frame Selection Method Using Maximum Volume for Enhanced Video Understanding
Modern Video Large Language Models (VLLMs) often rely on uniform frame sampling for video understanding, but this approach frequently fails to capture critical information due to frame redundancy and variations in video content. We propose MaxInfo, a training-free method based on the maximum volume principle, which selects and retains the most representative frames from the input video. By maximizing the geometric volume formed by selected embeddings, MaxInfo ensures that the chosen frames cover the most informative regions of the embedding space, effectively reducing redundancy while preserving diversity. This method enhances the quality of input representations and improves long video comprehension performance across benchmarks. For instance, MaxInfo achieves a 3.28% improvement on LongVideoBench and a 6.4% improvement on EgoSchema for LLaVA-Video-7B. It also achieves a 3.47% improvement for LLaVA-Video-72B. The approach is simple to implement and works with existing VLLMs without the need for additional training, making it a practical and effective alternative to traditional uniform sampling methods.
Sound2Vision: Generating Diverse Visuals from Audio through Cross-Modal Latent Alignment
How does audio describe the world around us? In this work, we propose a method for generating images of visual scenes from diverse in-the-wild sounds. This cross-modal generation task is challenging due to the significant information gap between auditory and visual signals. We address this challenge by designing a model that aligns audio-visual modalities by enriching audio features with visual information and translating them into the visual latent space. These features are then fed into the pre-trained image generator to produce images. To enhance image quality, we use sound source localization to select audio-visual pairs with strong cross-modal correlations. Our method achieves substantially better results on the VEGAS and VGGSound datasets compared to previous work and demonstrates control over the generation process through simple manipulations to the input waveform or latent space. Furthermore, we analyze the geometric properties of the learned embedding space and demonstrate that our learning approach effectively aligns audio-visual signals for cross-modal generation. Based on this analysis, we show that our method is agnostic to specific design choices, showing its generalizability by integrating various model architectures and different types of audio-visual data.
Mitigate the Gap: Investigating Approaches for Improving Cross-Modal Alignment in CLIP
Contrastive Language--Image Pre-training (CLIP) has manifested remarkable improvements in zero-shot classification and cross-modal vision-language tasks. Yet, from a geometrical point of view, the CLIP embedding space has been found to have a pronounced modality gap. This gap renders the embedding space overly sparse and disconnected, with different modalities being densely distributed in distinct subregions of the hypersphere. In this work, we aim at answering two main questions: 1. Does sharing the parameter space between the multi-modal encoders reduce the modality gap? 2. Can the gap be mitigated by pushing apart the uni-modal embeddings via intra-modality separation? We design AlignCLIP, in order to answer these questions and show that answers to both questions are positive. Through extensive experiments, we show that AlignCLIP achieves noticeable enhancements in the cross-modal alignment of the embeddings, and thereby, reduces the modality gap, while maintaining the performance across several downstream evaluations, such as zero-shot image classification, zero-shot multi-modal retrieval and zero-shot semantic text similarity.
Clustering based Point Cloud Representation Learning for 3D Analysis
Point cloud analysis (such as 3D segmentation and detection) is a challenging task, because of not only the irregular geometries of many millions of unordered points, but also the great variations caused by depth, viewpoint, occlusion, etc. Current studies put much focus on the adaption of neural networks to the complex geometries of point clouds, but are blind to a fundamental question: how to learn an appropriate point embedding space that is aware of both discriminative semantics and challenging variations? As a response, we propose a clustering based supervised learning scheme for point cloud analysis. Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space for automatically discovering subclass patterns which are latent yet representative across scenes. The mined patterns are, in turn, used to repaint the embedding space, so as to respect the underlying distribution of the entire training dataset and improve the robustness to the variations. Our algorithm is principled and readily pluggable to modern point cloud segmentation networks during training, without extra overhead during testing. With various 3D network architectures (i.e., voxel-based, point-based, Transformer-based, automatically searched), our algorithm shows notable improvements on famous point cloud segmentation datasets (i.e.,2.0-2.6% on single-scan and 2.0-2.2% multi-scan of SemanticKITTI, 1.8-1.9% on S3DIS, in terms of mIoU). Our algorithm also demonstrates utility in 3D detection, showing 2.0-3.4% mAP gains on KITTI.
Large Pre-trained Language Models Contain Human-like Biases of What is Right and Wrong to Do
Artificial writing is permeating our lives due to recent advances in large-scale, transformer-based language models (LMs) such as BERT, its variants, GPT-2/3, and others. Using them as pre-trained models and fine-tuning them for specific tasks, researchers have extended state of the art for many NLP tasks and shown that they capture not only linguistic knowledge but also retain general knowledge implicitly present in the data. Unfortunately, LMs trained on unfiltered text corpora suffer from degenerated and biased behaviour. While this is well established, we show that recent LMs also contain human-like biases of what is right and wrong to do, some form of ethical and moral norms of the society -- they bring a "moral direction" to surface. That is, we show that these norms can be captured geometrically by a direction, which can be computed, e.g., by a PCA, in the embedding space, reflecting well the agreement of phrases to social norms implicitly expressed in the training texts and providing a path for attenuating or even preventing toxic degeneration in LMs. Being able to rate the (non-)normativity of arbitrary phrases without explicitly training the LM for this task, we demonstrate the capabilities of the "moral direction" for guiding (even other) LMs towards producing normative text and showcase it on RealToxicityPrompts testbed, preventing the neural toxic degeneration in GPT-2.
Multi-view Video-Pose Pretraining for Operating Room Surgical Activity Recognition
Understanding the workflow of surgical procedures in complex operating rooms requires a deep understanding of the interactions between clinicians and their environment. Surgical activity recognition (SAR) is a key computer vision task that detects activities or phases from multi-view camera recordings. Existing SAR models often fail to account for fine-grained clinician movements and multi-view knowledge, or they require calibrated multi-view camera setups and advanced point-cloud processing to obtain better results. In this work, we propose a novel calibration-free multi-view multi-modal pretraining framework called Multiview Pretraining for Video-Pose Surgical Activity Recognition PreViPS, which aligns 2D pose and vision embeddings across camera views. Our model follows CLIP-style dual-encoder architecture: one encoder processes visual features, while the other encodes human pose embeddings. To handle the continuous 2D human pose coordinates, we introduce a tokenized discrete representation to convert the continuous 2D pose coordinates into discrete pose embeddings, thereby enabling efficient integration within the dual-encoder framework. To bridge the gap between these two modalities, we propose several pretraining objectives using cross- and in-modality geometric constraints within the embedding space and incorporating masked pose token prediction strategy to enhance representation learning. Extensive experiments and ablation studies demonstrate improvements over the strong baselines, while data-efficiency experiments on two distinct operating room datasets further highlight the effectiveness of our approach. We highlight the benefits of our approach for surgical activity recognition in both multi-view and single-view settings, showcasing its practical applicability in complex surgical environments. Code will be made available at: https://github.com/CAMMA-public/PreViPS.
e5-omni: Explicit Cross-modal Alignment for Omni-modal Embeddings
Modern information systems often involve different types of items, e.g., a text query, an image, a video clip, or an audio segment. This motivates omni-modal embedding models that map heterogeneous modalities into a shared space for direct comparison. However, most recent omni-modal embeddings still rely heavily on implicit alignment inherited from pretrained vision-language model (VLM) backbones. In practice, this causes three common issues: (i) similarity logits have modality-dependent sharpness, so scores are not on a consistent scale; (ii) in-batch negatives become less effective over time because mixed-modality batches create an imbalanced hardness distribution; as a result, many negatives quickly become trivial and contribute little gradient; and (iii) embeddings across modalities show mismatched first- and second-order statistics, which makes rankings less stable. To tackle these problems, we propose e5-omni, a lightweight explicit alignment recipe that adapts off-the-shelf VLMs into robust omni-modal embedding models. e5-omni combines three simple components: (1) modality-aware temperature calibration to align similarity scales, (2) a controllable negative curriculum with debiasing to focus on confusing negatives while reducing the impact of false negatives, and (3) batch whitening with covariance regularization to better match cross-modal geometry in the shared embedding space. Experiments on MMEB-V2 and AudioCaps show consistent gains over strong bi-modal and omni-modal baselines, and the same recipe also transfers well to other VLM backbones. We release our model checkpoint at https://huggingface.co/Haon-Chen/e5-omni-7B.
Poincaré Embeddings for Learning Hierarchical Representations
Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs. However, while complex symbolic datasets often exhibit a latent hierarchical structure, state-of-the-art methods typically learn embeddings in Euclidean vector spaces, which do not account for this property. For this purpose, we introduce a new approach for learning hierarchical representations of symbolic data by embedding them into hyperbolic space -- or more precisely into an n-dimensional Poincar\'e ball. Due to the underlying hyperbolic geometry, this allows us to learn parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity. We introduce an efficient algorithm to learn the embeddings based on Riemannian optimization and show experimentally that Poincar\'e embeddings outperform Euclidean embeddings significantly on data with latent hierarchies, both in terms of representation capacity and in terms of generalization ability.
HGE: Embedding Temporal Knowledge Graphs in a Product Space of Heterogeneous Geometric Subspaces
Temporal knowledge graphs represent temporal facts (s,p,o,tau) relating a subject s and an object o via a relation label p at time tau, where tau could be a time point or time interval. Temporal knowledge graphs may exhibit static temporal patterns at distinct points in time and dynamic temporal patterns between different timestamps. In order to learn a rich set of static and dynamic temporal patterns and apply them for inference, several embedding approaches have been suggested in the literature. However, as most of them resort to single underlying embedding spaces, their capability to model all kinds of temporal patterns was severely limited by having to adhere to the geometric property of their one embedding space. We lift this limitation by an embedding approach that maps temporal facts into a product space of several heterogeneous geometric subspaces with distinct geometric properties, i.e.\ Complex, Dual, and Split-complex spaces. In addition, we propose a temporal-geometric attention mechanism to integrate information from different geometric subspaces conveniently according to the captured relational and temporal information. Experimental results on standard temporal benchmark datasets favorably evaluate our approach against state-of-the-art models.
Hyperbolic Diffusion Embedding and Distance for Hierarchical Representation Learning
Finding meaningful representations and distances of hierarchical data is important in many fields. This paper presents a new method for hierarchical data embedding and distance. Our method relies on combining diffusion geometry, a central approach to manifold learning, and hyperbolic geometry. Specifically, using diffusion geometry, we build multi-scale densities on the data, aimed to reveal their hierarchical structure, and then embed them into a product of hyperbolic spaces. We show theoretically that our embedding and distance recover the underlying hierarchical structure. In addition, we demonstrate the efficacy of the proposed method and its advantages compared to existing methods on graph embedding benchmarks and hierarchical datasets.
A multi-view contrastive learning framework for spatial embeddings in risk modelling
Incorporating spatial information, particularly those influenced by climate, weather, and demographic factors, is crucial for improving underwriting precision and enhancing risk management in insurance. However, spatial data are often unstructured, high-dimensional, and difficult to integrate into predictive models. Embedding methods are needed to convert spatial data into meaningful representations for modelling tasks. We propose a novel multi-view contrastive learning framework for generating spatial embeddings that combine information from multiple spatial data sources. To train the model, we construct a spatial dataset that merges satellite imagery and OpenStreetMap features across Europe. The framework aligns these spatial views with coordinate-based encodings, producing low-dimensional embeddings that capture both spatial structure and contextual similarity. Once trained, the model generates embeddings directly from latitude-longitude pairs, enabling any dataset with coordinates to be enriched with meaningful spatial features without requiring access to the original spatial inputs. In a case study on French real estate prices, we compare models trained on raw coordinates against those using our spatial embeddings as inputs. The embeddings consistently improve predictive accuracy across generalised linear, additive, and boosting models, while providing interpretable spatial effects and demonstrating transferability to unseen regions.
JE-IRT: A Geometric Lens on LLM Abilities through Joint Embedding Item Response Theory
Standard LLM evaluation practices compress diverse abilities into single scores, obscuring their inherently multidimensional nature. We present JE-IRT, a geometric item-response framework that embeds both LLMs and questions in a shared space. For question embeddings, the direction encodes semantics and the norm encodes difficulty, while correctness on each question is determined by the geometric interaction between the model and question embeddings. This geometry replaces a global ranking of LLMs with topical specialization and enables smooth variation across related questions. Building on this framework, our experimental results reveal that out-of-distribution behavior can be explained through directional alignment, and that larger norms consistently indicate harder questions. Moreover, JE-IRT naturally supports generalization: once the space is learned, new LLMs are added by fitting a single embedding. The learned space further reveals an LLM-internal taxonomy that only partially aligns with human-defined subject categories. JE-IRT thus establishes a unified and interpretable geometric lens that connects LLM abilities with the structure of questions, offering a distinctive perspective on model evaluation and generalization.
Harnessing the Universal Geometry of Embeddings
We introduce the first method for translating text embeddings from one vector space to another without any paired data, encoders, or predefined sets of matches. Our unsupervised approach translates any embedding to and from a universal latent representation (i.e., a universal semantic structure conjectured by the Platonic Representation Hypothesis). Our translations achieve high cosine similarity across model pairs with different architectures, parameter counts, and training datasets. The ability to translate unknown embeddings into a different space while preserving their geometry has serious implications for the security of vector databases. An adversary with access only to embedding vectors can extract sensitive information about the underlying documents, sufficient for classification and attribute inference.
