new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 28

PISA-Bench: The PISA Index as a Multilingual and Multimodal Metric for the Evaluation of Vision-Language Models

Vision-language models (VLMs) have demonstrated remarkable progress in multimodal reasoning. However, existing benchmarks remain limited in terms of high-quality, human-verified examples. Many current datasets rely on synthetically generated content by large language models (LLMs). Furthermore, most datasets are limited to English, as manual quality assurance of translated samples is time-consuming and costly. To fill this gap, we introduce PISA-Bench, a multilingual benchmark derived from English examples of the expert-created PISA tests, a unified framework for the assessment of student competencies in over eighty countries. Each example consists of human-extracted instructions, questions, answer options, and images, enriched with question type categories, and has been translated from English into five additional languages (Spanish, German, Chinese, French, and Italian), resulting in a fully parallel corpus covering six languages. We evaluate state-of-the-art vision-language models on PISA-Bench and find that especially small models (<20B parameters) fail to achieve high test scores. We further find substantial performance degradation on non-English splits as well as high error-rates when models are tasked with spatial and geometric reasoning. By releasing the dataset and evaluation framework, we provide a resource for advancing research on multilingual multimodal reasoning.

  • 5 authors
·
Oct 27, 2025

A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL

Neural Theorem Proving (NTP) employs LLMs to automate formal proofs in proof assistants. While LLMs have achieved relatively remarkable success in informal reasoning tasks using natural languages, the transition to mechanized formal theorem proving presents persistent challenges. Mechanized proof languages often contain many syntactic constructs and diverse, specialized proof tactics, which facilitate expert use but have no direct counterpart in informal mathematical proofs. These prover-specific idioms represent an additional burden for LLM-based NTPs that might be otherwise successful in generating informal proofs. Seeking to bridge this gap between formal proof construction and informal reasoning, in order to better facilitate NTP, this work approaches these challenges from a language design perspective. We look at common reasoning patterns in informal proofs and in existing mechanized proofs, and design Minilang -- a minimalist proof language that captures these reasoning patterns. In contrast to proof languages (informal and formal) that often feature a large collection of operations with unclear semantic boundaries, Minilang is deliberately kept minimalist -- its core design comprises only 10 operations, each with clear semantic distinctions. We further develop a rule-based translator from Isabelle's language (Isar) to Minilang, translating ~340K existing proofs with an ~85% success rate. Using this translated corpus, we finetune two LLMs to compare machine learning performance on Minilang versus the original Isar. Experiments show Minilang benefits the two LLMs by improving the pass@1 success rate on the PISA benchmark by up to 20/29 percentage points in comparison to the Isar-based LLMs w/wo Sledgehammer. The pass@1 rate reaches 69.1%, exceeding the prior work Baldur's pass@64 (65.7%); the pass@8 rate reaches 79.2%, exceeding the SOTA on PISA (71.0%) achieved by Magnushammer.

  • 5 authors
·
Jul 24, 2025