new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

NMR-Solver: Automated Structure Elucidation via Large-Scale Spectral Matching and Physics-Guided Fragment Optimization

Nuclear Magnetic Resonance (NMR) spectroscopy is one of the most powerful and widely used tools for molecular structure elucidation in organic chemistry. However, the interpretation of NMR spectra to determine unknown molecular structures remains a labor-intensive and expertise-dependent process, particularly for complex or novel compounds. Although recent methods have been proposed for molecular structure elucidation, they often underperform in real-world applications due to inherent algorithmic limitations and limited high-quality data. Here, we present NMR-Solver, a practical and interpretable framework for the automated determination of small organic molecule structures from ^1H and ^{13}C NMR spectra. Our method introduces an automated framework for molecular structure elucidation, integrating large-scale spectral matching with physics-guided fragment-based optimization that exploits atomic-level structure-spectrum relationships in NMR. We evaluate NMR-Solver on simulated benchmarks, curated experimental data from the literature, and real-world experiments, demonstrating its strong generalization, robustness, and practical utility in challenging, real-life scenarios. NMR-Solver unifies computational NMR analysis, deep learning, and interpretable chemical reasoning into a coherent system. By incorporating the physical principles of NMR into molecular optimization, it enables scalable, automated, and chemically meaningful molecular identification, establishing a generalizable paradigm for solving inverse problems in molecular science.

  • 9 authors
·
Aug 30, 2025

2DNMRGym: An Annotated Experimental Dataset for Atom-Level Molecular Representation Learning in 2D NMR via Surrogate Supervision

Two-dimensional (2D) Nuclear Magnetic Resonance (NMR) spectroscopy, particularly Heteronuclear Single Quantum Coherence (HSQC) spectroscopy, plays a critical role in elucidating molecular structures, interactions, and electronic properties. However, accurately interpreting 2D NMR data remains labor-intensive and error-prone, requiring highly trained domain experts, especially for complex molecules. Machine Learning (ML) holds significant potential in 2D NMR analysis by learning molecular representations and recognizing complex patterns from data. However, progress has been limited by the lack of large-scale and high-quality annotated datasets. In this work, we introduce 2DNMRGym, the first annotated experimental dataset designed for ML-based molecular representation learning in 2D NMR. It includes over 22,000 HSQC spectra, along with the corresponding molecular graphs and SMILES strings. Uniquely, 2DNMRGym adopts a surrogate supervision setup: models are trained using algorithm-generated annotations derived from a previously validated method and evaluated on a held-out set of human-annotated gold-standard labels. This enables rigorous assessment of a model's ability to generalize from imperfect supervision to expert-level interpretation. We provide benchmark results using a series of 2D and 3D GNN and GNN transformer models, establishing a strong foundation for future work. 2DNMRGym supports scalable model training and introduces a chemically meaningful benchmark for evaluating atom-level molecular representations in NMR-guided structural tasks. Our data and code is open-source and available on Huggingface and Github.

  • 3 authors
·
May 16, 2025

MolSpectLLM: A Molecular Foundation Model Bridging Spectroscopy, Molecule Elucidation, and 3D Structure Generation

Recent advances in molecular foundation models have shown impressive performance in molecular property prediction and de novo molecular design, with promising applications in areas such as drug discovery and reaction prediction. Nevertheless, most existing approaches rely exclusively on SMILES representations and overlook both experimental spectra and 3D structural information-two indispensable sources for capturing molecular behavior in real-world scenarios. This limitation reduces their effectiveness in tasks where stereochemistry, spatial conformation, and experimental validation are critical. To overcome these challenges, we propose MolSpectLLM, a molecular foundation model pretrained on Qwen2.5-7B that unifies experimental spectroscopy with molecular 3D structure. By explicitly modeling molecular spectra, MolSpectLLM achieves state-of-the-art performance on spectrum-related tasks, with an average accuracy of 0.53 across NMR, IR, and MS benchmarks. MolSpectLLM also shows strong performance on the spectra analysis task, obtaining 15.5% sequence accuracy and 41.7% token accuracy on Spectra-to-SMILES, substantially outperforming large general-purpose LLMs. More importantly, MolSpectLLM not only achieves strong performance on molecular elucidation tasks, but also generates accurate 3D molecular structures directly from SMILES or spectral inputs, bridging spectral analysis, molecular elucidation, and molecular design. Code are available at https://github.com/Eurekashen/MolSpectLLM{https://github.com/Eurekashen/MolSpectLLM}.

  • 9 authors
·
Sep 26, 2025

DiffSpectra: Molecular Structure Elucidation from Spectra using Diffusion Models

Molecular structure elucidation from spectra is a foundational problem in chemistry, with profound implications for compound identification, synthesis, and drug development. Traditional methods rely heavily on expert interpretation and lack scalability. Pioneering machine learning methods have introduced retrieval-based strategies, but their reliance on finite libraries limits generalization to novel molecules. Generative models offer a promising alternative, yet most adopt autoregressive SMILES-based architectures that overlook 3D geometry and struggle to integrate diverse spectral modalities. In this work, we present DiffSpectra, a generative framework that directly infers both 2D and 3D molecular structures from multi-modal spectral data using diffusion models. DiffSpectra formulates structure elucidation as a conditional generation process. Its denoising network is parameterized by Diffusion Molecule Transformer, an SE(3)-equivariant architecture that integrates topological and geometric information. Conditioning is provided by SpecFormer, a transformer-based spectral encoder that captures intra- and inter-spectral dependencies from multi-modal spectra. Extensive experiments demonstrate that DiffSpectra achieves high accuracy in structure elucidation, recovering exact structures with 16.01% top-1 accuracy and 96.86% top-20 accuracy through sampling. The model benefits significantly from 3D geometric modeling, SpecFormer pre-training, and multi-modal conditioning. These results highlight the effectiveness of spectrum-conditioned diffusion modeling in addressing the challenge of molecular structure elucidation. To our knowledge, DiffSpectra is the first framework to unify multi-modal spectral reasoning and joint 2D/3D generative modeling for de novo molecular structure elucidation.