Knowledge Graph Embedding with 3D Compound Geometric Transformations
The cascade of 2D geometric transformations were exploited to model relations between entities in a knowledge graph (KG), leading to an effective KG embedding (KGE) model, CompoundE. Furthermore, the rotation in the 3D space was proposed as a new KGE model, Rotate3D, by leveraging its non-commutative property. Inspired by CompoundE and Rotate3D, we leverage 3D compound geometric transformations, including translation, rotation, scaling, reflection, and shear and propose a family of KGE models, named CompoundE3D, in this work. CompoundE3D allows multiple design variants to match rich underlying characteristics of a KG. Since each variant has its own advantages on a subset of relations, an ensemble of multiple variants can yield superior performance. The effectiveness and flexibility of CompoundE3D are experimentally verified on four popular link prediction datasets.
Visualizing Riemannian data with Rie-SNE
Faithful visualizations of data residing on manifolds must take the underlying geometry into account when producing a flat planar view of the data. In this paper, we extend the classic stochastic neighbor embedding (SNE) algorithm to data on general Riemannian manifolds. We replace standard Gaussian assumptions with Riemannian diffusion counterparts and propose an efficient approximation that only requires access to calculations of Riemannian distances and volumes. We demonstrate that the approach also allows for mapping data from one manifold to another, e.g. from a high-dimensional sphere to a low-dimensional one.
Topology-Agnostic Animal Motion Generation from Text Prompt
Motion generation is fundamental to computer animation and widely used across entertainment, robotics, and virtual environments. While recent methods achieve impressive results, most rely on fixed skeletal templates, which prevent them from generalizing to skeletons with different or perturbed topologies. We address the core limitation of current motion generation methods - the combined lack of large-scale heterogeneous animal motion data and unified generative frameworks capable of jointly modeling arbitrary skeletal topologies and textual conditions. To this end, we introduce OmniZoo, a large-scale animal motion dataset spanning 140 species and 32,979 sequences, enriched with multimodal annotations. Building on OmniZoo, we propose a generalized autoregressive motion generation framework capable of producing text-driven motions for arbitrary skeletal topologies. Central to our model is a Topology-aware Skeleton Embedding Module that encodes geometric and structural properties of any skeleton into a shared token space, enabling seamless fusion with textual semantics. Given a text prompt and a target skeleton, our method generates temporally coherent, physically plausible, and semantically aligned motions, and further enables cross-species motion style transfer.
Contrastive Loss is All You Need to Recover Analogies as Parallel Lines
While static word embedding models are known to represent linguistic analogies as parallel lines in high-dimensional space, the underlying mechanism as to why they result in such geometric structures remains obscure. We find that an elementary contrastive-style method employed over distributional information performs competitively with popular word embedding models on analogy recovery tasks, while achieving dramatic speedups in training time. Further, we demonstrate that a contrastive loss is sufficient to create these parallel structures in word embeddings, and establish a precise relationship between the co-occurrence statistics and the geometric structure of the resulting word embeddings.
Mamba Integrated with Physics Principles Masters Long-term Chaotic System Forecasting
Long-term forecasting of chaotic systems from short-term observations remains a fundamental and underexplored challenge due to the intrinsic sensitivity to initial conditions and the complex geometry of strange attractors. Existing approaches often rely on long-term training data or focus on short-term sequence correlations, struggling to maintain predictive stability and dynamical coherence over extended horizons. We propose PhyxMamba, a novel framework that integrates a Mamba-based state-space model with physics-informed principles to capture the underlying dynamics of chaotic systems. By reconstructing the attractor manifold from brief observations using time-delay embeddings, PhyxMamba extracts global dynamical features essential for accurate forecasting. Our generative training scheme enables Mamba to replicate the physical process, augmented by multi-token prediction and attractor geometry regularization for physical constraints, enhancing prediction accuracy and preserving key statistical invariants. Extensive evaluations on diverse simulated and real-world chaotic systems demonstrate that PhyxMamba delivers superior long-term forecasting and faithfully captures essential dynamical invariants from short-term data. This framework opens new avenues for reliably predicting chaotic systems under observation-scarce conditions, with broad implications across climate science, neuroscience, epidemiology, and beyond. Our code is open-source at https://github.com/tsinghua-fib-lab/PhyxMamba.
Language Models as Ontology Encoders
OWL (Web Ontology Language) ontologies which are able to formally represent complex knowledge and support semantic reasoning have been widely adopted across various domains such as healthcare and bioinformatics. Recently, ontology embeddings have gained wide attention due to its potential to infer plausible new knowledge and approximate complex reasoning. However, existing methods face notable limitations: geometric model-based embeddings typically overlook valuable textual information, resulting in suboptimal performance, while the approaches that incorporate text, which are often based on language models, fail to preserve the logical structure. In this work, we propose a new ontology embedding method OnT, which tunes a Pretrained Language Model (PLM) via geometric modeling in a hyperbolic space for effectively incorporating textual labels and simultaneously preserving class hierarchies and other logical relationships of Description Logic EL. Extensive experiments on four real-world ontologies show that OnT consistently outperforms the baselines including the state-of-the-art across both tasks of prediction and inference of axioms. OnT also demonstrates strong potential in real-world applications, indicated by its robust transfer learning abilities and effectiveness in real cases of constructing a new ontology from SNOMED CT. Data and code are available at https://github.com/HuiYang1997/OnT.
GraphShaper: Geometry-aware Alignment for Improving Transfer Learning in Text-Attributed Graphs
Graph foundation models represent a transformative paradigm for learning transferable representations across diverse graph domains. Recent methods leverage large language models to unify graph and text modalities into a shared representation space using contrastive learning. However, systematic evaluations reveal significant performance degradation at structural boundaries where distinct topological patterns converge, with accuracy losses exceeding 20 percentage points. This issue arises from a key limitation: current methods assume all graph structures can be encoded within a single Euclidean space. In reality, tree structures require hyperbolic geometry to preserve hierarchical branching, while cyclic patterns depend on spherical geometry for closure properties. At structural boundaries, nodes experience conflicting geometric constraints that uniform encoding spaces cannot resolve. This raises a crucial challenge: Can alignment frameworks be designed to respect the intrinsic geometric diversity of graph structures? We introduce GraphShaper, a geometry-aware framework that enhances graph encoding through multi-geometric specialization. Our approach employs expert networks tailored to different geometric spaces, dynamically computing fusion weights to adaptively integrate geometric properties based on local structural characteristics. This adaptive fusion preserves structural integrity before alignment with text embeddings. Extensive experiments demonstrate that GraphShaper achieves 9.47\% accuracy improvements on citation networks and 7.63\% on social networks in zero-shot settings.
Relative representations enable zero-shot latent space communication
Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations. Ideally, the distribution of the data points in the latent space should depend only on the task, the data, the loss, and other architecture-specific constraints. However, factors such as the random weights initialization, training hyperparameters, or other sources of randomness in the training phase may induce incoherent latent spaces that hinder any form of reuse. Nevertheless, we empirically observe that, under the same data and modeling choices, the angles between the encodings within distinct latent spaces do not change. In this work, we propose the latent similarity between each sample and a fixed set of anchors as an alternative data representation, demonstrating that it can enforce the desired invariances without any additional training. We show how neural architectures can leverage these relative representations to guarantee, in practice, invariance to latent isometries and rescalings, effectively enabling latent space communication: from zero-shot model stitching to latent space comparison between diverse settings. We extensively validate the generalization capability of our approach on different datasets, spanning various modalities (images, text, graphs), tasks (e.g., classification, reconstruction) and architectures (e.g., CNNs, GCNs, transformers).
Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks
In the graph node embedding problem, embedding spaces can vary significantly for different data types, leading to the need for different GNN model types. In this paper, we model the embedding update of a node feature as a Hamiltonian orbit over time. Since the Hamiltonian orbits generalize the exponential maps, this approach allows us to learn the underlying manifold of the graph in training, in contrast to most of the existing literature that assumes a fixed graph embedding manifold with a closed exponential map solution. Our proposed node embedding strategy can automatically learn, without extensive tuning, the underlying geometry of any given graph dataset even if it has diverse geometries. We test Hamiltonian functions of different forms and verify the performance of our approach on two graph node embedding downstream tasks: node classification and link prediction. Numerical experiments demonstrate that our approach adapts better to different types of graph datasets than popular state-of-the-art graph node embedding GNNs. The code is available at https://github.com/zknus/Hamiltonian-GNN.
Representation Tradeoffs for Hyperbolic Embeddings
Hyperbolic embeddings offer excellent quality with few dimensions when embedding hierarchical data structures like synonym or type hierarchies. Given a tree, we give a combinatorial construction that embeds the tree in hyperbolic space with arbitrarily low distortion without using optimization. On WordNet, our combinatorial embedding obtains a mean-average-precision of 0.989 with only two dimensions, while Nickel et al.'s recent construction obtains 0.87 using 200 dimensions. We provide upper and lower bounds that allow us to characterize the precision-dimensionality tradeoff inherent in any hyperbolic embedding. To embed general metric spaces, we propose a hyperbolic generalization of multidimensional scaling (h-MDS). We show how to perform exact recovery of hyperbolic points from distances, provide a perturbation analysis, and give a recovery result that allows us to reduce dimensionality. The h-MDS approach offers consistently low distortion even with few dimensions across several datasets. Finally, we extract lessons from the algorithms and theory above to design a PyTorch-based implementation that can handle incomplete information and is scalable.
Knowledge Graph Embedding: A Survey from the Perspective of Representation Spaces
Knowledge graph embedding (KGE) is an increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
Hyperspherical Embedding for Point Cloud Completion
Most real-world 3D measurements from depth sensors are incomplete, and to address this issue the point cloud completion task aims to predict the complete shapes of objects from partial observations. Previous works often adapt an encoder-decoder architecture, where the encoder is trained to extract embeddings that are used as inputs to generate predictions from the decoder. However, the learned embeddings have sparse distribution in the feature space, which leads to worse generalization results during testing. To address these problems, this paper proposes a hyperspherical module, which transforms and normalizes embeddings from the encoder to be on a unit hypersphere. With the proposed module, the magnitude and direction of the output hyperspherical embedding are decoupled and only the directional information is optimized. We theoretically analyze the hyperspherical embedding and show that it enables more stable training with a wider range of learning rates and more compact embedding distributions. Experiment results show consistent improvement of point cloud completion in both single-task and multi-task learning, which demonstrates the effectiveness of the proposed method.
Learning Without Augmenting: Unsupervised Time Series Representation Learning via Frame Projections
Self-supervised learning (SSL) has emerged as a powerful paradigm for learning representations without labeled data. Most SSL approaches rely on strong, well-established, handcrafted data augmentations to generate diverse views for representation learning. However, designing such augmentations requires domain-specific knowledge and implicitly imposes representational invariances on the model, which can limit generalization. In this work, we propose an unsupervised representation learning method that replaces augmentations by generating views using orthonormal bases and overcomplete frames. We show that embeddings learned from orthonormal and overcomplete spaces reside on distinct manifolds, shaped by the geometric biases introduced by representing samples in different spaces. By jointly leveraging the complementary geometry of these distinct manifolds, our approach achieves superior performance without artificially increasing data diversity through strong augmentations. We demonstrate the effectiveness of our method on nine datasets across five temporal sequence tasks, where signal-specific characteristics make data augmentations particularly challenging. Without relying on augmentation-induced diversity, our method achieves performance gains of up to 15--20\% over existing self-supervised approaches. Source code: https://github.com/eth-siplab/Learning-with-FrameProjections
Seg-HGNN: Unsupervised and Light-Weight Image Segmentation with Hyperbolic Graph Neural Networks
Image analysis in the euclidean space through linear hyperspaces is well studied. However, in the quest for more effective image representations, we turn to hyperbolic manifolds. They provide a compelling alternative to capture complex hierarchical relationships in images with remarkably small dimensionality. To demonstrate hyperbolic embeddings' competence, we introduce a light-weight hyperbolic graph neural network for image segmentation, encompassing patch-level features in a very small embedding size. Our solution, Seg-HGNN, surpasses the current best unsupervised method by 2.5\%, 4\% on VOC-07, VOC-12 for localization, and by 0.8\%, 1.3\% on CUB-200, ECSSD for segmentation, respectively. With less than 7.5k trainable parameters, Seg-HGNN delivers effective and fast (approx 2 images/second) results on very standard GPUs like the GTX1650. This empirical evaluation presents compelling evidence of the efficacy and potential of hyperbolic representations for vision tasks.
Geometry Distributions
Neural representations of 3D data have been widely adopted across various applications, particularly in recent work leveraging coordinate-based networks to model scalar or vector fields. However, these approaches face inherent challenges, such as handling thin structures and non-watertight geometries, which limit their flexibility and accuracy. In contrast, we propose a novel geometric data representation that models geometry as distributions-a powerful representation that makes no assumptions about surface genus, connectivity, or boundary conditions. Our approach uses diffusion models with a novel network architecture to learn surface point distributions, capturing fine-grained geometric details. We evaluate our representation qualitatively and quantitatively across various object types, demonstrating its effectiveness in achieving high geometric fidelity. Additionally, we explore applications using our representation, such as textured mesh representation, neural surface compression, dynamic object modeling, and rendering, highlighting its potential to advance 3D geometric learning.
