- Best Proximity Point Results for Perimetric Contractions This paper has two aims, first one is to introduce special kind of proximal contractions guaranteeing a finite number of best proximity points, and second one is to derive best proximity point results for perimetric contractions. To meet these two aims, we introduce two new proximal contractions: perimetric proximal contractions of the first and the second kind, and derive best proximity point results for these mappings. We establish that for these particular mappings, best proximity points are not necessarily unique; however, we provide an upper bound, proving that at most two such points can exist. To establish the validity of our results, we provide illustrative examples demonstrating that these newly defined mappings can possess unique or exactly two best proximity points. 4 authors · Jan 31
- HTNet for micro-expression recognition Facial expression is related to facial muscle contractions and different muscle movements correspond to different emotional states. For micro-expression recognition, the muscle movements are usually subtle, which has a negative impact on the performance of current facial emotion recognition algorithms. Most existing methods use self-attention mechanisms to capture relationships between tokens in a sequence, but they do not take into account the inherent spatial relationships between facial landmarks. This can result in sub-optimal performance on micro-expression recognition tasks.Therefore, learning to recognize facial muscle movements is a key challenge in the area of micro-expression recognition. In this paper, we propose a Hierarchical Transformer Network (HTNet) to identify critical areas of facial muscle movement. HTNet includes two major components: a transformer layer that leverages the local temporal features and an aggregation layer that extracts local and global semantical facial features. Specifically, HTNet divides the face into four different facial areas: left lip area, left eye area, right eye area and right lip area. The transformer layer is used to focus on representing local minor muscle movement with local self-attention in each area. The aggregation layer is used to learn the interactions between eye areas and lip areas. The experiments on four publicly available micro-expression datasets show that the proposed approach outperforms previous methods by a large margin. The codes and models are available at: https://github.com/wangzhifengharrison/HTNet 4 authors · Jul 27, 2023
- Accuracy and Efficiency of Simplified Tensor Network Codes We examine in detail the accuracy, efficiency and implementation issues that arise when a simplified code structure is employed to evaluate the partition function of the two-dimensional square Ising model on periodic lattices though repeated tensor contractions. 2 authors · Dec 31, 2019
- Curvature-Aware Optimization of Noisy Variational Quantum Circuits via Weighted Projective Line Geometry We develop a differential-geometric framework for variational quantum circuits in which noisy single- and multi-qubit parameter spaces are modeled by weighted projective lines (WPLs). Starting from the pure-state Bloch sphere CP1, we show that realistic hardware noise induces anisotropic contractions of the Bloch ball that can be represented by a pair of physically interpretable parameters (lambda_perp, lambda_parallel). These parameters determine a unique WPL metric g_WPL(a_over_b, b) whose scalar curvature is R = 2 / b^2, yielding a compact and channel-resolved geometric surrogate for the intrinsic information structure of noisy quantum circuits. We develop a tomography-to-geometry pipeline that extracts (lambda_perp, lambda_parallel) from hardware data and maps them to the WPL parameters (a_over_b, b, R). Experiments on IBM Quantum backends show that the resulting WPL geometries accurately capture anisotropic curvature deformation across calibration periods. Finally, we demonstrate that WPL-informed quantum natural gradients (WPL-QNG) provide stable optimization dynamics for noisy variational quantum eigensolvers and enable curvature-aware mitigation of barren plateaus. 3 authors · Nov 29, 2025
- EinHops: Einsum Notation for Expressive Homomorphic Operations on RNS-CKKS Tensors Fully Homomorphic Encryption (FHE) is an encryption scheme that allows for computation to be performed directly on encrypted data, effectively closing the loop on secure and outsourced computing. Data is encrypted not only during rest and transit, but also during processing. However, FHE provides a limited instruction set: SIMD addition, SIMD multiplication, and cyclic rotation of 1-D vectors. This restriction makes performing multi-dimensional tensor operations challenging. Practitioners must pack these tensors into 1-D vectors and map tensor operations onto this one-dimensional layout rather than their traditional nested structure. And while prior systems have made significant strides in automating this process, they often hide critical packing decisions behind layers of abstraction, making debugging, optimizing, and building on top of these systems difficult. In this work, we approach multi-dimensional tensor operations in FHE through Einstein summation (einsum) notation. Einsum notation explicitly encodes dimensional structure and operations in its syntax, naturally exposing how tensors should be packed and transformed. We decompose einsum expressions into a fixed set of FHE-friendly operations. We implement our design and present EinHops, a minimalist system that factors einsum expressions into a fixed sequence of FHE operations. EinHops enables developers to perform encrypted tensor operations using FHE while maintaining full visibility into the underlying packing strategy. We evaluate EinHops on a range of tensor operations from a simple transpose to complex multi-dimensional contractions. We show that the explicit nature of einsum notation allows us to build an FHE tensor system that is simple, general, and interpretable. We open-source EinHops at the following repository: https://github.com/baahl-nyu/einhops. 3 authors · Jul 10, 2025
- New counterexamples to the birational Torelli theorem for Calabi--Yau manifolds We produce counterexamples to the birational Torelli theorem for Calabi-Yau manifolds in arbitrarily high dimension: this is done by exhibiting a series of non birational pairs of Calabi-Yau (n^2-1)-folds which, for n geq 2 even, admit an isometry between their middle cohomologies. These varieties also satisfy an mathbb L-equivalence relation in the Grothendieck ring of varieties, i.e. the difference of their classes annihilates a power of the class of the affine line. We state this last property for a broader class of Calabi-Yau pairs, namely all those which are realized as pushforwards of a general (1,1)-section on a homogeneous roof in the sense of Kanemitsu, along its two extremal contractions. 1 authors · Nov 7, 2022