Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeThe Two-Pass Softmax Algorithm
The softmax (also called softargmax) function is widely used in machine learning models to normalize real-valued scores into a probability distribution. To avoid floating-point overflow, the softmax function is conventionally implemented in three passes: the first pass to compute the normalization constant, and two other passes to compute outputs from normalized inputs. We analyze two variants of the Three-Pass algorithm and demonstrate that in a well-optimized implementation on HPC-class processors performance of all three passes is limited by memory bandwidth. We then present a novel algorithm for softmax computation in just two passes. The proposed Two-Pass algorithm avoids both numerical overflow and the extra normalization pass by employing an exotic representation for intermediate values, where each value is represented as a pair of floating-point numbers: one representing the "mantissa" and another representing the "exponent". Performance evaluation demonstrates that on out-of-cache inputs on an Intel Skylake-X processor the new Two-Pass algorithm outperforms the traditional Three-Pass algorithm by up to 28% in AVX512 implementation, and by up to 18% in AVX2 implementation. The proposed Two-Pass algorithm also outperforms the traditional Three-Pass algorithm on Intel Broadwell and AMD Zen 2 processors. To foster reproducibility, we released an open-source implementation of the new Two-Pass Softmax algorithm and other experiments in this paper as a part of XNNPACK library at GitHub.com/google/XNNPACK.
softmax is not enough (for sharp out-of-distribution)
A key property of reasoning systems is the ability to make sharp decisions on their input data. For contemporary AI systems, a key carrier of sharp behaviour is the softmax function, with its capability to perform differentiable query-key lookups. It is a common belief that the predictive power of networks leveraging softmax arises from "circuits" which sharply perform certain kinds of computations consistently across many diverse inputs. However, for these circuits to be robust, they would need to generalise well to arbitrary valid inputs. In this paper, we dispel this myth: even for tasks as simple as finding the maximum key, any learned circuitry must disperse as the number of items grows at test time. We attribute this to a fundamental limitation of the softmax function to robustly approximate sharp functions, prove this phenomenon theoretically, and propose adaptive temperature as an ad-hoc technique for improving the sharpness of softmax at inference time.
Self-Adjust Softmax
The softmax function is crucial in Transformer attention, which normalizes each row of the attention scores with summation to one, achieving superior performances over other alternative functions. However, the softmax function can face a gradient vanishing issue when some elements of the attention scores approach extreme values, such as probabilities close to one or zero. In this paper, we propose Self-Adjust Softmax (SA-Softmax) to address this issue by modifying softmax(x) to x cdot softmax(x) and its normalized variant (x - min(x_{min,0))}{max(0,x_{max})-min(x_{min},0)} cdot softmax(x). We theoretically show that SA-Softmax provides enhanced gradient properties compared to the vanilla softmax function. Moreover, SA-Softmax Attention can be seamlessly integrated into existing Transformer models to their attention mechanisms with minor adjustments. We conducted experiments to evaluate the empirical performance of Transformer models using SA-Softmax compared to the vanilla softmax function. These experiments, involving models with up to 2.7 billion parameters, are conducted across diverse datasets, language tasks, and positional encoding methods.
Online normalizer calculation for softmax
The Softmax function is ubiquitous in machine learning, multiple previous works suggested faster alternatives for it. In this paper we propose a way to compute classical Softmax with fewer memory accesses and hypothesize that this reduction in memory accesses should improve Softmax performance on actual hardware. The benchmarks confirm this hypothesis: Softmax accelerates by up to 1.3x and Softmax+TopK combined and fused by up to 5x.
Sparse-softmax: A Simpler and Faster Alternative Softmax Transformation
The softmax function is widely used in artificial neural networks for the multiclass classification problems, where the softmax transformation enforces the output to be positive and sum to one, and the corresponding loss function allows to use maximum likelihood principle to optimize the model. However, softmax leaves a large margin for loss function to conduct optimizing operation when it comes to high-dimensional classification, which results in low-performance to some extent. In this paper, we provide an empirical study on a simple and concise softmax variant, namely sparse-softmax, to alleviate the problem that occurred in traditional softmax in terms of high-dimensional classification problems. We evaluate our approach in several interdisciplinary tasks, the experimental results show that sparse-softmax is simpler, faster, and produces better results than the baseline models.