A picture of the space of typical learnable tasks
We develop information geometric techniques to understand the representations learned by deep networks when they are trained on different tasks using supervised, meta-, semi-supervised and contrastive learning. We shed light on the following phenomena that relate to the structure of the space of tasks: (1) the manifold of probabilistic models trained on different tasks using different representation learning methods is effectively low-dimensional; (2) supervised learning on one task results in a surprising amount of progress even on seemingly dissimilar tasks; progress on other tasks is larger if the training task has diverse classes; (3) the structure of the space of tasks indicated by our analysis is consistent with parts of the Wordnet phylogenetic tree; (4) episodic meta-learning algorithms and supervised learning traverse different trajectories during training but they fit similar models eventually; (5) contrastive and semi-supervised learning methods traverse trajectories similar to those of supervised learning. We use classification tasks constructed from the CIFAR-10 and Imagenet datasets to study these phenomena.
Hyperbolic Large Language Models
Large language models (LLMs) have achieved remarkable success and demonstrated superior performance across various tasks, including natural language processing (NLP), weather forecasting, biological protein folding, text generation, and solving mathematical problems. However, many real-world data exhibit highly non-Euclidean latent hierarchical anatomy, such as protein networks, transportation networks, financial networks, brain networks, and linguistic structures or syntactic trees in natural languages. Effectively learning intrinsic semantic entailment and hierarchical relationships from these raw, unstructured input data using LLMs remains an underexplored area. Due to its effectiveness in modeling tree-like hierarchical structures, hyperbolic geometry -- a non-Euclidean space -- has rapidly gained popularity as an expressive latent representation space for complex data modeling across domains such as graphs, images, languages, and multi-modal data. Here, we provide a comprehensive and contextual exposition of recent advancements in LLMs that leverage hyperbolic geometry as a representation space to enhance semantic representation learning and multi-scale reasoning. Specifically, the paper presents a taxonomy of the principal techniques of Hyperbolic LLMs (HypLLMs) in terms of four main categories: (1) hyperbolic LLMs through exp/log maps; (2) hyperbolic fine-tuned models; (3) fully hyperbolic LLMs, and (4) hyperbolic state-space models. We also explore crucial potential applications and outline future research directions. A repository of key papers, models, datasets, and code implementations is available at https://github.com/sarangp2402/Hyperbolic-LLM-Models/tree/main.
Principal subbundles for dimension reduction
In this paper we demonstrate how sub-Riemannian geometry can be used for manifold learning and surface reconstruction by combining local linear approximations of a point cloud to obtain lower dimensional bundles. Local approximations obtained by local PCAs are collected into a rank k tangent subbundle on R^d, k<d, which we call a principal subbundle. This determines a sub-Riemannian metric on R^d. We show that sub-Riemannian geodesics with respect to this metric can successfully be applied to a number of important problems, such as: explicit construction of an approximating submanifold M, construction of a representation of the point-cloud in R^k, and computation of distances between observations, taking the learned geometry into account. The reconstruction is guaranteed to equal the true submanifold in the limit case where tangent spaces are estimated exactly. Via simulations, we show that the framework is robust when applied to noisy data. Furthermore, the framework generalizes to observations on an a priori known Riemannian manifold.
The Double-Ellipsoid Geometry of CLIP
Contrastive Language-Image Pre-Training (CLIP) is highly instrumental in machine learning applications within a large variety of domains. We investigate the geometry of this embedding, which is still not well understood. We examine the raw unnormalized embedding and show that text and image reside on linearly separable ellipsoid shells, not centered at the origin. We explain the benefits of having this structure, allowing to better embed instances according to their uncertainty during contrastive training. Frequent concepts in the dataset yield more false negatives, inducing greater uncertainty. A new notion of conformity is introduced, which measures the average cosine similarity of an instance to any other instance within a representative data set. We show this measure can be accurately estimated by simply computing the cosine similarity to the modality mean vector. Furthermore, we find that CLIP's modality gap optimizes the matching of the conformity distributions of image and text.
MATHGLANCE: Multimodal Large Language Models Do Not Know Where to Look in Mathematical Diagrams
Diagrams serve as a fundamental form of visual language, representing complex concepts and their inter-relationships through structured symbols, shapes, and spatial arrangements. Unlike natural images, their inherently symbolic and abstract nature poses significant challenges for Multimodal Large Language Models (MLLMs). However, current benchmarks conflate perceptual and reasoning tasks, making it difficult to assess whether MLLMs genuinely understand mathematical diagrams beyond superficial pattern recognition. To address this gap, we introduce MATHGLANCE, a benchmark specifically designed to isolate and evaluate mathematical perception in MLLMs. MATHGLANCE comprises 1.2K images and 1.6K carefully curated questions spanning four perception tasks: shape classification, object counting, relationship identification, and object grounding, covering diverse domains including plane geometry, solid geometry, and graphical representations. Our evaluation of MLLMs reveals that their ability to understand diagrams is notably limited, particularly in fine-grained grounding tasks. In response, we construct GeoPeP, a perception-oriented dataset of 200K structured geometry image-text pairs explicitly annotated with geometric primitives and precise spatial relationships. Training MLLM on GeoPeP leads to significant gains in perceptual accuracy, which in turn substantially improves mathematical reasoning. Our benchmark and dataset establish critical standards for evaluating and advancing multimodal mathematical understanding, providing valuable resources and insights to foster future MLLM research.
SOLIDGEO: Measuring Multimodal Spatial Math Reasoning in Solid Geometry
Geometry is a fundamental branch of mathematics and plays a crucial role in evaluating the reasoning capabilities of multimodal large language models (MLLMs). However, existing multimodal mathematics benchmarks mainly focus on plane geometry and largely ignore solid geometry, which requires spatial reasoning and is more challenging than plane geometry. To address this critical gap, we introduce SolidGeo, the first large-scale benchmark specifically designed to evaluate the performance of MLLMs on mathematical reasoning tasks in solid geometry. SolidGeo consists of 3,113 real-world K-12 and competition-level problems, each paired with visual context and annotated with difficulty levels and fine-grained solid geometry categories. Our benchmark covers a wide range of 3D reasoning subjects such as projection, unfolding, spatial measurement, and spatial vector, offering a rigorous testbed for assessing solid geometry. Through extensive experiments, we observe that MLLMs encounter substantial challenges in solid geometry math tasks, with a considerable performance gap relative to human capabilities on SolidGeo. Moreover, we analyze the performance, inference efficiency and error patterns of various models, offering insights into the solid geometric mathematical reasoning capabilities of MLLMs. We hope SolidGeo serves as a catalyst for advancing MLLMs toward deeper geometric reasoning and spatial intelligence.
Geometric Knowledge-Guided Localized Global Distribution Alignment for Federated Learning
Data heterogeneity in federated learning, characterized by a significant misalignment between local and global distributions, leads to divergent local optimization directions and hinders global model training. Existing studies mainly focus on optimizing local updates or global aggregation, but these indirect approaches demonstrate instability when handling highly heterogeneous data distributions, especially in scenarios where label skew and domain skew coexist. To address this, we propose a geometry-guided data generation method that centers on simulating the global embedding distribution locally. We first introduce the concept of the geometric shape of an embedding distribution and then address the challenge of obtaining global geometric shapes under privacy constraints. Subsequently, we propose GGEUR, which leverages global geometric shapes to guide the generation of new samples, enabling a closer approximation to the ideal global distribution. In single-domain scenarios, we augment samples based on global geometric shapes to enhance model generalization; in multi-domain scenarios, we further employ class prototypes to simulate the global distribution across domains. Extensive experimental results demonstrate that our method significantly enhances the performance of existing approaches in handling highly heterogeneous data, including scenarios with label skew, domain skew, and their coexistence. Code published at: https://github.com/WeiDai-David/2025CVPR_GGEUR
AirPlanes: Accurate Plane Estimation via 3D-Consistent Embeddings
Extracting planes from a 3D scene is useful for downstream tasks in robotics and augmented reality. In this paper we tackle the problem of estimating the planar surfaces in a scene from posed images. Our first finding is that a surprisingly competitive baseline results from combining popular clustering algorithms with recent improvements in 3D geometry estimation. However, such purely geometric methods are understandably oblivious to plane semantics, which are crucial to discerning distinct planes. To overcome this limitation, we propose a method that predicts multi-view consistent plane embeddings that complement geometry when clustering points into planes. We show through extensive evaluation on the ScanNetV2 dataset that our new method outperforms existing approaches and our strong geometric baseline for the task of plane estimation.
Learning Mathematical Properties of Integers
Embedding words in high-dimensional vector spaces has proven valuable in many natural language applications. In this work, we investigate whether similarly-trained embeddings of integers can capture concepts that are useful for mathematical applications. We probe the integer embeddings for mathematical knowledge, apply them to a set of numerical reasoning tasks, and show that by learning the representations from mathematical sequence data, we can substantially improve over number embeddings learned from English text corpora.
GeoX: Geometric Problem Solving Through Unified Formalized Vision-Language Pre-training
Despite their proficiency in general tasks, Multi-modal Large Language Models (MLLMs) struggle with automatic Geometry Problem Solving (GPS), which demands understanding diagrams, interpreting symbols, and performing complex reasoning. This limitation arises from their pre-training on natural images and texts, along with the lack of automated verification in the problem-solving process. Besides, current geometric specialists are limited by their task-specific designs, making them less effective for broader geometric problems. To this end, we present GeoX, a multi-modal large model focusing on geometric understanding and reasoning tasks. Given the significant differences between geometric diagram-symbol and natural image-text, we introduce unimodal pre-training to develop a diagram encoder and symbol decoder, enhancing the understanding of geometric images and corpora. Furthermore, we introduce geometry-language alignment, an effective pre-training paradigm that bridges the modality gap between unimodal geometric experts. We propose a Generator-And-Sampler Transformer (GS-Former) to generate discriminative queries and eliminate uninformative representations from unevenly distributed geometric signals. Finally, GeoX benefits from visual instruction tuning, empowering it to take geometric images and questions as input and generate verifiable solutions. Experiments show that GeoX outperforms both generalists and geometric specialists on publicly recognized benchmarks, such as GeoQA, UniGeo, Geometry3K, and PGPS9k.
Dynamic Hyperbolic Attention Network for Fine Hand-object Reconstruction
Reconstructing both objects and hands in 3D from a single RGB image is complex. Existing methods rely on manually defined hand-object constraints in Euclidean space, leading to suboptimal feature learning. Compared with Euclidean space, hyperbolic space better preserves the geometric properties of meshes thanks to its exponentially-growing space distance, which amplifies the differences between the features based on similarity. In this work, we propose the first precise hand-object reconstruction method in hyperbolic space, namely Dynamic Hyperbolic Attention Network (DHANet), which leverages intrinsic properties of hyperbolic space to learn representative features. Our method that projects mesh and image features into a unified hyperbolic space includes two modules, ie. dynamic hyperbolic graph convolution and image-attention hyperbolic graph convolution. With these two modules, our method learns mesh features with rich geometry-image multi-modal information and models better hand-object interaction. Our method provides a promising alternative for fine hand-object reconstruction in hyperbolic space. Extensive experiments on three public datasets demonstrate that our method outperforms most state-of-the-art methods.
CAT: Curvature-Adaptive Transformers for Geometry-Aware Learning
Transformers achieve strong performance across diverse domains but implicitly assume Euclidean geometry in their attention mechanisms, limiting their effectiveness on data with non-Euclidean structure. While recent extensions to hyperbolic and spherical spaces show promise for hierarchical and cyclical patterns, respectively, they require committing to a single geometry a priori, reducing flexibility when data exhibits mixed geometric properties. We introduce the Curvature-Adaptive Transformer (CAT), a novel architecture that dynamically learns per-token routing across three geometric attention branches through a lightweight, differentiable gating mechanism. Unlike fixed-geometry approaches, CAT enables adaptive geometric specialization, routing tokens to the appropriate curvature based on their local relational structure. The routing network provides interpretable curvature preferences while each branch employs geometry-specific operations optimized for its respective manifold. On knowledge graph completion benchmarks (FB15k-237, WN18RR), CAT achieves approximately 10% improvements in MRR and Hits@10 over fixed-geometry baselines with minimal overhead (5% parameter increase, comparable inference time). These results demonstrate that learned geometric adaptation outperforms any single fixed geometry for complex relational reasoning, establishing CAT as a scalable and interpretable foundation for mixture-of-geometry architectures across language, vision, and multimodal domains.