  • 10 authors
·
Jul 9, 2025 1

MassSpecGym: A benchmark for the discovery and identification of molecules

The discovery and identification of molecules in biological and environmental samples is crucial for advancing biomedical and chemical sciences. Tandem mass spectrometry (MS/MS) is the leading technique for high-throughput elucidation of molecular structures. However, decoding a molecular structure from its mass spectrum is exceptionally challenging, even when performed by human experts. As a result, the vast majority of acquired MS/MS spectra remain uninterpreted, thereby limiting our understanding of the underlying (bio)chemical processes. Despite decades of progress in machine learning applications for predicting molecular structures from MS/MS spectra, the development of new methods is severely hindered by the lack of standard datasets and evaluation protocols. To address this problem, we propose MassSpecGym -- the first comprehensive benchmark for the discovery and identification of molecules from MS/MS data. Our benchmark comprises the largest publicly available collection of high-quality labeled MS/MS spectra and defines three MS/MS annotation challenges: de novo molecular structure generation, molecule retrieval, and spectrum simulation. It includes new evaluation metrics and a generalization-demanding data split, therefore standardizing the MS/MS annotation tasks and rendering the problem accessible to the broad machine learning community. MassSpecGym is publicly available at https://github.com/pluskal-lab/MassSpecGym.

  • 30 authors
·
Oct 30, 2024

A Benchmark for Quantum Chemistry Relaxations via Machine Learning Interatomic Potentials

Computational quantum chemistry plays a critical role in drug discovery, chemical synthesis, and materials science. While first-principles methods, such as density functional theory (DFT), provide high accuracy in modeling electronic structures and predicting molecular properties, they are computationally expensive. Machine learning interatomic potentials (MLIPs) have emerged as promising surrogate models that aim to achieve DFT-level accuracy while enabling efficient large-scale atomistic simulations. The development of accurate and transferable MLIPs requires large-scale, high-quality datasets with both energy and force labels. Critically, MLIPs must generalize not only to stable geometries but also to intermediate, non-equilibrium conformations encountered during atomistic simulations. In this work, we introduce PubChemQCR, a large-scale dataset of molecular relaxation trajectories curated from the raw geometry optimization outputs of the PubChemQC project. PubChemQCR is the largest publicly available dataset of DFT-based relaxation trajectories for small organic molecules, comprising approximately 3.5 million trajectories and over 300 million molecular conformations computed at various levels of theory. Each conformation is labeled with both total energy and atomic forces, making the dataset suitable for training and evaluating MLIPs. To provide baselines for future developments, we benchmark nine representative MLIP models on the dataset. Our resources are publicly available at https://huggingface.co/divelab

  • 11 authors
·
Jun 28, 2025

Transformers for molecular property prediction: Domain adaptation efficiently improves performance

Most of the current transformer-based chemical language models are pre-trained on millions to billions of molecules. However, the improvement from such scaling in dataset size is not confidently linked to improved molecular property prediction. The aim of this study is to investigate and overcome some of the limitations of transformer models in predicting molecular properties. Specifically, we examine the impact of pre-training dataset size and diversity on the performance of transformer models and investigate the use of domain adaptation as a technique for improving model performance. First, our findings indicate that increasing pretraining dataset size beyond 400K molecules from the GuacaMol dataset does not result in a significant improvement on four ADME endpoints, namely, solubility, permeability, microsomal stability, and plasma protein binding. Second, our results demonstrate that using domain adaptation by further training the transformer model on a small set of domain-relevant molecules, i.e., a few hundred to a few thousand, using multi-task regression of physicochemical properties was sufficient to significantly improve performance for three out of the four investigated ADME endpoints (P-value < 0.001). Finally, we observe that a model pre-trained on 400K molecules and domain adopted on a few hundred/thousand molecules performs similarly (P-value > 0.05) to more complicated transformer models like MolBERT(pre-trained on 1.3M molecules) and MolFormer (pre-trained on 100M molecules). A comparison to a random forest model trained on basic physicochemical properties showed similar performance to the examined transformer models. We believe that current transformer models can be improved through further systematic analysis of pre-training and downstream data, pre-training objectives, and scaling laws, ultimately leading to better and more helpful models.

  • 6 authors
·
Mar 5, 2025

Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks

Molecular Representation Learning (MRL) has proven impactful in numerous biochemical applications such as drug discovery and enzyme design. While Graph Neural Networks (GNNs) are effective at learning molecular representations from a 2D molecular graph or a single 3D structure, existing works often overlook the flexible nature of molecules, which continuously interconvert across conformations via chemical bond rotations and minor vibrational perturbations. To better account for molecular flexibility, some recent works formulate MRL as an ensemble learning problem, focusing on explicitly learning from a set of conformer structures. However, most of these studies have limited datasets, tasks, and models. In this work, we introduce the first MoleculAR Conformer Ensemble Learning (MARCEL) benchmark to thoroughly evaluate the potential of learning on conformer ensembles and suggest promising research directions. MARCEL includes four datasets covering diverse molecule- and reaction-level properties of chemically diverse molecules including organocatalysts and transition-metal catalysts, extending beyond the scope of common GNN benchmarks that are confined to drug-like molecules. In addition, we conduct a comprehensive empirical study, which benchmarks representative 1D, 2D, and 3D molecular representation learning models, along with two strategies that explicitly incorporate conformer ensembles into 3D MRL models. Our findings reveal that direct learning from an accessible conformer space can improve performance on a variety of tasks and models.