The Closeness of In-Context Learning and Weight Shifting for Softmax Regression
Large language models (LLMs) are known for their exceptional performance in natural language processing, making them highly effective in many human life-related or even job-related tasks. The attention mechanism in the Transformer architecture is a critical component of LLMs, as it allows the model to selectively focus on specific input parts. The softmax unit, which is a key part of the attention mechanism, normalizes the attention scores. Hence, the performance of LLMs in various NLP tasks depends significantly on the crucial role played by the attention mechanism with the softmax unit. In-context learning, as one of the celebrated abilities of recent LLMs, is an important concept in querying LLMs such as ChatGPT. Without further parameter updates, Transformers can learn to predict based on few in-context examples. However, the reason why Transformers becomes in-context learners is not well understood. Recently, several works [ASA+22,GTLV22,ONR+22] have studied the in-context learning from a mathematical perspective based on a linear regression formulation min_x| Ax - b |_2, which show Transformers' capability of learning linear functions in context. In this work, we study the in-context learning based on a softmax regression formulation min_{x} | langle exp(Ax), {bf 1}_n rangle^{-1} exp(Ax) - b |_2 of Transformer's attention mechanism. We show the upper bounds of the data transformations induced by a single self-attention layer and by gradient-descent on a ell_2 regression loss for softmax prediction function, which imply that when training self-attention-only Transformers for fundamental regression tasks, the models learned by gradient-descent and Transformers show great similarity.
Scalable-Softmax Is Superior for Attention
The maximum element of the vector output by the Softmax function approaches zero as the input vector size increases. Transformer-based language models rely on Softmax to compute attention scores, causing the attention distribution to flatten as the context size grows. This reduces the model's ability to prioritize key information effectively and potentially limits its length generalization. To address this problem, we propose Scalable-Softmax (SSMax), which replaces Softmax in scenarios where the input vector size varies. SSMax can be seamlessly integrated into existing Transformer-based architectures. Experimental results in language modeling show that models using SSMax not only achieve faster loss reduction during pretraining but also significantly improve performance in long contexts and key information retrieval. Furthermore, an analysis of attention scores reveals that SSMax enables the model to focus attention on key information even in long contexts. Additionally, although models that use SSMax from the beginning of pretraining achieve better length generalization, those that have already started pretraining can still gain some of this ability by replacing Softmax in the attention layers with SSMax, either during or after pretraining.
PSL: Rethinking and Improving Softmax Loss from Pairwise Perspective for Recommendation
Softmax Loss (SL) is widely applied in recommender systems (RS) and has demonstrated effectiveness. This work analyzes SL from a pairwise perspective, revealing two significant limitations: 1) the relationship between SL and conventional ranking metrics like DCG is not sufficiently tight; 2) SL is highly sensitive to false negative instances. Our analysis indicates that these limitations are primarily due to the use of the exponential function. To address these issues, this work extends SL to a new family of loss functions, termed Pairwise Softmax Loss (PSL), which replaces the exponential function in SL with other appropriate activation functions. While the revision is minimal, we highlight three merits of PSL: 1) it serves as a tighter surrogate for DCG with suitable activation functions; 2) it better balances data contributions; and 3) it acts as a specific BPR loss enhanced by Distributionally Robust Optimization (DRO). We further validate the effectiveness and robustness of PSL through empirical experiments. The code is available at https://github.com/Tiny-Snow/IR-Benchmark.
Understanding the differences in Foundation Models: Attention, State Space Models, and Recurrent Neural Networks
Softmax attention is the principle backbone of foundation models for various artificial intelligence applications, yet its quadratic complexity in sequence length can limit its inference throughput in long-context settings. To address this challenge, alternative architectures such as linear attention, State Space Models (SSMs), and Recurrent Neural Networks (RNNs) have been considered as more efficient alternatives. While connections between these approaches exist, such models are commonly developed in isolation and there is a lack of theoretical understanding of the shared principles underpinning these architectures and their subtle differences, greatly influencing performance and scalability. In this paper, we introduce the Dynamical Systems Framework (DSF), which allows a principled investigation of all these architectures in a common representation. Our framework facilitates rigorous comparisons, providing new insights on the distinctive characteristics of each model class. For instance, we compare linear attention and selective SSMs, detailing their differences and conditions under which both are equivalent. We also provide principled comparisons between softmax attention and other model classes, discussing the theoretical conditions under which softmax attention can be approximated. Additionally, we substantiate these new insights with empirical validations and mathematical arguments. This shows the DSF's potential to guide the systematic development of future more efficient and scalable foundation models.