Hyperbolic Category Discovery
Generalized Category Discovery (GCD) is an intriguing open-world problem that has garnered increasing attention. Given a dataset that includes both labelled and unlabelled images, GCD aims to categorize all images in the unlabelled subset, regardless of whether they belong to known or unknown classes. In GCD, the common practice typically involves applying a spherical projection operator at the end of the self-supervised pretrained backbone, operating within Euclidean or spherical space. However, both of these spaces have been shown to be suboptimal for encoding samples that possesses hierarchical structures. In contrast, hyperbolic space exhibits exponential volume growth relative to radius, making it inherently strong at capturing the hierarchical structure of samples from both seen and unseen categories. Therefore, we propose to tackle the category discovery challenge in the hyperbolic space. We introduce HypCD, a simple Hyperbolic framework for learning hierarchy-aware representations and classifiers for generalized Category Discovery. HypCD first transforms the Euclidean embedding space of the backbone network into hyperbolic space, facilitating subsequent representation and classification learning by considering both hyperbolic distance and the angle between samples. This approach is particularly helpful for knowledge transfer from known to unknown categories in GCD. We thoroughly evaluate HypCD on public GCD benchmarks, by applying it to various baseline and state-of-the-art methods, consistently achieving significant improvements.
Improving Robotic Manipulation with Efficient Geometry-Aware Vision Encoder
Existing RGB-based imitation learning approaches typically employ traditional vision encoders such as ResNet or ViT, which lack explicit 3D reasoning capabilities. Recent geometry-grounded vision models, such as VGGT~wang2025vggt, provide robust spatial understanding and are promising candidates to address this limitation. This work investigates the integration of geometry-aware visual representations into robotic manipulation. Our results suggest that incorporating the geometry-aware vision encoder into imitation learning frameworks, including ACT and DP, yields up to 6.5% improvement over standard vision encoders in success rate across single- and bi-manual manipulation tasks in both simulation and real-world settings. Despite these benefits, most geometry-grounded models require high computational cost, limiting their deployment in practical robotic systems. To address this challenge, we propose eVGGT, an efficient geometry-aware encoder distilled from VGGT. eVGGT is nearly 9 times faster and 5 times smaller than VGGT, while preserving strong 3D reasoning capabilities. Code and pretrained models will be released to facilitate further research in geometry-aware robotics.
GeoDANO: Geometric VLM with Domain Agnostic Vision Encoder
We introduce GeoDANO, a geometric vision-language model (VLM) with a domain-agnostic vision encoder, for solving plane geometry problems. Although VLMs have been employed for solving geometry problems, their ability to recognize geometric features remains insufficiently analyzed. To address this gap, we propose a benchmark that evaluates the recognition of visual geometric features, including primitives such as dots and lines, and relations such as orthogonality. Our preliminary study shows that vision encoders often used in general-purpose VLMs, e.g., OpenCLIP, fail to detect these features and struggle to generalize across domains. We develop GeoCLIP, a CLIP based model trained on synthetic geometric diagram-caption pairs to overcome the limitation. Benchmark results show that GeoCLIP outperforms existing vision encoders in recognizing geometric features. We then propose our VLM, GeoDANO, which augments GeoCLIP with a domain adaptation strategy for unseen diagram styles. GeoDANO outperforms specialized methods for plane geometry problems and GPT-4o on MathVerse.
Connect, Collapse, Corrupt: Learning Cross-Modal Tasks with Uni-Modal Data
Building cross-modal applications is challenging due to limited paired multi-modal data. Recent works have shown that leveraging a pre-trained multi-modal contrastive representation space enables cross-modal tasks to be learned from uni-modal data. This is based on the assumption that contrastive optimization makes embeddings from different modalities interchangeable. However, this assumption is under-explored due to the poorly understood geometry of the multi-modal contrastive space, where a modality gap exists. In our study, we provide a theoretical explanation of this space's geometry and introduce a three-step method, C^3 (Connect, Collapse, Corrupt), to bridge the modality gap, enhancing the interchangeability of embeddings. Our C^3 method significantly improves cross-modal learning from uni-modal data, achieving state-of-the-art results on zero-shot image / audio / video captioning and text-to-image generation.
G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model
Large language models (LLMs) have shown remarkable proficiency in human-level reasoning and generation capabilities, which encourages extensive research on their application in mathematical problem solving. However, current work has been largely focused on text-based mathematical problems, with limited investigation in problems involving geometric information. Addressing this gap, we aim to enable LLMs to solve geometric problems by understanding image input. We first analyze the limitations of current Multimodal Large Language Models (MLLMs) in this area: they struggle to accurately comprehending basic geometric elements and their relationships. To overcome these challenges, we take advantage of the unique characteristics of geometric problems (such as unique geometric logical form, and geometric scalability) and the capacity of the textual LLMs to build an enriched multimodal geometry dataset based on existing data. The augmented dataset, Geo170K, contains more than 170K geometric image-caption and question-answer pairs. Utilizing our constructed Geo170K dataset, we develop G-LLaVA, which demonstrates exceptional performance in solving geometric problems, significantly outperforming GPT-4-V on the MathVista benchmark with only 7B parameters.
Learning Unified Representation of 3D Gaussian Splatting
A well-designed vectorized representation is crucial for the learning systems natively based on 3D Gaussian Splatting. While 3DGS enables efficient and explicit 3D reconstruction, its parameter-based representation remains hard to learn as features, especially for neural-network-based models. Directly feeding raw Gaussian parameters into learning frameworks fails to address the non-unique and heterogeneous nature of the Gaussian parameterization, yielding highly data-dependent models. This challenge motivates us to explore a more principled approach to represent 3D Gaussian Splatting in neural networks that preserves the underlying color and geometric structure while enforcing unique mapping and channel homogeneity. In this paper, we propose an embedding representation of 3DGS based on continuous submanifold fields that encapsulate the intrinsic information of Gaussian primitives, thereby benefiting the learning of 3DGS.
Fat Polygonal Partitions with Applications to Visualization and Embeddings
Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in R^d. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space: we give a rm polylog(Delta)-approximation algorithm for embedding n-point ultrametrics into R^d with minimum distortion, where Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.
GeoRef: Referring Expressions in Geometry via Task Formulation, Synthetic Supervision, and Reinforced MLLM-based Solutions
AI-driven geometric problem solving is a complex vision-language task that requires accurate diagram interpretation, mathematical reasoning, and robust cross-modal grounding. A foundational yet underexplored capability for this task is the ability to identify and interpret geometric elements based on natural language queries. To address this, we introduce the task of Referring Expression Comprehension (REC) for geometric problems, which evaluates whether models can localize points, shapes, and spatial relations in diagrams in response to textual prompts. We present GeoRef, a benchmark dataset constructed from existing geometric problem corpora, featuring diverse, high-quality annotations and queries. Due to the lack of annotated data for this task, we generate a large-scale synthetic training dataset using a structured geometric formal language, enabling broad coverage of geometric concepts and facilitating model adaptation. We explore two fine-tuning approaches: Supervised Fine-Tuning (SFT) and Group Relative Policy Optimization (GRPO). Our results show that GRPO significantly outperforms SFT by better aligning model behavior with task-specific rewards. Furthermore, we propose a verify-and-regenerate mechanism that detects incorrect predictions and re-infers answers using contextual reasoning history, further boosting accuracy. Notably, even state-of-the-art Multimodal Large Language Models (MLLMs) struggle with this task, underscoring the necessity of explicitly evaluating and strengthening geometric grounding as a prerequisite for robust geometric problem solving. Moreover, models trained on GeoRef demonstrate measurable improvements on downstream geometric reasoning tasks, highlighting the broader value of REC as a foundation for multimodal mathematical understanding.
PolygonGNN: Representation Learning for Polygonal Geometries with Heterogeneous Visibility Graph
Polygon representation learning is essential for diverse applications, encompassing tasks such as shape coding, building pattern classification, and geographic question answering. While recent years have seen considerable advancements in this field, much of the focus has been on single polygons, overlooking the intricate inner- and inter-polygonal relationships inherent in multipolygons. To address this gap, our study introduces a comprehensive framework specifically designed for learning representations of polygonal geometries, particularly multipolygons. Central to our approach is the incorporation of a heterogeneous visibility graph, which seamlessly integrates both inner- and inter-polygonal relationships. To enhance computational efficiency and minimize graph redundancy, we implement a heterogeneous spanning tree sampling method. Additionally, we devise a rotation-translation invariant geometric representation, ensuring broader applicability across diverse scenarios. Finally, we introduce Multipolygon-GNN, a novel model tailored to leverage the spatial and semantic heterogeneity inherent in the visibility graph. Experiments on five real-world and synthetic datasets demonstrate its ability to capture informative representations for polygonal geometries. Code and data are available at https://github.com/dyu62/PolyGNN{github.com/dyu62/PolyGNN}.
Linear Spaces of Meanings: Compositional Structures in Vision-Language Models
We investigate compositional structures in data embeddings from pre-trained vision-language models (VLMs). Traditionally, compositionality has been associated with algebraic operations on embeddings of words from a pre-existing vocabulary. In contrast, we seek to approximate representations from an encoder as combinations of a smaller set of vectors in the embedding space. These vectors can be seen as "ideal words" for generating concepts directly within the embedding space of the model. We first present a framework for understanding compositional structures from a geometric perspective. We then explain what these compositional structures entail probabilistically in the case of VLM embeddings, providing intuitions for why they arise in practice. Finally, we empirically explore these structures in CLIP's embeddings and we evaluate their usefulness for solving different vision-language tasks such as classification, debiasing, and retrieval. Our results show that simple linear algebraic operations on embedding vectors can be used as compositional and interpretable methods for regulating the behavior of VLMs.
The Numerical Stability of Hyperbolic Representation Learning
Given the exponential growth of the volume of the ball w.r.t. its radius, the hyperbolic space is capable of embedding trees with arbitrarily small distortion and hence has received wide attention for representing hierarchical datasets. However, this exponential growth property comes at a price of numerical instability such that training hyperbolic learning models will sometimes lead to catastrophic NaN problems, encountering unrepresentable values in floating point arithmetic. In this work, we carefully analyze the limitation of two popular models for the hyperbolic space, namely, the Poincar\'e ball and the Lorentz model. We first show that, under the 64 bit arithmetic system, the Poincar\'e ball has a relatively larger capacity than the Lorentz model for correctly representing points. Then, we theoretically validate the superiority of the Lorentz model over the Poincar\'e ball from the perspective of optimization. Given the numerical limitations of both models, we identify one Euclidean parametrization of the hyperbolic space which can alleviate these limitations. We further extend this Euclidean parametrization to hyperbolic hyperplanes and exhibits its ability in improving the performance of hyperbolic SVM.
Bootstrapping Parallel Anchors for Relative Representations
The use of relative representations for latent embeddings has shown potential in enabling latent space communication and zero-shot model stitching across a wide range of applications. Nevertheless, relative representations rely on a certain amount of parallel anchors to be given as input, which can be impractical to obtain in certain scenarios. To overcome this limitation, we propose an optimization-based method to discover new parallel anchors from a limited known set (seed). Our approach can be used to find semantic correspondence between different domains, align their relative spaces, and achieve competitive results in several tasks.
Hyperbolic Image-Text Representations
Visual and linguistic concepts naturally organize themselves in a hierarchy, where a textual concept ``dog'' entails all images that contain dogs. Despite being intuitive, current large-scale vision and language models such as CLIP do not explicitly capture such hierarchy. We propose MERU, a contrastive model that yields hyperbolic representations of images and text. Hyperbolic spaces have suitable geometric properties to embed tree-like data, so MERU can better capture the underlying hierarchy in image-text data. Our results show that MERU learns a highly interpretable representation space while being competitive with CLIP's performance on multi-modal tasks like image classification and image-text retrieval.
Hubness Reduction Improves Sentence-BERT Semantic Spaces
Semantic representations of text, i.e. representations of natural language which capture meaning by geometry, are essential for areas such as information retrieval and document grouping. High-dimensional trained dense vectors have received much attention in recent years as such representations. We investigate the structure of semantic spaces that arise from embeddings made with Sentence-BERT and find that the representations suffer from a well-known problem in high dimensions called hubness. Hubness results in asymmetric neighborhood relations, such that some texts (the hubs) are neighbours of many other texts while most texts (so-called anti-hubs), are neighbours of few or no other texts. We quantify the semantic quality of the embeddings using hubness scores and error rate of a neighbourhood based classifier. We find that when hubness is high, we can reduce error rate and hubness using hubness reduction methods. We identify a combination of two methods as resulting in the best reduction. For example, on one of the tested pretrained models, this combined method can reduce hubness by about 75% and error rate by about 9%. Thus, we argue that mitigating hubness in the embedding space provides better semantic representations of text.
Zero-Shot Learning by Convex Combination of Semantic Embeddings
Several recent publications have proposed methods for mapping images into continuous semantic embedding spaces. In some cases the embedding space is trained jointly with the image transformation. In other cases the semantic embedding space is established by an independent natural language processing task, and then the image transformation into that space is learned in a second stage. Proponents of these image embedding systems have stressed their advantages over the traditional classification framing of image understanding, particularly in terms of the promise for zero-shot learning -- the ability to correctly annotate images of previously unseen object categories. In this paper, we propose a simple method for constructing an image embedding system from any existing image classifier and a semantic word embedding model, which contains the n class labels in its vocabulary. Our method maps images into the semantic embedding space via convex combination of the class label embedding vectors, and requires no additional training. We show that this simple and direct method confers many of the advantages associated with more complex image embedding schemes, and indeed outperforms state of the art methods on the ImageNet zero-shot learning task.