  • 13 authors
·
Sep 29, 2023

Tensor Decomposition Networks for Fast Machine Learning Interatomic Potential Computations

SO(3)-equivariant networks are the dominant models for machine learning interatomic potentials (MLIPs). The key operation of such networks is the Clebsch-Gordan (CG) tensor product, which is computationally expensive. To accelerate the computation, we develop tensor decomposition networks (TDNs) as a class of approximately equivariant networks in which CG tensor products are replaced by low-rank tensor decompositions, such as the CANDECOMP/PARAFAC (CP) decomposition. With the CP decomposition, we prove (i) a uniform bound on the induced error of SO(3)-equivariance, and (ii) the universality of approximating any equivariant bilinear map. To further reduce the number of parameters, we propose path-weight sharing that ties all multiplicity-space weights across the O(L^3) CG paths into a single shared parameter set without compromising equivariance, where L is the maximum angular degree. The resulting layer acts as a plug-and-play replacement for tensor products in existing networks, and the computational complexity of tensor products is reduced from O(L^6) to O(L^4). We evaluate TDNs on PubChemQCR, a newly curated molecular relaxation dataset containing 105 million DFT-calculated snapshots. We also use existing datasets, including OC20, and OC22. Results show that TDNs achieve competitive performance with dramatic speedup in computations. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS/tree/main/OpenMol/TDN{https://github.com/divelab/AIRS/}).

  • 9 authors
·
Jul 1, 2025

Understanding and Mitigating Distribution Shifts For Machine Learning Force Fields

Machine Learning Force Fields (MLFFs) are a promising alternative to expensive ab initio quantum mechanical molecular simulations. Given the diversity of chemical spaces that are of interest and the cost of generating new data, it is important to understand how MLFFs generalize beyond their training distributions. In order to characterize and better understand distribution shifts in MLFFs, we conduct diagnostic experiments on chemical datasets, revealing common shifts that pose significant challenges, even for large foundation models trained on extensive data. Based on these observations, we hypothesize that current supervised training methods inadequately regularize MLFFs, resulting in overfitting and learning poor representations of out-of-distribution systems. We then propose two new methods as initial steps for mitigating distribution shifts for MLFFs. Our methods focus on test-time refinement strategies that incur minimal computational cost and do not use expensive ab initio reference labels. The first strategy, based on spectral graph theory, modifies the edges of test graphs to align with graph structures seen during training. Our second strategy improves representations for out-of-distribution systems at test-time by taking gradient steps using an auxiliary objective, such as a cheap physical prior. Our test-time refinement strategies significantly reduce errors on out-of-distribution systems, suggesting that MLFFs are capable of and can move towards modeling diverse chemical spaces, but are not being effectively trained to do so. Our experiments establish clear benchmarks for evaluating the generalization capabilities of the next generation of MLFFs. Our code is available at https://tkreiman.github.io/projects/mlff_distribution_shifts/.

  • 2 authors
·
Mar 11, 2025 3

GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets

Recent years have seen the advent of molecular simulation datasets that are orders of magnitude larger and more diverse. These new datasets differ substantially in four aspects of complexity: 1. Chemical diversity (number of different elements), 2. system size (number of atoms per sample), 3. dataset size (number of data samples), and 4. domain shift (similarity of the training and test set). Despite these large differences, benchmarks on small and narrow datasets remain the predominant method of demonstrating progress in graph neural networks (GNNs) for molecular simulation, likely due to cheaper training compute requirements. This raises the question -- does GNN progress on small and narrow datasets translate to these more complex datasets? This work investigates this question by first developing the GemNet-OC model based on the large Open Catalyst 2020 (OC20) dataset. GemNet-OC outperforms the previous state-of-the-art on OC20 by 16% while reducing training time by a factor of 10. We then compare the impact of 18 model components and hyperparameter choices on performance in multiple datasets. We find that the resulting model would be drastically different depending on the dataset used for making model choices. To isolate the source of this discrepancy we study six subsets of the OC20 dataset that individually test each of the above-mentioned four dataset aspects. We find that results on the OC-2M subset correlate well with the full OC20 dataset while being substantially cheaper to train on. Our findings challenge the common practice of developing GNNs solely on small datasets, but highlight ways of achieving fast development cycles and generalizable results via moderately-sized, representative datasets such as OC-2M and efficient models such as GemNet-OC. Our code and pretrained model weights are open-sourced.

  • 7 authors
·
Apr 6, 2022

ChemTEB: Chemical Text Embedding Benchmark, an Overview of Embedding Models Performance & Efficiency on a Specific Domain

Recent advancements in language models have started a new era of superior information retrieval and content generation, with embedding models playing an important role in optimizing data representation efficiency and performance. While benchmarks like the Massive Text Embedding Benchmark (MTEB) have standardized the evaluation of general domain embedding models, a gap remains in specialized fields such as chemistry, which require tailored approaches due to domain-specific challenges. This paper introduces a novel benchmark, the Chemical Text Embedding Benchmark (ChemTEB), designed specifically for the chemical sciences. ChemTEB addresses the unique linguistic and semantic complexities of chemical literature and data, offering a comprehensive suite of tasks on chemical domain data. Through the evaluation of 34 open-source and proprietary models using this benchmark, we illuminate the strengths and weaknesses of current methodologies in processing and understanding chemical information. Our work aims to equip the research community with a standardized, domain-specific evaluation framework, promoting the development of more precise and efficient NLP models for chemistry-related applications. Furthermore, it provides insights into the performance of generic models in a domain-specific context. ChemTEB comes with open-source code and data, contributing further to its accessibility and utility.