From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification
We propose sparsemax, a new activation function similar to the traditional softmax, but able to output sparse probabilities. After deriving its properties, we show how its Jacobian can be efficiently computed, enabling its use in a network trained with backpropagation. Then, we propose a new smooth and convex loss function which is the sparsemax analogue of the logistic loss. We reveal an unexpected connection between this new loss and the Huber classification loss. We obtain promising empirical results in multi-label classification problems and in attention-based neural networks for natural language inference. For the latter, we achieve a similar performance as the traditional softmax, but with a selective, more compact, attention focus.
On the Expressiveness of Softmax Attention: A Recurrent Neural Network Perspective
Since its introduction, softmax attention has become the backbone of modern transformer architectures due to its expressiveness and scalability across a wide range of tasks. However, the main drawback of softmax attention is the quadratic memory requirement and computational complexity with respect to the sequence length. By replacing the softmax nonlinearity, linear attention and similar methods have been introduced to avoid the quadratic bottleneck of softmax attention. Despite these linear forms of attention being derived from the original softmax formulation, they typically lag in terms of downstream accuracy. While strong intuition of the softmax nonlinearity on the query and key inner product suggests that it has desirable properties compared to other nonlinearities, the question of why this discrepancy exists still remains unanswered. This work demonstrates that linear attention is an approximation of softmax attention by deriving the recurrent form of softmax attention. Using this form, each part of softmax attention can be described in the language of recurrent neural networks (RNNs). Describing softmax attention as an RNN allows for the ablation of the components of softmax attention to understand the importance of each part and how they interact. In this way, our work helps explain why softmax attention is more expressive than its counterparts.
An Architecture Combining Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for Image Classification
Convolutional neural networks (CNNs) are similar to "ordinary" neural networks in the sense that they are made up of hidden layers consisting of neurons with "learnable" parameters. These neurons receive inputs, performs a dot product, and then follows it with a non-linearity. The whole network expresses the mapping between raw image pixels and their class scores. Conventionally, the Softmax function is the classifier used at the last layer of this network. However, there have been studies (Alalshekmubarak and Smith, 2013; Agarap, 2017; Tang, 2013) conducted to challenge this norm. The cited studies introduce the usage of linear support vector machine (SVM) in an artificial neural network architecture. This project is yet another take on the subject, and is inspired by (Tang, 2013). Empirical data has shown that the CNN-SVM model was able to achieve a test accuracy of ~99.04% using the MNIST dataset (LeCun, Cortes, and Burges, 2010). On the other hand, the CNN-Softmax was able to achieve a test accuracy of ~99.23% using the same dataset. Both models were also tested on the recently-published Fashion-MNIST dataset (Xiao, Rasul, and Vollgraf, 2017), which is suppose to be a more difficult image classification dataset than MNIST (Zalandoresearch, 2017). This proved to be the case as CNN-SVM reached a test accuracy of ~90.72%, while the CNN-Softmax reached a test accuracy of ~91.86%. The said results may be improved if data preprocessing techniques were employed on the datasets, and if the base CNN model was a relatively more sophisticated than the one used in this study.
Revisiting Softmax Masking for Stability in Continual Learning
In continual learning, many classifiers use softmax function to learn confidence. However, numerous studies have pointed out its inability to accurately determine confidence distributions for outliers, often referred to as epistemic uncertainty. This inherent limitation also curtails the accurate decisions for selecting what to forget and keep in previously trained confidence distributions over continual learning process. To address the issue, we revisit the effects of masking softmax function. While this method is both simple and prevalent in literature, its implication for retaining confidence distribution during continual learning, also known as stability, has been under-investigated. In this paper, we revisit the impact of softmax masking, and introduce a methodology to utilize its confidence preservation effects. In class- and task-incremental learning benchmarks with and without memory replay, our approach significantly increases stability while maintaining sufficiently large plasticity. In the end, our methodology shows better overall performance than state-of-the-art methods, particularly in the use with zero or small memory. This lays a simple and effective foundation of strongly stable replay-based continual learning.