Geographic Location Encoding with Spherical Harmonics and Sinusoidal Representation Networks
Learning feature representations of geographical space is vital for any machine learning model that integrates geolocated data, spanning application domains such as remote sensing, ecology, or epidemiology. Recent work mostly embeds coordinates using sine and cosine projections based on Double Fourier Sphere (DFS) features -- these embeddings assume a rectangular data domain even on global data, which can lead to artifacts, especially at the poles. At the same time, relatively little attention has been paid to the exact design of the neural network architectures these functional embeddings are combined with. This work proposes a novel location encoder for globally distributed geographic data that combines spherical harmonic basis functions, natively defined on spherical surfaces, with sinusoidal representation networks (SirenNets) that can be interpreted as learned Double Fourier Sphere embedding. We systematically evaluate the cross-product of positional embeddings and neural network architectures across various classification and regression benchmarks and synthetic evaluation datasets. In contrast to previous approaches that require the combination of both positional encoding and neural networks to learn meaningful representations, we show that both spherical harmonics and sinusoidal representation networks are competitive on their own but set state-of-the-art performances across tasks when combined. We provide source code at www.github.com/marccoru/locationencoder
Flagfolds
By interpreting the product of the Principal Component Analysis, that is the covariance matrix, as a sequence of nested subspaces naturally coming with weights according to the level of approximation they provide, we are able to embed all d--dimensional Grassmannians into a stratified space of covariance matrices. We observe that Grassmannians constitute the lowest dimensional skeleton of the stratification while it is possible to define a Riemaniann metric on the highest dimensional and dense stratum, such a metric being compatible with the global stratification. With such a Riemaniann metric at hand, it is possible to look for geodesics between two linear subspaces of different dimensions that do not go through higher dimensional linear subspaces as would euclidean geodesics. Building upon the proposed embedding of Grassmannians into the stratified space of covariance matrices, we generalize the concept of varifolds to what we call flagfolds in order to model multi-dimensional shapes.
Modeling Uncertainty with Hedged Instance Embedding
Instance embeddings are an efficient and versatile image representation that facilitates applications like recognition, verification, retrieval, and clustering. Many metric learning methods represent the input as a single point in the embedding space. Often the distance between points is used as a proxy for match confidence. However, this can fail to represent uncertainty arising when the input is ambiguous, e.g., due to occlusion or blurriness. This work addresses this issue and explicitly models the uncertainty by hedging the location of each input in the embedding space. We introduce the hedged instance embedding (HIB) in which embeddings are modeled as random variables and the model is trained under the variational information bottleneck principle. Empirical results on our new N-digit MNIST dataset show that our method leads to the desired behavior of hedging its bets across the embedding space upon encountering ambiguous inputs. This results in improved performance for image matching and classification tasks, more structure in the learned embedding space, and an ability to compute a per-exemplar uncertainty measure that is correlated with downstream performance.
Unveiling the Latent Space Geometry of Push-Forward Generative Models
Many deep generative models are defined as a push-forward of a Gaussian measure by a continuous generator, such as Generative Adversarial Networks (GANs) or Variational Auto-Encoders (VAEs). This work explores the latent space of such deep generative models. A key issue with these models is their tendency to output samples outside of the support of the target distribution when learning disconnected distributions. We investigate the relationship between the performance of these models and the geometry of their latent space. Building on recent developments in geometric measure theory, we prove a sufficient condition for optimality in the case where the dimension of the latent space is larger than the number of modes. Through experiments on GANs, we demonstrate the validity of our theoretical results and gain new insights into the latent space geometry of these models. Additionally, we propose a truncation method that enforces a simplicial cluster structure in the latent space and improves the performance of GANs.
SatCLIP: Global, General-Purpose Location Embeddings with Satellite Imagery
Geographic location is essential for modeling tasks in fields ranging from ecology to epidemiology to the Earth system sciences. However, extracting relevant and meaningful characteristics of a location can be challenging, often entailing expensive data fusion or data distillation from global imagery datasets. To address this challenge, we introduce Satellite Contrastive Location-Image Pretraining (SatCLIP), a global, general-purpose geographic location encoder that learns an implicit representation of locations from openly available satellite imagery. Trained location encoders provide vector embeddings summarizing the characteristics of any given location for convenient usage in diverse downstream tasks. We show that SatCLIP embeddings, pretrained on globally sampled multi-spectral Sentinel-2 satellite data, can be used in various predictive tasks that depend on location information but not necessarily satellite imagery, including temperature prediction, animal recognition in imagery, and population density estimation. Across tasks, SatCLIP embeddings consistently outperform embeddings from existing pretrained location encoders, ranging from models trained on natural images to models trained on semantic context. SatCLIP embeddings also help to improve geographic generalization. This demonstrates the potential of general-purpose location encoders and opens the door to learning meaningful representations of our planet from the vast, varied, and largely untapped modalities of geospatial data.
Beyond Euclid: An Illustrated Guide to Modern Machine Learning with Geometric, Topological, and Algebraic Structures
The enduring legacy of Euclidean geometry underpins classical machine learning, which, for decades, has been primarily developed for data lying in Euclidean space. Yet, modern machine learning increasingly encounters richly structured data that is inherently nonEuclidean. This data can exhibit intricate geometric, topological and algebraic structure: from the geometry of the curvature of space-time, to topologically complex interactions between neurons in the brain, to the algebraic transformations describing symmetries of physical systems. Extracting knowledge from such non-Euclidean data necessitates a broader mathematical perspective. Echoing the 19th-century revolutions that gave rise to non-Euclidean geometry, an emerging line of research is redefining modern machine learning with non-Euclidean structures. Its goal: generalizing classical methods to unconventional data types with geometry, topology, and algebra. In this review, we provide an accessible gateway to this fast-growing field and propose a graphical taxonomy that integrates recent advances into an intuitive unified framework. We subsequently extract insights into current challenges and highlight exciting opportunities for future development in this field.
Learning to Normalize on the SPD Manifold under Bures-Wasserstein Geometry
Covariance matrices have proven highly effective across many scientific fields. Since these matrices lie within the Symmetric Positive Definite (SPD) manifold - a Riemannian space with intrinsic non-Euclidean geometry, the primary challenge in representation learning is to respect this underlying geometric structure. Drawing inspiration from the success of Euclidean deep learning, researchers have developed neural networks on the SPD manifolds for more faithful covariance embedding learning. A notable advancement in this area is the implementation of Riemannian batch normalization (RBN), which has been shown to improve the performance of SPD network models. Nonetheless, the Riemannian metric beneath the existing RBN might fail to effectively deal with the ill-conditioned SPD matrices (ICSM), undermining the effectiveness of RBN. In contrast, the Bures-Wasserstein metric (BWM) demonstrates superior performance for ill-conditioning. In addition, the recently introduced Generalized BWM (GBWM) parameterizes the vanilla BWM via an SPD matrix, allowing for a more nuanced representation of vibrant geometries of the SPD manifold. Therefore, we propose a novel RBN algorithm based on the GBW geometry, incorporating a learnable metric parameter. Moreover, the deformation of GBWM by matrix power is also introduced to further enhance the representational capacity of GBWM-based RBN. Experimental results on different datasets validate the effectiveness of our proposed method.
Improving Multimodal LLMs Ability In Geometry Problem Solving, Reasoning, And Multistep Scoring
This paper presents GPSM4K, a comprehensive geometry multimodal dataset tailored to augment the problem-solving capabilities of Large Vision Language Models (LVLMs). GPSM4K encompasses 2157 multimodal question-answer pairs manually extracted from mathematics textbooks spanning grades 7-12 and is further augmented to 5340 problems, consisting of both numerical and theorem-proving questions. In contrast to PGPS9k, Geometry3K, and Geo170K which feature only objective-type questions, GPSM4K offers detailed step-by-step solutions in a consistent format, facilitating a comprehensive evaluation of problem-solving approaches. This dataset serves as an excellent benchmark for assessing the geometric reasoning capabilities of LVLMs. Evaluation of our test set shows that there is scope for improvement needed in open-source language models in geometry problem-solving. Finetuning on our training set increases the geometry problem-solving capabilities of models. Further, We also evaluate the effectiveness of techniques such as image captioning and Retrieval Augmentation generation (RAG) on model performance. We leveraged LLM to automate the task of final answer evaluation by providing ground truth and predicted solutions. This research will help to assess and improve the geometric reasoning capabilities of LVLMs.
Global and Dense Embeddings of Earth: Major TOM Floating in the Latent Space
With the ever-increasing volumes of the Earth observation data present in the archives of large programmes such as Copernicus, there is a growing need for efficient vector representations of the underlying raw data. The approach of extracting feature representations from pretrained deep neural networks is a powerful approach that can provide semantic abstractions of the input data. However, the way this is done for imagery archives containing geospatial data has not yet been defined. In this work, an extension is proposed to an existing community project, Major TOM, focused on the provision and standardization of open and free AI-ready datasets for Earth observation. Furthermore, four global and dense embedding datasets are released openly and for free along with the publication of this manuscript, resulting in the most comprehensive global open dataset of geospatial visual embeddings in terms of covered Earth's surface.
Sat2Density: Faithful Density Learning from Satellite-Ground Image Pairs
This paper aims to develop an accurate 3D geometry representation of satellite images using satellite-ground image pairs. Our focus is on the challenging problem of 3D-aware ground-views synthesis from a satellite image. We draw inspiration from the density field representation used in volumetric neural rendering and propose a new approach, called Sat2Density. Our method utilizes the properties of ground-view panoramas for the sky and non-sky regions to learn faithful density fields of 3D scenes in a geometric perspective. Unlike other methods that require extra depth information during training, our Sat2Density can automatically learn accurate and faithful 3D geometry via density representation without depth supervision. This advancement significantly improves the ground-view panorama synthesis task. Additionally, our study provides a new geometric perspective to understand the relationship between satellite and ground-view images in 3D space.
FormalGeo: An Extensible Formalized Framework for Olympiad Geometric Problem Solving
This is the first paper in a series of work we have accomplished over the past three years. In this paper, we have constructed a consistent formal plane geometry system. This will serve as a crucial bridge between IMO-level plane geometry challenges and readable AI automated reasoning. Within this formal framework, we have been able to seamlessly integrate modern AI models with our formal system. AI is now capable of providing deductive reasoning solutions to IMO-level plane geometry problems, just like handling other natural languages, and these proofs are readable, traceable, and verifiable. We propose the geometry formalization theory (GFT) to guide the development of the geometry formal system. Based on the GFT, we have established the FormalGeo, which consists of 88 geometric predicates and 196 theorems. It can represent, validate, and solve IMO-level geometry problems. we also have crafted the FGPS (formal geometry problem solver) in Python. It serves as both an interactive assistant for verifying problem-solving processes and an automated problem solver. We've annotated the formalgeo7k and formalgeo-imo datasets. The former contains 6,981 (expand to 133,818 through data augmentation) geometry problems, while the latter includes 18 (expand to 2,627 and continuously increasing) IMO-level challenging geometry problems. All annotated problems include detailed formal language descriptions and solutions. Implementation of the formal system and experiments validate the correctness and utility of the GFT. The backward depth-first search method only yields a 2.42% problem-solving failure rate, and we can incorporate deep learning techniques to achieve lower one. The source code of FGPS and datasets are available at https://github.com/BitSecret/FGPS.
TutteNet: Injective 3D Deformations by Composition of 2D Mesh Deformations
This work proposes a novel representation of injective deformations of 3D space, which overcomes existing limitations of injective methods: inaccuracy, lack of robustness, and incompatibility with general learning and optimization frameworks. The core idea is to reduce the problem to a deep composition of multiple 2D mesh-based piecewise-linear maps. Namely, we build differentiable layers that produce mesh deformations through Tutte's embedding (guaranteed to be injective in 2D), and compose these layers over different planes to create complex 3D injective deformations of the 3D volume. We show our method provides the ability to efficiently and accurately optimize and learn complex deformations, outperforming other injective approaches. As a main application, we produce complex and artifact-free NeRF and SDF deformations.
Learning a Deep Embedding Model for Zero-Shot Learning
Zero-shot learning (ZSL) models rely on learning a joint embedding space where both textual/semantic description of object classes and visual representation of object images can be projected to for nearest neighbour search. Despite the success of deep neural networks that learn an end-to-end model between text and images in other vision problems such as image captioning, very few deep ZSL model exists and they show little advantage over ZSL models that utilise deep feature representations but do not learn an end-to-end embedding. In this paper we argue that the key to make deep ZSL models succeed is to choose the right embedding space. Instead of embedding into a semantic space or an intermediate space, we propose to use the visual space as the embedding space. This is because that in this space, the subsequent nearest neighbour search would suffer much less from the hubness problem and thus become more effective. This model design also provides a natural mechanism for multiple semantic modalities (e.g., attributes and sentence descriptions) to be fused and optimised jointly in an end-to-end manner. Extensive experiments on four benchmarks show that our model significantly outperforms the existing models. Code is available at https://github.com/lzrobots/DeepEmbeddingModel_ZSL
Gold-Medal-Level Olympiad Geometry Solving with Efficient Heuristic Auxiliary Constructions
Automated theorem proving in Euclidean geometry, particularly for International Mathematical Olympiad (IMO) level problems, remains a major challenge and an important research focus in Artificial Intelligence. In this paper, we present a highly efficient method for geometry theorem proving that runs entirely on CPUs without relying on neural network-based inference. Our initial study shows that a simple random strategy for adding auxiliary points can achieve silver-medal level human performance on IMO. Building on this, we propose HAGeo, a Heuristic-based method for adding Auxiliary constructions in Geometric deduction that solves 28 of 30 problems on the IMO-30 benchmark, achieving gold-medal level performance and surpassing AlphaGeometry, a competitive neural network-based approach, by a notable margin. To evaluate our method and existing approaches more comprehensively, we further construct HAGeo-409, a benchmark consisting of 409 geometry problems with human-assessed difficulty levels. Compared with the widely used IMO-30, our benchmark poses greater challenges and provides a more precise evaluation, setting a higher bar for geometry theorem proving.