  • 7 authors
·
Nov 30, 2024

AQCat25: Unlocking spin-aware, high-fidelity machine learning potentials for heterogeneous catalysis

Large-scale datasets have enabled highly accurate machine learning interatomic potentials (MLIPs) for general-purpose heterogeneous catalysis modeling. There are, however, some limitations in what can be treated with these potentials because of gaps in the underlying training data. To extend these capabilities, we introduce AQCat25, a complementary dataset of 13.5 million density functional theory (DFT) single point calculations designed to improve the treatment of systems where spin polarization and/or higher fidelity are critical. We also investigate methodologies for integrating new datasets, such as AQCat25, with the broader Open Catalyst 2020 (OC20) dataset to create spin-aware models without sacrificing generalizability. We find that directly tuning a general model on AQCat25 leads to catastrophic forgetting of the original dataset's knowledge. Conversely, joint training strategies prove effective for improving accuracy on the new data without sacrificing general performance. This joint approach introduces a challenge, as the model must learn from a dataset containing both mixed-fidelity calculations and mixed-physics (spin-polarized vs. unpolarized). We show that explicitly conditioning the model on this system-specific metadata, for example by using Feature-wise Linear Modulation (FiLM), successfully addresses this challenge and further enhances model accuracy. Ultimately, our work establishes an effective protocol for bridging DFT fidelity domains to advance the predictive power of foundational models in catalysis.

  • 3 authors
·
Oct 26, 2025

Large-Scale Chemical Language Representations Capture Molecular Structure and Properties

Models based on machine learning can enable accurate and fast molecular property predictions, which is of interest in drug discovery and material design. Various supervised machine learning models have demonstrated promising performance, but the vast chemical space and the limited availability of property labels make supervised learning challenging. Recently, unsupervised transformer-based language models pretrained on a large unlabelled corpus have produced state-of-the-art results in many downstream natural language processing tasks. Inspired by this development, we present molecular embeddings obtained by training an efficient transformer encoder model, MoLFormer, which uses rotary positional embeddings. This model employs a linear attention mechanism, coupled with highly distributed training, on SMILES sequences of 1.1 billion unlabelled molecules from the PubChem and ZINC datasets. We show that the learned molecular representation outperforms existing baselines, including supervised and self-supervised graph neural networks and language models, on several downstream tasks from ten benchmark datasets. They perform competitively on two others. Further analyses, specifically through the lens of attention, demonstrate that MoLFormer trained on chemical SMILES indeed learns the spatial relationships between atoms within a molecule. These results provide encouraging evidence that large-scale molecular language models can capture sufficient chemical and structural information to predict various distinct molecular properties, including quantum-chemical properties.

  • 6 authors
·
Jun 17, 2021

Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets

Recently, pre-trained foundation models have enabled significant advancements in multiple fields. In molecular machine learning, however, where datasets are often hand-curated, and hence typically small, the lack of datasets with labeled features, and codebases to manage those datasets, has hindered the development of foundation models. In this work, we present seven novel datasets categorized by size into three distinct categories: ToyMix, LargeMix and UltraLarge. These datasets push the boundaries in both the scale and the diversity of supervised labels for molecular learning. They cover nearly 100 million molecules and over 3000 sparsely defined tasks, totaling more than 13 billion individual labels of both quantum and biological nature. In comparison, our datasets contain 300 times more data points than the widely used OGB-LSC PCQM4Mv2 dataset, and 13 times more than the quantum-only QM1B dataset. In addition, to support the development of foundational models based on our proposed datasets, we present the Graphium graph machine learning library which simplifies the process of building and training molecular machine learning models for multi-task and multi-level molecular datasets. Finally, we present a range of baseline results as a starting point of multi-task and multi-level training on these datasets. Empirically, we observe that performance on low-resource biological datasets show improvement by also training on large amounts of quantum data. This indicates that there may be potential in multi-task and multi-level training of a foundation model and fine-tuning it to resource-constrained downstream tasks.

  • 34 authors
·
Oct 6, 2023

SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars

In recent years, large language models (LLMs) have transformed natural language understanding through vast datasets and large-scale parameterization. Inspired by this success, we present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis. Stellar spectra, akin to structured language, encode rich physical and chemical information about stars. By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications. As a proof of concept, SpecCLIP involves pre-training on two spectral types--LAMOST low-resolution and Gaia XP--followed by contrastive alignment using the CLIP (Contrastive Language-Image Pre-training) framework, adapted to associate spectra from different instruments. This alignment is complemented by auxiliary decoders that preserve spectrum-specific information and enable translation (prediction) between spectral types, with the former achieved by maximizing mutual information between embeddings and input spectra. The result is a cross-spectrum framework enabling intrinsic calibration and flexible applications across instruments. We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar-parameter estimation and chemical-abundance determination. SpecCLIP also enhances the accuracy and precision of parameter estimates benchmarked against external survey data. Additionally, its similarity search and cross-spectrum prediction capabilities offer potential for anomaly detection. Our results suggest that contrastively trained foundation models enriched with spectrum-aware decoders can advance precision stellar spectroscopy.

  • 9 authors
·
Jul 2, 2025

Protosolar D-to-H abundance and one part-per-billion PH_{3} in the coldest brown dwarf

The coldest Y spectral type brown dwarfs are similar in mass and temperature to cool and warm (sim200 -- 400 K) giant exoplanets. We can therefore use their atmospheres as proxies for planetary atmospheres, testing our understanding of physics and chemistry for these complex, cool worlds. At these cold temperatures, their atmospheres are cold enough for water clouds to form, and chemical timescales increase, increasing the likelihood of disequilibrium chemistry compared to warmer classes of planets. JWST observations are revolutionizing the characterization of these worlds with high signal-to-noise, moderate resolution near- and mid-infrared spectra. The spectra have been used to measure the abundances of prominent species like water, methane, and ammonia; species that trace chemical reactions like carbon monoxide; and even isotopologues of carbon monoxide and ammonia. Here, we present atmospheric retrieval results using both published fixed-slit (GTO program 1230) and new averaged time series observations (GO program 2327) of the coldest known Y dwarf, WISE 0855-0714 (using NIRSpec G395M spectra), which has an effective temperature of sim 264 K. We present a detection of deuterium in an atmosphere outside of the solar system via a relative measurement of deuterated methane (CH_{3}D) and standard methane. From this, we infer the D/H ratio of a substellar object outside the solar system for the first time. We also present a well-constrained part-per-billion abundance of phosphine (PH_{3}). We discuss our interpretation of these results and the implications for brown dwarf and giant exoplanet formation and evolution.