Softmax-free Linear Transformers
Vision transformers (ViTs) have pushed the state-of-the-art for visual perception tasks. The self-attention mechanism underpinning the strength of ViTs has a quadratic complexity in both computation and memory usage. This motivates the development of approximating the self-attention at linear complexity. However, an in-depth analysis in this work reveals that existing methods are either theoretically flawed or empirically ineffective for visual recognition. We identify that their limitations are rooted in the inheritance of softmax-based self-attention during approximations, that is, normalizing the scaled dot-product between token feature vectors using the softmax function. As preserving the softmax operation challenges any subsequent linearization efforts. By this insight, a family of Softmax-Free Transformers (SOFT) are proposed. Specifically, a Gaussian kernel function is adopted to replace the dot-product similarity, enabling a full self-attention matrix to be approximated under low-rank matrix decomposition. For computational robustness, we estimate the Moore-Penrose inverse using an iterative Newton-Raphson method in the forward process only, while calculating its theoretical gradients only once in the backward process. To further expand applicability (e.g., dense prediction tasks), an efficient symmetric normalization technique is introduced. Extensive experiments on ImageNet, COCO, and ADE20K show that our SOFT significantly improves the computational efficiency of existing ViT variants. With linear complexity, much longer token sequences are permitted by SOFT, resulting in superior trade-off between accuracy and complexity. Code and models are available at https://github.com/fudan-zvg/SOFT.
Theory, Analysis, and Best Practices for Sigmoid Self-Attention
Attention is a key part of the transformer architecture. It is a sequence-to-sequence mapping that transforms each sequence element into a weighted sum of values. The weights are typically obtained as the softmax of dot products between keys and queries. Recent work has explored alternatives to softmax attention in transformers, such as ReLU and sigmoid activations. In this work, we revisit sigmoid attention and conduct an in-depth theoretical and empirical analysis. Theoretically, we prove that transformers with sigmoid attention are universal function approximators and benefit from improved regularity compared to softmax attention. Through detailed empirical analysis, we identify stabilization of large initial attention norms during the early stages of training as a crucial factor for the successful training of models with sigmoid attention, outperforming prior attempts. We also introduce FLASHSIGMOID, a hardware-aware and memory-efficient implementation of sigmoid attention yielding a 17% inference kernel speed-up over FLASHATTENTION2 on H100 GPUs. Experiments across language, vision, and speech show that properly normalized sigmoid attention matches the strong performance of softmax attention on a wide range of domains and scales, which previous attempts at sigmoid attention were unable to fully achieve. Our work unifies prior art and establishes best practices for sigmoid attention as a drop-in softmax replacement in transformers.
cosFormer: Rethinking Softmax in Attention
Transformer has shown great successes in natural language processing, computer vision, and audio processing. As one of its core components, the softmax attention helps to capture long-range dependencies yet prohibits its scale-up due to the quadratic space and time complexity to the sequence length. Kernel methods are often adopted to reduce the complexity by approximating the softmax operator. Nevertheless, due to the approximation errors, their performances vary in different tasks/corpus and suffer crucial performance drops when compared with the vanilla softmax attention. In this paper, we propose a linear transformer called cosFormer that can achieve comparable or better accuracy to the vanilla transformer in both casual and cross attentions. cosFormer is based on two key properties of softmax attention: i). non-negativeness of the attention matrix; ii). a non-linear re-weighting scheme that can concentrate the distribution of the attention matrix. As its linear substitute, cosFormer fulfills these properties with a linear operator and a cosine-based distance re-weighting mechanism. Extensive experiments on language modeling and text understanding tasks demonstrate the effectiveness of our method. We further examine our method on long sequences and achieve state-of-the-art performance on the Long-Range Arena benchmark. The source code is available at https://github.com/OpenNLPLab/cosFormer.
The Z-loss: a shift and scale invariant classification loss belonging to the Spherical Family
Despite being the standard loss function to train multi-class neural networks, the log-softmax has two potential limitations. First, it involves computations that scale linearly with the number of output classes, which can restrict the size of problems we are able to tackle with current hardware. Second, it remains unclear how close it matches the task loss such as the top-k error rate or other non-differentiable evaluation metrics which we aim to optimize ultimately. In this paper, we introduce an alternative classification loss function, the Z-loss, which is designed to address these two issues. Unlike the log-softmax, it has the desirable property of belonging to the spherical loss family (Vincent et al., 2015), a class of loss functions for which training can be performed very efficiently with a complexity independent of the number of output classes. We show experimentally that it significantly outperforms the other spherical loss functions previously investigated. Furthermore, we show on a word language modeling task that it also outperforms the log-softmax with respect to certain ranking scores, such as top-k scores, suggesting that the Z-loss has the flexibility to better match the task loss. These qualities thus makes the Z-loss an appealing candidate to train very efficiently large output networks such as word-language models or other extreme classification problems. On the One Billion Word (Chelba et al., 2014) dataset, we are able to train a model with the Z-loss 40 times faster than the log-softmax and more than 4 times faster than the hierarchical softmax.