Parts2Words: Learning Joint Embedding of Point Clouds and Texts by Bidirectional Matching between Parts and Words
Shape-Text matching is an important task of high-level shape understanding. Current methods mainly represent a 3D shape as multiple 2D rendered views, which obviously can not be understood well due to the structural ambiguity caused by self-occlusion in the limited number of views. To resolve this issue, we directly represent 3D shapes as point clouds, and propose to learn joint embedding of point clouds and texts by bidirectional matching between parts from shapes and words from texts. Specifically, we first segment the point clouds into parts, and then leverage optimal transport method to match parts and words in an optimized feature space, where each part is represented by aggregating features of all points within it and each word is abstracted by its contextual information. We optimize the feature space in order to enlarge the similarities between the paired training samples, while simultaneously maximizing the margin between the unpaired ones. Experiments demonstrate that our method achieves a significant improvement in accuracy over the SOTAs on multi-modal retrieval tasks under the Text2Shape dataset. Codes are available at https://github.com/JLUtangchuan/Parts2Words.
GeoRDF2Vec Learning Location-Aware Entity Representations in Knowledge Graphs
Many knowledge graphs contain a substantial number of spatial entities, such as cities, buildings, and natural landmarks. For many of these entities, exact geometries are stored within the knowledge graphs. However, most existing approaches for learning entity representations do not take these geometries into account. In this paper, we introduce a variant of RDF2Vec that incorporates geometric information to learn location-aware embeddings of entities. Our approach expands different nodes by flooding the graph from geographic nodes, ensuring that each reachable node is considered. Based on the resulting flooded graph, we apply a modified version of RDF2Vec that biases graph walks using spatial weights. Through evaluations on multiple benchmark datasets, we demonstrate that our approach outperforms both non-location-aware RDF2Vec and GeoTransE.
Interpreting Embedding Spaces by Conceptualization
One of the main methods for computational interpretation of a text is mapping it into a vector in some embedding space. Such vectors can then be used for a variety of textual processing tasks. Recently, most embedding spaces are a product of training large language models (LLMs). One major drawback of this type of representation is their incomprehensibility to humans. Understanding the embedding space is crucial for several important needs, including the need to debug the embedding method and compare it to alternatives, and the need to detect biases hidden in the model. In this paper, we present a novel method of understanding embeddings by transforming a latent embedding space into a comprehensible conceptual space. We present an algorithm for deriving a conceptual space with dynamic on-demand granularity. We devise a new evaluation method, using either human rater or LLM-based raters, to show that the conceptualized vectors indeed represent the semantics of the original latent ones. We show the use of our method for various tasks, including comparing the semantics of alternative models and tracing the layers of the LLM. The code is available online https://github.com/adiSimhi/Interpreting-Embedding-Spaces-by-Conceptualization.
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
The inductive bias of a graph neural network (GNN) is largely encoded in its specified graph. Latent graph inference relies on latent geometric representations to dynamically rewire or infer a GNN's graph to maximize the GNN's predictive downstream performance, but it lacks solid theoretical foundations in terms of embedding-based representation guarantees. This paper addresses this issue by introducing a trainable deep learning architecture, coined neural snowflake, that can adaptively implement fractal-like metrics on R^d. We prove that any given finite weights graph can be isometrically embedded by a standard MLP encoder. Furthermore, when the latent graph can be represented in the feature space of a sufficiently regular kernel, we show that the combined neural snowflake and MLP encoder do not succumb to the curse of dimensionality by using only a low-degree polynomial number of parameters in the number of nodes. This implementation enables a low-dimensional isometric embedding of the latent graph. We conduct synthetic experiments to demonstrate the superior metric learning capabilities of neural snowflakes when compared to more familiar spaces like Euclidean space. Additionally, we carry out latent graph inference experiments on graph benchmarks. Consistently, the neural snowflake model achieves predictive performance that either matches or surpasses that of the state-of-the-art latent graph inference models. Importantly, this performance improvement is achieved without requiring random search for optimal latent geometry. Instead, the neural snowflake model achieves this enhancement in a differentiable manner.
H4G: Unlocking Faithful Inference for Zero-Shot Graph Learning in Hyperbolic Space
Text-attributed graphs are widely used across domains, offering rich opportunities for zero-shot learning via graph-text alignment. However, existing methods struggle with tasks requiring fine-grained pattern recognition, particularly on heterophilic graphs. Through empirical and theoretical analysis, we identify an over-abstraction problem: current approaches operate at excessively large hyperbolic radii, compressing multi-scale structural information into uniform high-level abstractions. This abstraction-induced information loss obscures critical local patterns essential for accurate predictions. By analyzing embeddings in hyperbolic space, we demonstrate that optimal graph learning requires faithful preservation of fine-grained structural details, better retained by representations positioned closer to the origin. To address this, we propose H4G, a framework that systematically reduces embedding radii using learnable block-diagonal scaling matrices and M\"obius matrix multiplication. This approach restores access to fine-grained patterns while maintaining global receptive ability with minimal computational overhead. Experiments show H4G achieves state-of-the-art zero-shot performance with 12.8\% improvement on heterophilic graphs and 8.4\% on homophilic graphs, confirming that radius reduction enables faithful multi-scale representation for advancing zero-shot graph learning.
Euclid's Gift: Enhancing Spatial Perception and Reasoning in Vision-Language Models via Geometric Surrogate Tasks
Spatial intelligence spans a rich suite of abilities, including visualising and transforming shapes, mentally rotating objects, judging relational positions and containment, and estimating numerosity. However, it still remains a critical unresolved challenge for Multimodal Large Language Models (MLLMs).To fill this gap, we propose to treat Euclidean geometry problem-solving as a surrogate task. Specifically, we meticulously constructed a curated multimodal dataset, called Euclid30K, comprising approximately 30K plane and solid geometry problems. To enable the model to acquire and apply Euclidean principles from these geometry problems, we employed Group Relative Policy Optimization (GRPO) to finetune the Qwen2.5VL family and RoboBrain2.0 family, inspiring the models to identify shapes, count, and relate entities, and perform multi-step deductive reasoning using Euclidean principles. Our experiments demonstrate that the resulting models achieve substantial zero-shot gains across four spatial reasoning benchmarks (Super-CLEVR, Omni3DBench, VSI-Bench, and MindCube) without any task-specific adaptations. Notably, after training on the Euclid30K, the mean VSI-Bench accuracy of all evaluated models rose from 34.5% to 40.5%, improving by 5.5 percentage points. Among them, RoboBrain2.0-Euclid-7B achieves 49.6\% accuracy, surpassing the previous state-of-the-art model, Spatial-MLLM.To our knowledge, this is the first systematic study showing that geometry-centric fine-tuning can confer vision-language models with broadly transferable spatial skills. Code and Euclid30K dataset can be found in https://zgca-ai4edu.github.io/Euclids_Gift.
Geodesic Prototype Matching via Diffusion Maps for Interpretable Fine-Grained Recognition
Nonlinear manifolds are widespread in deep visual features, where Euclidean distances often fail to capture true similarity. This limitation becomes particularly severe in prototype-based interpretable fine-grained recognition, where subtle semantic distinctions are essential. To address this challenge, we propose a novel paradigm for prototype-based recognition that anchors similarity within the intrinsic geometry of deep features. Specifically, we distill the latent manifold structure of each class into a diffusion space and introduce a differentiable Nystr\"om interpolation, making the geometry accessible to both unseen samples and learnable prototypes. To ensure efficiency, we employ compact per-class landmark sets with periodic updates. This design keeps the embedding aligned with the evolving backbone, enabling fast and scalable inference. Extensive experiments on the CUB-200-2011 and Stanford Cars datasets show that our GeoProto framework produces prototypes focusing on semantically aligned parts, significantly outperforming Euclidean prototype networks.
DFormerv2: Geometry Self-Attention for RGBD Semantic Segmentation
Recent advances in scene understanding benefit a lot from depth maps because of the 3D geometry information, especially in complex conditions (e.g., low light and overexposed). Existing approaches encode depth maps along with RGB images and perform feature fusion between them to enable more robust predictions. Taking into account that depth can be regarded as a geometry supplement for RGB images, a straightforward question arises: Do we really need to explicitly encode depth information with neural networks as done for RGB images? Based on this insight, in this paper, we investigate a new way to learn RGBD feature representations and present DFormerv2, a strong RGBD encoder that explicitly uses depth maps as geometry priors rather than encoding depth information with neural networks. Our goal is to extract the geometry clues from the depth and spatial distances among all the image patch tokens, which will then be used as geometry priors to allocate attention weights in self-attention. Extensive experiments demonstrate that DFormerv2 exhibits exceptional performance in various RGBD semantic segmentation benchmarks. Code is available at: https://github.com/VCIP-RGBD/DFormer.
LGT-Net: Indoor Panoramic Room Layout Estimation with Geometry-Aware Transformer Network
3D room layout estimation by a single panorama using deep neural networks has made great progress. However, previous approaches can not obtain efficient geometry awareness of room layout with the only latitude of boundaries or horizon-depth. We present that using horizon-depth along with room height can obtain omnidirectional-geometry awareness of room layout in both horizontal and vertical directions. In addition, we propose a planar-geometry aware loss function with normals and gradients of normals to supervise the planeness of walls and turning of corners. We propose an efficient network, LGT-Net, for room layout estimation, which contains a novel Transformer architecture called SWG-Transformer to model geometry relations. SWG-Transformer consists of (Shifted) Window Blocks and Global Blocks to combine the local and global geometry relations. Moreover, we design a novel relative position embedding of Transformer to enhance the spatial identification ability for the panorama. Experiments show that the proposed LGT-Net achieves better performance than current state-of-the-arts (SOTA) on benchmark datasets.
R-CoT: Reverse Chain-of-Thought Problem Generation for Geometric Reasoning in Large Multimodal Models
Existing Large Multimodal Models (LMMs) struggle with mathematical geometric reasoning due to a lack of high-quality image-text paired data. Current geometric data generation approaches, which apply preset templates to generate geometric data or use Large Language Models (LLMs) to rephrase questions and answers (Q&A), unavoidably limit data accuracy and diversity. To synthesize higher-quality data, we propose a two-stage Reverse Chain-of-Thought (R-CoT) geometry problem generation pipeline. First, we introduce GeoChain to produce high-fidelity geometric images and corresponding descriptions highlighting relations among geometric elements. We then design a Reverse A&Q method that reasons step-by-step based on the descriptions and generates questions in reverse from the reasoning results. Experiments demonstrate that the proposed method brings significant and consistent improvements on multiple LMM baselines, achieving new performance records in the 2B, 7B, and 8B settings. Notably, R-CoT-8B significantly outperforms previous state-of-the-art open-source mathematical models by 16.6% on MathVista and 9.2% on GeoQA, while also surpassing the closed-source model GPT-4o by an average of 13% across both datasets. The code is available at https://github.com/dle666/R-CoT.
Achieving Olympia-Level Geometry Large Language Model Agent via Complexity Boosting Reinforcement Learning
Large language model (LLM) agents exhibit strong mathematical problem-solving abilities and can even solve International Mathematical Olympiad (IMO) level problems with the assistance of formal proof systems. However, due to weak heuristics for auxiliary constructions, AI for geometry problem solving remains dominated by expert models such as AlphaGeometry 2, which rely heavily on large-scale data synthesis and search for both training and evaluation. In this work, we make the first attempt to build a medalist-level LLM agent for geometry and present InternGeometry. InternGeometry overcomes the heuristic limitations in geometry by iteratively proposing propositions and auxiliary constructions, verifying them with a symbolic engine, and reflecting on the engine's feedback to guide subsequent proposals. A dynamic memory mechanism enables InternGeometry to conduct more than two hundred interactions with the symbolic engine per problem. To further accelerate learning, we introduce Complexity-Boosting Reinforcement Learning (CBRL), which gradually increases the complexity of synthesized problems across training stages. Built on InternThinker-32B, InternGeometry solves 44 of 50 IMO geometry problems (2000-2024), exceeding the average gold medalist score (40.9), using only 13K training examples, just 0.004% of the data used by AlphaGeometry 2, demonstrating the potential of LLM agents on expert-level geometry tasks. InternGeometry can also propose novel auxiliary constructions for IMO problems that do not appear in human solutions. We will release the model, data, and symbolic engine to support future research.