  • 27 authors
·
Nov 21, 2024

A Tutorial on MRI Reconstruction: From Modern Methods to Clinical Implications

MRI is an indispensable clinical tool, offering a rich variety of tissue contrasts to support broad diagnostic and research applications. Clinical exams routinely acquire multiple structural sequences that provide complementary information for differential diagnosis, while research protocols often incorporate advanced functional, diffusion, spectroscopic, and relaxometry sequences to capture multidimensional insights into tissue structure and composition. However, these capabilities come at the cost of prolonged scan times, which reduce patient throughput, increase susceptibility to motion artifacts, and may require trade-offs in image quality or diagnostic scope. Over the last two decades, advances in image reconstruction algorithms--alongside improvements in hardware and pulse sequence design--have made it possible to accelerate acquisitions while preserving diagnostic quality. Central to this progress is the ability to incorporate prior information to regularize the solutions to the reconstruction problem. In this tutorial, we overview the basics of MRI reconstruction and highlight state-of-the-art approaches, beginning with classical methods that rely on explicit hand-crafted priors, and then turning to deep learning methods that leverage a combination of learned and crafted priors to further push the performance envelope. We also explore the translational aspects and eventual clinical implications of these methods. We conclude by discussing future directions to address remaining challenges in MRI reconstruction. The tutorial is accompanied by a Python toolbox (https://github.com/tutorial-MRI-recon/tutorial) to demonstrate select methods discussed in the article.

  • 7 authors
·
Jul 22, 2025

GP-MoLFormer: A Foundation Model For Molecular Generation

Transformer-based models trained on large and general purpose datasets consisting of molecular strings have recently emerged as a powerful tool for successfully modeling various structure-property relations. Inspired by this success, we extend the paradigm of training chemical language transformers on large-scale chemical datasets to generative tasks in this work. Specifically, we propose GP-MoLFormer, an autoregressive molecular string generator that is trained on more than 1.1B (billion) chemical SMILES. GP-MoLFormer uses a 46.8M parameter transformer decoder model with linear attention and rotary positional encodings as the base architecture. GP-MoLFormer's utility is evaluated and compared with that of existing baselines on three different tasks: de novo generation, scaffold-constrained molecular decoration, and unconstrained property-guided optimization. While the first two are handled with no additional training, we propose a parameter-efficient fine-tuning method for the last task, which uses property-ordered molecular pairs as input. We call this new approach pair-tuning. Our results show GP-MoLFormer performs better or comparable with baselines across all three tasks, demonstrating its general utility for a variety of molecular generation tasks. We further report strong memorization of training data in GP-MoLFormer generations, which has so far remained unexplored for chemical language models. Our analyses reveal that training data memorization and novelty in generations are impacted by the quality and scale of the training data; duplication bias in training data can enhance memorization at the cost of lowering novelty. We further establish a scaling law relating inference compute and novelty in generations.

  • 7 authors
·
Apr 4, 2024

Efficient Implementation of Gaussian Process Regression Accelerated Saddle Point Searches with Application to Molecular Reactions

The task of locating first order saddle points on high-dimensional surfaces describing the variation of energy as a function of atomic coordinates is an essential step for identifying the mechanism and estimating the rate of thermally activated events within the harmonic approximation of transition state theory. When combined directly with electronic structure calculations, the number of energy and atomic force evaluations needed for convergence is a primary issue. Here, we describe an efficient implementation of Gaussian process regression (GPR) acceleration of the minimum mode following method where a dimer is used to estimate the lowest eigenmode of the Hessian. A surrogate energy surface is constructed and updated after each electronic structure calculation. The method is applied to a test set of 500 molecular reactions previously generated by Hermez and coworkers [J. Chem. Theory Comput. 18, 6974 (2022)]. An order of magnitude reduction in the number of electronic structure calculations needed to reach the saddle point configurations is obtained by using the GPR compared to the dimer method. Despite the wide range in stiffness of the molecular degrees of freedom, the calculations are carried out using Cartesian coordinates and are found to require similar number of electronic structure calculations as an elaborate internal coordinate method implemented in the Sella software package. The present implementation of the GPR surrogate model in C++ is efficient enough for the wall time of the saddle point searches to be reduced in 3 out of 4 cases even though the calculations are carried out at a low Hartree-Fock level.

  • 5 authors
·
May 18, 2025

Leveraging Side Information for Ligand Conformation Generation using Diffusion-Based Approaches

Ligand molecule conformation generation is a critical challenge in drug discovery. Deep learning models have been developed to tackle this problem, particularly through the use of generative models in recent years. However, these models often generate conformations that lack meaningful structure and randomness due to the absence of essential side information. Examples of such side information include the chemical and geometric features of the target protein, ligand-target compound interactions, and ligand chemical properties. Without these constraints, the generated conformations may not be suitable for further selection and design of new drugs. To address this limitation, we propose a novel method for generating ligand conformations that leverage side information and incorporate flexible constraints into standard diffusion models. Drawing inspiration from the concept of message passing, we introduce ligand-target massage passing block, a mechanism that facilitates the exchange of information between target nodes and ligand nodes, thereby incorporating target node features. To capture non-covalent interactions, we introduce ligand-target compound inter and intra edges. To further improve the biological relevance of the generated conformations, we train energy models using scalar chemical features. These models guide the progress of the standard Denoising Diffusion Probabilistic Models, resulting in more biologically meaningful conformations. We evaluate the performance of SIDEGEN using the PDBBind-2020 dataset, comparing it against other methods. The results demonstrate improvements in both Aligned RMSD and Ligand RMSD evaluations. Specifically, our model outperforms GeoDiff (trained on PDBBind-2020) by 20% in terms of the median aligned RMSD metric.