Noisy Softmax: Improving the Generalization Ability of DCNN via Postponing the Early Softmax Saturation
Over the past few years, softmax and SGD have become a commonly used component and the default training strategy in CNN frameworks, respectively. However, when optimizing CNNs with SGD, the saturation behavior behind softmax always gives us an illusion of training well and then is omitted. In this paper, we first emphasize that the early saturation behavior of softmax will impede the exploration of SGD, which sometimes is a reason for model converging at a bad local-minima, then propose Noisy Softmax to mitigating this early saturation issue by injecting annealed noise in softmax during each iteration. This operation based on noise injection aims at postponing the early saturation and further bringing continuous gradients propagation so as to significantly encourage SGD solver to be more exploratory and help to find a better local-minima. This paper empirically verifies the superiority of the early softmax desaturation, and our method indeed improves the generalization ability of CNN model by regularization. We experimentally find that this early desaturation helps optimization in many tasks, yielding state-of-the-art or competitive results on several popular benchmark datasets.
To Softmax, or not to Softmax: that is the question when applying Active Learning for Transformer Models
Despite achieving state-of-the-art results in nearly all Natural Language Processing applications, fine-tuning Transformer-based language models still requires a significant amount of labeled data to work. A well known technique to reduce the amount of human effort in acquiring a labeled dataset is Active Learning (AL): an iterative process in which only the minimal amount of samples is labeled. AL strategies require access to a quantified confidence measure of the model predictions. A common choice is the softmax activation function for the final layer. As the softmax function provides misleading probabilities, this paper compares eight alternatives on seven datasets. Our almost paradoxical finding is that most of the methods are too good at identifying the true most uncertain samples (outliers), and that labeling therefore exclusively outliers results in worse performance. As a heuristic we propose to systematically ignore samples, which results in improvements of various methods compared to the softmax function.
Rectifying Magnitude Neglect in Linear Attention
As the core operator of Transformers, Softmax Attention exhibits excellent global modeling capabilities. However, its quadratic complexity limits its applicability to vision tasks. In contrast, Linear Attention shares a similar formulation with Softmax Attention while achieving linear complexity, enabling efficient global information modeling. Nevertheless, Linear Attention suffers from a significant performance degradation compared to standard Softmax Attention. In this paper, we analyze the underlying causes of this issue based on the formulation of Linear Attention. We find that, unlike Softmax Attention, Linear Attention entirely disregards the magnitude information of the Query. This prevents the attention score distribution from dynamically adapting as the Query scales. As a result, despite its structural similarity to Softmax Attention, Linear Attention exhibits a significantly different attention score distribution. Based on this observation, we propose Magnitude-Aware Linear Attention (MALA), which modifies the computation of Linear Attention to fully incorporate the Query's magnitude. This adjustment allows MALA to generate an attention score distribution that closely resembles Softmax Attention while exhibiting a more well-balanced structure. We evaluate the effectiveness of MALA on multiple tasks, including image classification, object detection, instance segmentation, semantic segmentation, natural language processing, speech recognition, and image generation. Our MALA achieves strong results on all of these tasks. Code will be available at https://github.com/qhfan/MALA
Gumbel-Softmax Flow Matching with Straight-Through Guidance for Controllable Biological Sequence Generation
Flow matching in the continuous simplex has emerged as a promising strategy for DNA sequence design, but struggles to scale to higher simplex dimensions required for peptide and protein generation. We introduce Gumbel-Softmax Flow and Score Matching, a generative framework on the simplex based on a novel Gumbel-Softmax interpolant with a time-dependent temperature. Using this interpolant, we introduce Gumbel-Softmax Flow Matching by deriving a parameterized velocity field that transports from smooth categorical distributions to distributions concentrated at a single vertex of the simplex. We alternatively present Gumbel-Softmax Score Matching which learns to regress the gradient of the probability density. Our framework enables high-quality, diverse generation and scales efficiently to higher-dimensional simplices. To enable training-free guidance, we propose Straight-Through Guided Flows (STGFlow), a classifier-based guidance method that leverages straight-through estimators to steer the unconditional velocity field toward optimal vertices of the simplex. STGFlow enables efficient inference-time guidance using classifiers pre-trained on clean sequences, and can be used with any discrete flow method. Together, these components form a robust framework for controllable de novo sequence generation. We demonstrate state-of-the-art performance in conditional DNA promoter design, sequence-only protein generation, and target-binding peptide design for rare disease treatment.