G^2VLM: Geometry Grounded Vision Language Model with Unified 3D Reconstruction and Spatial Reasoning
Vision-Language Models (VLMs) still lack robustness in spatial intelligence, demonstrating poor performance on spatial understanding and reasoning tasks. We attribute this gap to the absence of a visual geometry learning process capable of reconstructing 3D space from 2D images. We present G^2VLM, a geometry grounded vision-language model that bridges two fundamental aspects of spatial intelligence: spatial 3D reconstruction and spatial understanding. G^2VLM natively leverages learned 3D visual geometry features to directly predict 3D attributes and enhance spatial reasoning tasks via in-context learning and interleaved reasoning. Our unified design is highly scalable for spatial understanding: it trains on abundant multi-view image and video data, while simultaneously leveraging the benefits of 3D visual priors that are typically only derived from hard-to-collect annotations. Experimental results demonstrate G^2VLM is proficient in both tasks, achieving comparable results to state-of-the-art feed-forward 3D reconstruction models and achieving better or competitive results across spatial understanding and reasoning tasks. By unifying a semantically strong VLM with low-level 3D vision tasks, we hope G^2VLM can serve as a strong baseline for the community and unlock more future applications, such as 3D scene editing.
A Heat Diffusion Perspective on Geodesic Preserving Dimensionality Reduction
Diffusion-based manifold learning methods have proven useful in representation learning and dimensionality reduction of modern high dimensional, high throughput, noisy datasets. Such datasets are especially present in fields like biology and physics. While it is thought that these methods preserve underlying manifold structure of data by learning a proxy for geodesic distances, no specific theoretical links have been established. Here, we establish such a link via results in Riemannian geometry explicitly connecting heat diffusion to manifold distances. In this process, we also formulate a more general heat kernel based manifold embedding method that we call heat geodesic embeddings. This novel perspective makes clearer the choices available in manifold learning and denoising. Results show that our method outperforms existing state of the art in preserving ground truth manifold distances, and preserving cluster structure in toy datasets. We also showcase our method on single cell RNA-sequencing datasets with both continuum and cluster structure, where our method enables interpolation of withheld timepoints of data. Finally, we show that parameters of our more general method can be configured to give results similar to PHATE (a state-of-the-art diffusion based manifold learning method) as well as SNE (an attraction/repulsion neighborhood based method that forms the basis of t-SNE).
Euclid: Supercharging Multimodal LLMs with Synthetic High-Fidelity Visual Descriptions
Multimodal large language models (MLLMs) have made rapid progress in recent years, yet continue to struggle with low-level visual perception (LLVP) -- particularly the ability to accurately describe the geometric details of an image. This capability is crucial for applications in areas such as robotics, medical image analysis, and manufacturing. In this paper, we first introduce Geoperception, a benchmark designed to evaluate an MLLM's ability to accurately transcribe 2D geometric information from an image. Using this benchmark, we demonstrate the limitations of leading MLLMs, and then conduct a comprehensive empirical study to explore strategies for improving their performance on geometric tasks. Our findings highlight the benefits of certain model architectures, training techniques, and data strategies, including the use of high-fidelity synthetic data and multi-stage training with a data curriculum. Notably, we find that a data curriculum enables models to learn challenging geometry understanding tasks which they fail to learn from scratch. Leveraging these insights, we develop Euclid, a family of models specifically optimized for strong low-level geometric perception. Although purely trained on synthetic multimodal data, Euclid shows strong generalization ability to novel geometry shapes. For instance, Euclid outperforms the best closed-source model, Gemini-1.5-Pro, by up to 58.56% on certain Geoperception benchmark tasks and 10.65% on average across all tasks.
Geo-Sign: Hyperbolic Contrastive Regularisation for Geometrically Aware Sign Language Translation
Recent progress in Sign Language Translation (SLT) has focussed primarily on improving the representational capacity of large language models to incorporate Sign Language features. This work explores an alternative direction: enhancing the geometric properties of skeletal representations themselves. We propose Geo-Sign, a method that leverages the properties of hyperbolic geometry to model the hierarchical structure inherent in sign language kinematics. By projecting skeletal features derived from Spatio-Temporal Graph Convolutional Networks (ST-GCNs) into the Poincar\'e ball model, we aim to create more discriminative embeddings, particularly for fine-grained motions like finger articulations. We introduce a hyperbolic projection layer, a weighted Fr\'echet mean aggregation scheme, and a geometric contrastive loss operating directly in hyperbolic space. These components are integrated into an end-to-end translation framework as a regularisation function, to enhance the representations within the language model. This work demonstrates the potential of hyperbolic geometry to improve skeletal representations for Sign Language Translation, improving on SOTA RGB methods while preserving privacy and improving computational efficiency. Code available here: https://github.com/ed-fish/geo-sign.
SpaceControl: Introducing Test-Time Spatial Control to 3D Generative Modeling
Generative methods for 3D assets have recently achieved remarkable progress, yet providing intuitive and precise control over the object geometry remains a key challenge. Existing approaches predominantly rely on text or image prompts, which often fall short in geometric specificity: language can be ambiguous, and images are cumbersome to edit. In this work, we introduce SpaceControl, a training-free test-time method for explicit spatial control of 3D generation. Our approach accepts a wide range of geometric inputs, from coarse primitives to detailed meshes, and integrates seamlessly with modern pre-trained generative models without requiring any additional training. A controllable parameter lets users trade off between geometric fidelity and output realism. Extensive quantitative evaluation and user studies demonstrate that SpaceControl outperforms both training-based and optimization-based baselines in geometric faithfulness while preserving high visual quality. Finally, we present an interactive user interface that enables online editing of superquadrics for direct conversion into textured 3D assets, facilitating practical deployment in creative workflows. Find our project page at https://spacecontrol3d.github.io/
AdversariaL attacK sAfety aLIgnment(ALKALI): Safeguarding LLMs through GRACE: Geometric Representation-Aware Contrastive Enhancement- Introducing Adversarial Vulnerability Quality Index (AVQI)
Adversarial threats against LLMs are escalating faster than current defenses can adapt. We expose a critical geometric blind spot in alignment: adversarial prompts exploit latent camouflage, embedding perilously close to the safe representation manifold while encoding unsafe intent thereby evading surface level defenses like Direct Preference Optimization (DPO), which remain blind to the latent geometry. We introduce ALKALI, the first rigorously curated adversarial benchmark and the most comprehensive to date spanning 9,000 prompts across three macro categories, six subtypes, and fifteen attack families. Evaluation of 21 leading LLMs reveals alarmingly high Attack Success Rates (ASRs) across both open and closed source models, exposing an underlying vulnerability we term latent camouflage, a structural blind spot where adversarial completions mimic the latent geometry of safe ones. To mitigate this vulnerability, we introduce GRACE - Geometric Representation Aware Contrastive Enhancement, an alignment framework coupling preference learning with latent space regularization. GRACE enforces two constraints: latent separation between safe and adversarial completions, and adversarial cohesion among unsafe and jailbreak behaviors. These operate over layerwise pooled embeddings guided by a learned attention profile, reshaping internal geometry without modifying the base model, and achieve up to 39% ASR reduction. Moreover, we introduce AVQI, a geometry aware metric that quantifies latent alignment failure via cluster separation and compactness. AVQI reveals when unsafe completions mimic the geometry of safe ones, offering a principled lens into how models internally encode safety. We make the code publicly available at https://anonymous.4open.science/r/alkali-B416/README.md.
GeoGramBench: Benchmarking the Geometric Program Reasoning in Modern LLMs
Geometric spatial reasoning forms the foundation of many applications in artificial intelligence, yet the ability of large language models (LLMs) to operate over geometric spatial information expressed in procedural code remains underexplored. In this paper, we address this gap by formalizing the Program-to-Geometry task, which challenges models to translate programmatic drawing code into accurate and abstract geometric reasoning. To evaluate this capability, we present GeoGramBench, a benchmark of 500 carefully refined problems organized by a tailored three-level taxonomy that considers geometric complexity rather than traditional mathematical reasoning complexity. Our comprehensive evaluation of 17 frontier LLMs reveals consistent and pronounced deficiencies: even the most advanced models achieve less than 50% accuracy at the highest abstraction level. These results highlight the unique challenges posed by program-driven spatial reasoning and establish GeoGramBench as a valuable resource for advancing research in symbolic-to-spatial geometric reasoning. Project page: https://github.com/LiAuto-DSR/GeoGramBench.
Redundancy, Isotropy, and Intrinsic Dimensionality of Prompt-based Text Embeddings
Prompt-based text embedding models, which generate task-specific embeddings upon receiving tailored prompts, have recently demonstrated remarkable performance. However, their resulting embeddings often have thousands of dimensions, leading to high storage costs and increased computational costs of embedding-based operations. In this paper, we investigate how post-hoc dimensionality reduction applied to the embeddings affects the performance of various tasks that leverage these embeddings, specifically classification, clustering, retrieval, and semantic textual similarity (STS) tasks. Our experiments show that even a naive dimensionality reduction, which keeps only the first 25% of the dimensions of the embeddings, results in a very slight performance degradation, indicating that these embeddings are highly redundant. Notably, for classification and clustering, even when embeddings are reduced to less than 0.5% of the original dimensionality the performance degradation is very small. To quantitatively analyze this redundancy, we perform an analysis based on the intrinsic dimensionality and isotropy of the embeddings. Our analysis reveals that embeddings for classification and clustering, which are considered to have very high dimensional redundancy, exhibit lower intrinsic dimensionality and less isotropy compared with those for retrieval and STS.
Mesh2Tex: Generating Mesh Textures from Image Queries
Remarkable advances have been achieved recently in learning neural representations that characterize object geometry, while generating textured objects suitable for downstream applications and 3D rendering remains at an early stage. In particular, reconstructing textured geometry from images of real objects is a significant challenge -- reconstructed geometry is often inexact, making realistic texturing a significant challenge. We present Mesh2Tex, which learns a realistic object texture manifold from uncorrelated collections of 3D object geometry and photorealistic RGB images, by leveraging a hybrid mesh-neural-field texture representation. Our texture representation enables compact encoding of high-resolution textures as a neural field in the barycentric coordinate system of the mesh faces. The learned texture manifold enables effective navigation to generate an object texture for a given 3D object geometry that matches to an input RGB image, which maintains robustness even under challenging real-world scenarios where the mesh geometry approximates an inexact match to the underlying geometry in the RGB image. Mesh2Tex can effectively generate realistic object textures for an object mesh to match real images observations towards digitization of real environments, significantly improving over previous state of the art.
GeometryZero: Improving Geometry Solving for LLM with Group Contrastive Policy Optimization
Recent advances in large language models (LLMs) have demonstrated remarkable capabilities across diverse domains, particularly in mathematical reasoning, amid which geometry problem solving remains a challenging area where auxiliary construction plays a enssential role. Existing approaches either achieve suboptimal performance or rely on massive LLMs (e.g., GPT-4o), incurring massive computational costs. We posit that reinforcement learning with verifiable reward (e.g., GRPO) offers a promising direction for training smaller models that effectively combine auxiliary construction with robust geometric reasoning. However, directly applying GRPO to geometric reasoning presents fundamental limitations due to its dependence on unconditional rewards, which leads to indiscriminate and counterproductive auxiliary constructions. To address these challenges, we propose Group Contrastive Policy Optimization (GCPO), a novel reinforcement learning framework featuring two key innovations: (1) Group Contrastive Masking, which adaptively provides positive or negative reward signals for auxiliary construction based on contextual utility, and a (2) length reward that promotes longer reasoning chains. Building on GCPO, we develop GeometryZero, a family of affordable-size geometric reasoning models that judiciously determine when to employ auxiliary construction. Our extensive empirical evaluation across popular geometric benchmarks (Geometry3K, MathVista) demonstrates that GeometryZero models consistently outperform baselines (e.g. GRPO), achieving an average improvement of 4.29% across all benchmarks.
Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning
Geometry problem solving has attracted much attention in the NLP community recently. The task is challenging as it requires abstract problem understanding and symbolic reasoning with axiomatic knowledge. However, current datasets are either small in scale or not publicly available. Thus, we construct a new large-scale benchmark, Geometry3K, consisting of 3,002 geometry problems with dense annotation in formal language. We further propose a novel geometry solving approach with formal language and symbolic reasoning, called Interpretable Geometry Problem Solver (Inter-GPS). Inter-GPS first parses the problem text and diagram into formal language automatically via rule-based text parsing and neural object detecting, respectively. Unlike implicit learning in existing methods, Inter-GPS incorporates theorem knowledge as conditional rules and performs symbolic reasoning step by step. Also, a theorem predictor is designed to infer the theorem application sequence fed to the symbolic solver for the more efficient and reasonable searching path. Extensive experiments on the Geometry3K and GEOS datasets demonstrate that Inter-GPS achieves significant improvements over existing methods. The project with code and data is available at https://lupantech.github.io/inter-gps.