  • 3 authors
·
Aug 2, 2023

Self-Supervised Graph Transformer on Large-Scale Molecular Data

How to obtain informative representations of molecules is a crucial prerequisite in AI-driven drug design and discovery. Recent researches abstract molecules as graphs and employ Graph Neural Networks (GNNs) for molecular representation learning. Nevertheless, two issues impede the usage of GNNs in real scenarios: (1) insufficient labeled molecules for supervised training; (2) poor generalization capability to new-synthesized molecules. To address them both, we propose a novel framework, GROVER, which stands for Graph Representation frOm self-superVised mEssage passing tRansformer. With carefully designed self-supervised tasks in node-, edge- and graph-level, GROVER can learn rich structural and semantic information of molecules from enormous unlabelled molecular data. Rather, to encode such complex information, GROVER integrates Message Passing Networks into the Transformer-style architecture to deliver a class of more expressive encoders of molecules. The flexibility of GROVER allows it to be trained efficiently on large-scale molecular dataset without requiring any supervision, thus being immunized to the two issues mentioned above. We pre-train GROVER with 100 million parameters on 10 million unlabelled molecules -- the biggest GNN and the largest training dataset in molecular representation learning. We then leverage the pre-trained GROVER for molecular property prediction followed by task-specific fine-tuning, where we observe a huge improvement (more than 6% on average) from current state-of-the-art methods on 11 challenging benchmarks. The insights we gained are that well-designed self-supervision losses and largely-expressive pre-trained models enjoy the significant potential on performance boosting.

  • 7 authors
·
Jun 18, 2020

Accelerating the Search for Superconductors Using Machine Learning

Prediction of critical temperature (T_c) of a superconductor remains a significant challenge in condensed matter physics. While the BCS theory explains superconductivity in conventional superconductors, there is no framework to predict T_c of unconventional, higher T_{c} superconductors. Quantum Structure Diagrams (QSD) were successful in establishing structure-property relationship for superconductors, quasicrystals, and ferroelectric materials starting from chemical composition. Building on the QSD ideas, we demonstrate that the principal component analysis of superconductivity data uncovers the clustering of various classes of superconductors. We use machine learning analysis and cleaned databases of superconductors to develop predictive models of T_c of a superconductor using its chemical composition. Earlier studies relied on datasets with inconsistencies, leading to suboptimal predictions. To address this, we introduce a data-cleaning workflow to enhance the statistical quality of superconducting databases by eliminating redundancies and resolving inconsistencies. With this improvised database, we apply a supervised machine learning framework and develop a Random Forest model to predict superconductivity and T_c as a function of descriptors motivated from Quantum Structure Diagrams. We demonstrate that this model generalizes effectively in reasonably accurate prediction of T_{c} of compounds outside the database. We further employ our model to systematically screen materials across materials databases as well as various chemically plausible combinations of elements and predict Tl_{5}Ba_{6}Ca_{6}Cu_{9}O_{29} to exhibit superconductivity with a T_{c} sim 105 K. Being based on the descriptors used in QSD's, our model bypasses structural information and predicts T_{c} merely from the chemical composition.

  • 2 authors
·
May 17, 2025

Single and Multi-Hop Question-Answering Datasets for Reticular Chemistry with GPT-4-Turbo

The rapid advancement in artificial intelligence and natural language processing has led to the development of large-scale datasets aimed at benchmarking the performance of machine learning models. Herein, we introduce 'RetChemQA,' a comprehensive benchmark dataset designed to evaluate the capabilities of such models in the domain of reticular chemistry. This dataset includes both single-hop and multi-hop question-answer pairs, encompassing approximately 45,000 Q&As for each type. The questions have been extracted from an extensive corpus of literature containing about 2,530 research papers from publishers including NAS, ACS, RSC, Elsevier, and Nature Publishing Group, among others. The dataset has been generated using OpenAI's GPT-4 Turbo, a cutting-edge model known for its exceptional language understanding and generation capabilities. In addition to the Q&A dataset, we also release a dataset of synthesis conditions extracted from the corpus of literature used in this study. The aim of RetChemQA is to provide a robust platform for the development and evaluation of advanced machine learning algorithms, particularly for the reticular chemistry community. The dataset is structured to reflect the complexities and nuances of real-world scientific discourse, thereby enabling nuanced performance assessments across a variety of tasks. The dataset is available at the following link: https://github.com/nakulrampal/RetChemQA

  • 14 authors
·
May 3, 2024

Grad DFT: a software library for machine learning enhanced density functional theory

Density functional theory (DFT) stands as a cornerstone method in computational quantum chemistry and materials science due to its remarkable versatility and scalability. Yet, it suffers from limitations in accuracy, particularly when dealing with strongly correlated systems. To address these shortcomings, recent work has begun to explore how machine learning can expand the capabilities of DFT; an endeavor with many open questions and technical challenges. In this work, we present Grad DFT: a fully differentiable JAX-based DFT library, enabling quick prototyping and experimentation with machine learning-enhanced exchange-correlation energy functionals. Grad DFT employs a pioneering parametrization of exchange-correlation functionals constructed using a weighted sum of energy densities, where the weights are determined using neural networks. Moreover, Grad DFT encompasses a comprehensive suite of auxiliary functions, notably featuring a just-in-time compilable and fully differentiable self-consistent iterative procedure. To support training and benchmarking efforts, we additionally compile a curated dataset of experimental dissociation energies of dimers, half of which contain transition metal atoms characterized by strong electronic correlations. The software library is tested against experimental results to study the generalization capabilities of a neural functional across potential energy surfaces and atomic species, as well as the effect of training data noise on the resulting model accuracy.

