1 A scalable and efficient convolutional neural network accelerator using HLS for a System on Chip design This paper presents a configurable Convolutional Neural Network Accelerator (CNNA) for a System on Chip design (SoC). The goal was to accelerate inference of different deep learning networks on an embedded SoC platform. The presented CNNA has a scalable architecture which uses High Level Synthesis (HLS) and SystemC for the hardware accelerator. It is able to accelerate any Convolutional Neural Network (CNN) exported from Python and supports a combination of convolutional, max-pooling, and fully connected layers. A training method with fixed-point quantized weights is proposed and presented in the paper. The CNNA is template-based, enabling it to scale for different targets of the Xilinx Zynq platform. This approach enables design space exploration, which makes it possible to explore several configurations of the CNNA during C- and RTL-simulation, fitting it to the desired platform and model. The CNN VGG16 was used to test the solution on a Xilinx Ultra96 board using PYNQ. The result gave a high level of accuracy in training with an auto-scaled fixed-point Q2.14 format compared to a similar floating-point model. It was able to perform inference in 2.0 seconds, while having an average power consumption of 2.63 W, which corresponds to a power efficiency of 6.0 GOPS/W. 3 authors · Apr 27, 2020
- Characterizing Soft-Error Resiliency in Arm's Ethos-U55 Embedded Machine Learning Accelerator As Neural Processing Units (NPU) or accelerators are increasingly deployed in a variety of applications including safety critical applications such as autonomous vehicle, and medical imaging, it is critical to understand the fault-tolerance nature of the NPUs. We present a reliability study of Arm's Ethos-U55, an important industrial-scale NPU being utilised in embedded and IoT applications. We perform large scale RTL-level fault injections to characterize Ethos-U55 against the Automotive Safety Integrity Level D (ASIL-D) resiliency standard commonly used for safety-critical applications such as autonomous vehicles. We show that, under soft errors, all four configurations of the NPU fall short of the required level of resiliency for a variety of neural networks running on the NPU. We show that it is possible to meet the ASIL-D level resiliency without resorting to conventional strategies like Dual Core Lock Step (DCLS) that has an area overhead of 100%. We achieve so through selective protection, where hardware structures are selectively protected (e.g., duplicated, hardened) based on their sensitivity to soft errors and their silicon areas. To identify the optimal configuration that minimizes the area overhead while meeting the ASIL-D standard, the main challenge is the large search space associated with the time-consuming RTL simulation. To address this challenge, we present a statistical analysis tool that is validated against Arm silicon and that allows us to quickly navigate hundreds of billions of fault sites without exhaustive RTL fault injections. We show that by carefully duplicating a small fraction of the functional blocks and hardening the Flops in other blocks meets the ASIL-D safety standard while introducing an area overhead of only 38%. 5 authors · Apr 14, 2024
- VeriCoder: Enhancing LLM-Based RTL Code Generation through Functional Correctness Validation Recent advances in Large Language Models (LLMs) have sparked growing interest in applying them to Electronic Design Automation (EDA) tasks, particularly Register Transfer Level (RTL) code generation. While several RTL datasets have been introduced, most focus on syntactic validity rather than functional validation with tests, leading to training examples that compile but may not implement the intended behavior. We present VERICODER, a model for RTL code generation fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset is constructed using a novel methodology that combines unit test generation with feedback-directed refinement. Given a natural language specification and an initial RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and iteratively revise the RTL design based on its simulation results using the generated tests. If necessary, the teacher model also updates the tests to ensure they comply with the natural language specification. As a result of this process, every example in our dataset is functionally validated, consisting of a natural language description, an RTL implementation, and passing tests. Fine-tuned on this dataset of over 125,000 examples, VERICODER achieves state-of-the-art metrics in functional correctness on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4% respectively. An ablation study further shows that models trained on our functionally validated dataset outperform those trained on functionally non-validated datasets, underscoring the importance of high-quality datasets in RTL code generation. 8 authors · Apr 22, 2025
- Towards LLM-Powered Verilog RTL Assistant: Self-Verification and Self-Correction We explore the use of Large Language Models (LLMs) to generate high-quality Register-Transfer Level (RTL) code with minimal human interference. The traditional RTL design workflow requires human experts to manually write high-quality RTL code, which is time-consuming and error-prone. With the help of emerging LLMs, developers can describe their requirements to LLMs which then generate corresponding code in Python, C, Java, and more. Adopting LLMs to generate RTL design in hardware description languages is not trivial, given the complex nature of hardware design and the generated design has to meet the timing and physical constraints. We propose VeriAssist, an LLM-powered programming assistant for Verilog RTL design workflow. VeriAssist takes RTL design descriptions as input and generates high-quality RTL code with corresponding test benches. VeriAssist enables the LLM to self-correct and self-verify the generated code by adopting an automatic prompting system and integrating RTL simulator in the code generation loop. To generate an RTL design, VeriAssist first generates the initial RTL code and corresponding test benches, followed by a self-verification step that walks through the code with test cases to reason the code behavior at different time steps, and finally it self-corrects the code by reading the compilation and simulation results and generating final RTL code that fixes errors in compilation and simulation. This design fully leverages the LLMs' capabilities on multi-turn interaction and chain-of-thought reasoning to improve the quality of the generated code. We evaluate VeriAssist with various benchmark suites and find it significantly improves both syntax and functionality correctness over existing LLM implementations, thus minimizing human intervention and making RTL design more accessible to novice designers. 6 authors · May 31, 2024