PVSeRF: Joint Pixel-, Voxel- and Surface-Aligned Radiance Field for Single-Image Novel View Synthesis
We present PVSeRF, a learning framework that reconstructs neural radiance fields from single-view RGB images, for novel view synthesis. Previous solutions, such as pixelNeRF, rely only on pixel-aligned features and suffer from feature ambiguity issues. As a result, they struggle with the disentanglement of geometry and appearance, leading to implausible geometries and blurry results. To address this challenge, we propose to incorporate explicit geometry reasoning and combine it with pixel-aligned features for radiance field prediction. Specifically, in addition to pixel-aligned features, we further constrain the radiance field learning to be conditioned on i) voxel-aligned features learned from a coarse volumetric grid and ii) fine surface-aligned features extracted from a regressed point cloud. We show that the introduction of such geometry-aware features helps to achieve a better disentanglement between appearance and geometry, i.e. recovering more accurate geometries and synthesizing higher quality images of novel views. Extensive experiments against state-of-the-art methods on ShapeNet benchmarks demonstrate the superiority of our approach for single-image novel view synthesis.
Geometry-Aware Adaptation for Pretrained Models
Machine learning models -- including prominent zero-shot models -- are often trained on datasets whose labels are only a small proportion of a larger label space. Such spaces are commonly equipped with a metric that relates the labels via distances between them. We propose a simple approach to exploit this information to adapt the trained model to reliably predict new classes -- or, in the case of zero-shot prediction, to improve its performance -- without any additional training. Our technique is a drop-in replacement of the standard prediction rule, swapping argmax with the Fr\'echet mean. We provide a comprehensive theoretical analysis for this approach, studying (i) learning-theoretic results trading off label space diameter, sample complexity, and model dimension, (ii) characterizations of the full range of scenarios in which it is possible to predict any unobserved class, and (iii) an optimal active learning-like next class selection procedure to obtain optimal training classes for when it is not possible to predict the entire range of unobserved classes. Empirically, using easily-available external metrics, our proposed approach, Loki, gains up to 29.7% relative improvement over SimCLR on ImageNet and scales to hundreds of thousands of classes. When no such metric is available, Loki can use self-derived metrics from class embeddings and obtains a 10.5% improvement on pretrained zero-shot models such as CLIP.
Visual Diffusion Models are Geometric Solvers
In this paper we show that visual diffusion models can serve as effective geometric solvers: they can directly reason about geometric problems by working in pixel space. We first demonstrate this on the Inscribed Square Problem, a long-standing problem in geometry that asks whether every Jordan curve contains four points forming a square. We then extend the approach to two other well-known hard geometric problems: the Steiner Tree Problem and the Simple Polygon Problem. Our method treats each problem instance as an image and trains a standard visual diffusion model that transforms Gaussian noise into an image representing a valid approximate solution that closely matches the exact one. The model learns to transform noisy geometric structures into correct configurations, effectively recasting geometric reasoning as image generation. Unlike prior work that necessitates specialized architectures and domain-specific adaptations when applying diffusion to parametric geometric representations, we employ a standard visual diffusion model that operates on the visual representation of the problem. This simplicity highlights a surprising bridge between generative modeling and geometric problem solving. Beyond the specific problems studied here, our results point toward a broader paradigm: operating in image space provides a general and practical framework for approximating notoriously hard problems, and opens the door to tackling a far wider class of challenging geometric tasks.
DreamPolish: Domain Score Distillation With Progressive Geometry Generation
We introduce DreamPolish, a text-to-3D generation model that excels in producing refined geometry and high-quality textures. In the geometry construction phase, our approach leverages multiple neural representations to enhance the stability of the synthesis process. Instead of relying solely on a view-conditioned diffusion prior in the novel sampled views, which often leads to undesired artifacts in the geometric surface, we incorporate an additional normal estimator to polish the geometry details, conditioned on viewpoints with varying field-of-views. We propose to add a surface polishing stage with only a few training steps, which can effectively refine the artifacts attributed to limited guidance from previous stages and produce 3D objects with more desirable geometry. The key topic of texture generation using pretrained text-to-image models is to find a suitable domain in the vast latent distribution of these models that contains photorealistic and consistent renderings. In the texture generation phase, we introduce a novel score distillation objective, namely domain score distillation (DSD), to guide neural representations toward such a domain. We draw inspiration from the classifier-free guidance (CFG) in textconditioned image generation tasks and show that CFG and variational distribution guidance represent distinct aspects in gradient guidance and are both imperative domains for the enhancement of texture quality. Extensive experiments show our proposed model can produce 3D assets with polished surfaces and photorealistic textures, outperforming existing state-of-the-art methods.
GeoBench: Benchmarking and Analyzing Monocular Geometry Estimation Models
Recent advances in discriminative and generative pretraining have yielded geometry estimation models with strong generalization capabilities. While discriminative monocular geometry estimation methods rely on large-scale fine-tuning data to achieve zero-shot generalization, several generative-based paradigms show the potential of achieving impressive generalization performance on unseen scenes by leveraging pre-trained diffusion models and fine-tuning on even a small scale of synthetic training data. Frustratingly, these models are trained with different recipes on different datasets, making it hard to find out the critical factors that determine the evaluation performance. Besides, current geometry evaluation benchmarks have two main drawbacks that may prevent the development of the field, i.e., limited scene diversity and unfavorable label quality. To resolve the above issues, (1) we build fair and strong baselines in a unified codebase for evaluating and analyzing the geometry estimation models; (2) we evaluate monocular geometry estimators on more challenging benchmarks for geometry estimation task with diverse scenes and high-quality annotations. Our results reveal that pre-trained using large data, discriminative models such as DINOv2, can outperform generative counterparts with a small amount of high-quality synthetic data under the same training configuration, which suggests that fine-tuning data quality is a more important factor than the data scale and model architecture. Our observation also raises a question: if simply fine-tuning a general vision model such as DINOv2 using a small amount of synthetic depth data produces SOTA results, do we really need complex generative models for depth estimation? We believe this work can propel advancements in geometry estimation tasks as well as a wide range of downstream applications.
Building Neural Networks on Matrix Manifolds: A Gyrovector Space Approach
Matrix manifolds, such as manifolds of Symmetric Positive Definite (SPD) matrices and Grassmann manifolds, appear in many applications. Recently, by applying the theory of gyrogroups and gyrovector spaces that is a powerful framework for studying hyperbolic geometry, some works have attempted to build principled generalizations of Euclidean neural networks on matrix manifolds. However, due to the lack of many concepts in gyrovector spaces for the considered manifolds, e.g., the inner product and gyroangles, techniques and mathematical tools provided by these works are still limited compared to those developed for studying hyperbolic geometry. In this paper, we generalize some notions in gyrovector spaces for SPD and Grassmann manifolds, and propose new models and layers for building neural networks on these manifolds. We show the effectiveness of our approach in two applications, i.e., human action recognition and knowledge graph completion.
DeepMesh: Differentiable Iso-Surface Extraction
Geometric Deep Learning has recently made striking progress with the advent of continuous deep implicit fields. They allow for detailed modeling of watertight surfaces of arbitrary topology while not relying on a 3D Euclidean grid, resulting in a learnable parameterization that is unlimited in resolution. Unfortunately, these methods are often unsuitable for applications that require an explicit mesh-based surface representation because converting an implicit field to such a representation relies on the Marching Cubes algorithm, which cannot be differentiated with respect to the underlying implicit field. In this work, we remove this limitation and introduce a differentiable way to produce explicit surface mesh representations from Deep Implicit Fields. Our key insight is that by reasoning on how implicit field perturbations impact local surface geometry, one can ultimately differentiate the 3D location of surface samples with respect to the underlying deep implicit field. We exploit this to define DeepMesh - an end-to-end differentiable mesh representation that can vary its topology. We validate our theoretical insight through several applications: Single view 3D Reconstruction via Differentiable Rendering, Physically-Driven Shape Optimization, Full Scene 3D Reconstruction from Scans and End-to-End Training. In all cases our end-to-end differentiable parameterization gives us an edge over state-of-the-art algorithms.
Shadow Cones: A Generalized Framework for Partial Order Embeddings
Hyperbolic space has proven to be well-suited for capturing hierarchical relations in data, such as trees and directed acyclic graphs. Prior work introduced the concept of entailment cones, which uses partial orders defined by nested cones in the Poincar\'e ball to model hierarchies. Here, we introduce the ``shadow cones" framework, a physics-inspired entailment cone construction. Specifically, we model partial orders as subset relations between shadows formed by a light source and opaque objects in hyperbolic space. The shadow cones framework generalizes entailment cones to a broad class of formulations and hyperbolic space models beyond the Poincar\'e ball. This results in clear advantages over existing constructions: for example, shadow cones possess better optimization properties over constructions limited to the Poincar\'e ball. Our experiments on datasets of various sizes and hierarchical structures show that shadow cones consistently and significantly outperform existing entailment cone constructions. These results indicate that shadow cones are an effective way to model partial orders in hyperbolic space, offering physically intuitive and novel insights about the nature of such structures.
MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers
We introduce MeshGPT, a new approach for generating triangle meshes that reflects the compactness typical of artist-created meshes, in contrast to dense triangle meshes extracted by iso-surfacing methods from neural fields. Inspired by recent advances in powerful large language models, we adopt a sequence-based approach to autoregressively generate triangle meshes as sequences of triangles. We first learn a vocabulary of latent quantized embeddings, using graph convolutions, which inform these embeddings of the local mesh geometry and topology. These embeddings are sequenced and decoded into triangles by a decoder, ensuring that they can effectively reconstruct the mesh. A transformer is then trained on this learned vocabulary to predict the index of the next embedding given previous embeddings. Once trained, our model can be autoregressively sampled to generate new triangle meshes, directly generating compact meshes with sharp edges, more closely imitating the efficient triangulation patterns of human-crafted meshes. MeshGPT demonstrates a notable improvement over state of the art mesh generation methods, with a 9% increase in shape coverage and a 30-point enhancement in FID scores across various categories.
MagicGeo: Training-Free Text-Guided Geometric Diagram Generation
Geometric diagrams are critical in conveying mathematical and scientific concepts, yet traditional diagram generation methods are often manual and resource-intensive. While text-to-image generation has made strides in photorealistic imagery, creating accurate geometric diagrams remains a challenge due to the need for precise spatial relationships and the scarcity of geometry-specific datasets. This paper presents MagicGeo, a training-free framework for generating geometric diagrams from textual descriptions. MagicGeo formulates the diagram generation process as a coordinate optimization problem, ensuring geometric correctness through a formal language solver, and then employs coordinate-aware generation. The framework leverages the strong language translation capability of large language models, while formal mathematical solving ensures geometric correctness. We further introduce MagicGeoBench, a benchmark dataset of 220 geometric diagram descriptions, and demonstrate that MagicGeo outperforms current methods in both qualitative and quantitative evaluations. This work provides a scalable, accurate solution for automated diagram generation, with significant implications for educational and academic applications.
Functorial Manifold Learning
We adapt previous research on category theory and topological unsupervised learning to develop a functorial perspective on manifold learning, also known as nonlinear dimensionality reduction. We first characterize manifold learning algorithms as functors that map pseudometric spaces to optimization objectives and that factor through hierarchical clustering functors. We then use this characterization to prove refinement bounds on manifold learning loss functions and construct a hierarchy of manifold learning algorithms based on their equivariants. We express several popular manifold learning algorithms as functors at different levels of this hierarchy, including Metric Multidimensional Scaling, IsoMap, and UMAP. Next, we use interleaving distance to study the stability of a broad class of manifold learning algorithms. We present bounds on how closely the embeddings these algorithms produce from noisy data approximate the embeddings they would learn from noiseless data. Finally, we use our framework to derive a set of novel manifold learning algorithms, which we experimentally demonstrate are competitive with the state of the art.
Geometry of Sample Spaces
In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an n-sample in a space M can be considered as an element of the quotient space of M^n modulo the permutation group. The present paper takes this definition of sample space and the related concept of orbit types as a starting point for developing a geometric perspective on statistics. We aim at deriving a general mathematical setting for studying the behavior of empirical and population means in spaces ranging from smooth Riemannian manifolds to general stratified spaces. We fully describe the orbifold and path-metric structure of the sample space when M is a manifold or path-metric space, respectively. These results are non-trivial even when M is Euclidean. We show that the infinite sample space exists in a Gromov-Hausdorff type sense and coincides with the Wasserstein space of probability distributions on M. We exhibit Fr\'echet means and k-means as metric projections onto 1-skeleta or k-skeleta in Wasserstein space, and we define a new and more general notion of polymeans. This geometric characterization via metric projections applies equally to sample and population means, and we use it to establish asymptotic properties of polymeans such as consistency and asymptotic normality.
The Geometry of Tokens in Internal Representations of Large Language Models
We investigate the relationship between the geometry of token embeddings and their role in the next token prediction within transformer models. An important aspect of this connection uses the notion of empirical measure, which encodes the distribution of token point clouds across transformer layers and drives the evolution of token representations in the mean-field interacting picture. We use metrics such as intrinsic dimension, neighborhood overlap, and cosine similarity to observationally probe these empirical measures across layers. To validate our approach, we compare these metrics to a dataset where the tokens are shuffled, which disrupts the syntactic and semantic structure. Our findings reveal a correlation between the geometric properties of token embeddings and the cross-entropy loss of next token predictions, implying that prompts with higher loss values have tokens represented in higher-dimensional spaces.