  • 5 authors
·
Sep 22, 2023

Hardware-efficient Variational Quantum Eigensolver for Small Molecules and Quantum Magnets

Quantum computers can be used to address molecular structure, materials science and condensed matter physics problems, which currently stretch the limits of existing high-performance computing resources. Finding exact numerical solutions to these interacting fermion problems has exponential cost, while Monte Carlo methods are plagued by the fermionic sign problem. These limitations of classical computational methods have made even few-atom molecular structures problems of practical interest for medium-sized quantum computers. Yet, thus far experimental implementations have been restricted to molecules involving only Period I elements. Here, we demonstrate the experimental optimization of up to six-qubit Hamiltonian problems with over a hundred Pauli terms, determining the ground state energy for molecules of increasing size, up to BeH2. This is enabled by a hardware-efficient variational quantum eigensolver with trial states specifically tailored to the available interactions in our quantum processor, combined with a compact encoding of fermionic Hamiltonians and a robust stochastic optimization routine. We further demonstrate the flexibility of our approach by applying the technique to a problem of quantum magnetism. Across all studied problems, we find agreement between experiment and numerical simulations with a noisy model of the device. These results help elucidate the requirements for scaling the method to larger systems, and aim at bridging the gap between problems at the forefront of high-performance computing and their implementation on quantum hardware.

  • 7 authors
·
Apr 17, 2017

Exploiting Pretrained Biochemical Language Models for Targeted Drug Design

Motivation: The development of novel compounds targeting proteins of interest is one of the most important tasks in the pharmaceutical industry. Deep generative models have been applied to targeted molecular design and have shown promising results. Recently, target-specific molecule generation has been viewed as a translation between the protein language and the chemical language. However, such a model is limited by the availability of interacting protein-ligand pairs. On the other hand, large amounts of unlabeled protein sequences and chemical compounds are available and have been used to train language models that learn useful representations. In this study, we propose exploiting pretrained biochemical language models to initialize (i.e. warm start) targeted molecule generation models. We investigate two warm start strategies: (i) a one-stage strategy where the initialized model is trained on targeted molecule generation (ii) a two-stage strategy containing a pre-finetuning on molecular generation followed by target specific training. We also compare two decoding strategies to generate compounds: beam search and sampling. Results: The results show that the warm-started models perform better than a baseline model trained from scratch. The two proposed warm-start strategies achieve similar results to each other with respect to widely used metrics from benchmarks. However, docking evaluation of the generated compounds for a number of novel proteins suggests that the one-stage strategy generalizes better than the two-stage strategy. Additionally, we observe that beam search outperforms sampling in both docking evaluation and benchmark metrics for assessing compound quality. Availability and implementation: The source code is available at https://github.com/boun-tabi/biochemical-lms-for-drug-design and the materials are archived in Zenodo at https://doi.org/10.5281/zenodo.6832145

  • 5 authors
·
Sep 2, 2022

UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion

Unified generation of sequence and structure for scientific data (e.g., materials, molecules, proteins) is a critical task. Existing approaches primarily rely on either autoregressive sequence models or diffusion models, each offering distinct advantages and facing notable limitations. Autoregressive models, such as GPT, Llama, and Phi-4, have demonstrated remarkable success in natural language generation and have been extended to multimodal tasks (e.g., image, video, and audio) using advanced encoders like VQ-VAE to represent complex modalities as discrete sequences. However, their direct application to scientific domains is challenging due to the high precision requirements and the diverse nature of scientific data. On the other hand, diffusion models excel at generating high-dimensional scientific data, such as protein, molecule, and material structures, with remarkable accuracy. Yet, their inability to effectively model sequences limits their potential as general-purpose multimodal foundation models. To address these challenges, we propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models. This integration leverages the strengths of autoregressive models to ease the training of conditional diffusion models, while diffusion-based generative heads enhance the precision of autoregressive predictions. We validate the effectiveness of UniGenX on material and small molecule generation tasks, achieving a significant leap in state-of-the-art performance for material crystal structure prediction and establishing new state-of-the-art results for small molecule structure prediction, de novo design, and conditional generation. Notably, UniGenX demonstrates significant improvements, especially in handling long sequences for complex structures, showcasing its efficacy as a versatile tool for scientific data generation.

  • 25 authors
·
Mar 9, 2025

Leveraging Large Language Models as Knowledge-Driven Agents for Reliable Retrosynthesis Planning

Identifying reliable synthesis pathways in materials chemistry is a complex task, particularly in polymer science, due to the intricate and often non-unique nomenclature of macromolecules. To address this challenge, we propose an agent system that integrates large language models (LLMs) and knowledge graphs (KGs). By leveraging LLMs' powerful capabilities for extracting and recognizing chemical substance names, and storing the extracted data in a structured knowledge graph, our system fully automates the retrieval of relevant literatures, extraction of reaction data, database querying, construction of retrosynthetic pathway trees, further expansion through the retrieval of additional literature and recommendation of optimal reaction pathways. A novel Multi-branched Reaction Pathway Search (MBRPS) algorithm enables the exploration of all pathways, with a particular focus on multi-branched ones, helping LLMs overcome weak reasoning in multi-branched paths. This work represents the first attempt to develop a fully automated retrosynthesis planning agent tailored specially for macromolecules powered by LLMs. Applied to polyimide synthesis, our new approach constructs a retrosynthetic pathway tree with hundreds of pathways and recommends optimized routes, including both known and novel pathways, demonstrating its effectiveness and potential for broader applications.

  • 3 authors
·
Jan 15, 2025

Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular Graphs

Graph neural networks are emerging as promising methods for modeling molecular graphs, in which nodes and edges correspond to atoms and chemical bonds, respectively. Recent studies show that when 3D molecular geometries, such as bond lengths and angles, are available, molecular property prediction tasks can be made more accurate. However, computing of 3D molecular geometries requires quantum calculations that are computationally prohibitive. For example, accurate calculation of 3D geometries of a small molecule requires hours of computing time using density functional theory (DFT). Here, we propose to predict the ground-state 3D geometries from molecular graphs using machine learning methods. To make this feasible, we develop a benchmark, known as Molecule3D, that includes a dataset with precise ground-state geometries of approximately 4 million molecules derived from DFT. We also provide a set of software tools for data processing, splitting, training, and evaluation, etc. Specifically, we propose to assess the error and validity of predicted geometries using four metrics. We implement two baseline methods that either predict the pairwise distance between atoms or atom coordinates in 3D space. Experimental results show that, compared with generating 3D geometries with RDKit, our method can achieve comparable prediction accuracy but with much smaller computational costs. Our Molecule3D is available as a module of the MoleculeX software library (https://github.com/divelab/MoleculeX).

  • 10 authors
·
Sep 30, 2021

Adapting Quantum Machine Learning for Energy Dissociation of Bonds

Accurate prediction of bond dissociation energies (BDEs) underpins mechanistic insight and the rational design of molecules and materials. We present a systematic, reproducible benchmark comparing quantum and classical machine learning models for BDE prediction using a chemically curated feature set encompassing atomic properties (atomic numbers, hybridization), bond characteristics (bond order, type), and local environmental descriptors. Our quantum framework, implemented in Qiskit Aer on six qubits, employs ZZFeatureMap encodings with variational ansatz (RealAmplitudes) across multiple architectures Variational Quantum Regressors (VQR), Quantum Support Vector Regressors (QSVR), Quantum Neural Networks (QNN), Quantum Convolutional Neural Networks (QCNN), and Quantum Random Forests (QRF). These are rigorously benchmarked against strong classical baselines, including Support Vector Regression (SVR), Random Forests (RF), and Multi-Layer Perceptrons (MLP). Comprehensive evaluation spanning absolute and relative error metrics, threshold accuracies, and error distributions shows that top-performing quantum models (QCNN, QRF) match the predictive accuracy and robustness of classical ensembles and deep networks, particularly within the chemically prevalent mid-range BDE regime. These findings establish a transparent baseline for quantum-enhanced molecular property prediction and outline a practical foundation for advancing quantum computational chemistry toward near chemical accuracy.

  • 3 authors
·
Oct 7, 2025

Molecular Graph Generation via Geometric Scattering

Graph neural networks (GNNs) have been used extensively for addressing problems in drug design and discovery. Both ligand and target molecules are represented as graphs with node and edge features encoding information about atomic elements and bonds respectively. Although existing deep learning models perform remarkably well at predicting physicochemical properties and binding affinities, the generation of new molecules with optimized properties remains challenging. Inherently, most GNNs perform poorly in whole-graph representation due to the limitations of the message-passing paradigm. Furthermore, step-by-step graph generation frameworks that use reinforcement learning or other sequential processing can be slow and result in a high proportion of invalid molecules with substantial post-processing needed in order to satisfy the principles of stoichiometry. To address these issues, we propose a representation-first approach to molecular graph generation. We guide the latent representation of an autoencoder by capturing graph structure information with the geometric scattering transform and apply penalties that structure the representation also by molecular properties. We show that this highly structured latent space can be directly used for molecular graph generation by the use of a GAN. We demonstrate that our architecture learns meaningful representations of drug datasets and provides a platform for goal-directed drug synthesis.

  • 4 authors
·
Oct 12, 2021

Reasoning-Enhanced Large Language Models for Molecular Property Prediction

Molecular property prediction is crucial for drug discovery and materials science, yet existing approaches suffer from limited interpretability, poor cross-task generalization, and lack of chemical reasoning capabilities. Traditional machine learning models struggle with task transferability, while specialized molecular language models provide little insight into their decision-making processes. To address these limitations, we propose MPPReasoner, a multimodal large language model that incorporates chemical reasoning for molecular property prediction. Our approach, built upon Qwen2.5-VL-7B-Instruct, integrates molecular images with SMILES strings to enable comprehensive molecular understanding. We develop a two-stage training strategy: supervised fine-tuning (SFT) using 16,000 high-quality reasoning trajectories generated through expert knowledge and multiple teacher models, followed by Reinforcement Learning from Principle-Guided Rewards (RLPGR). RLPGR employs verifiable, rule-based rewards that systematically evaluate chemical principle application, molecular structure analysis, and logical consistency through computational verification. Extensive experiments across 8 datasets demonstrate significant performance improvements, with MPPReasoner outperforming the best baselines by 7.91\% and 4.53\% on in-distribution and out-of-distribution tasks respectively. MPPReasoner exhibits exceptional cross-task generalization and generates chemically sound reasoning paths that provide valuable insights into molecular property analysis, substantially enhancing both interpretability and practical utility for chemists. Code is available at https://anonymous.4open.science/r/MPPReasoner-12687.

  • 12 authors
·
Oct 11, 2025

Isotopic effects in molecular attosecond photoelectron interferometry

Isotopic substitution in molecular systems can affect fundamental molecular properties including the energy position and spacing of electronic, vibrational and rotational levels, thus modifying the dynamics associated to their coherent superposition. In extreme ultraviolet spectroscopy, the photoelectron leaving the molecule after the absorption of a single photon can trigger an ultrafast nuclear motion in the cation, which can lead, eventually, to molecular fragmentation. This dynamics depends on the mass of the constituents of the cation, thus showing, in general, a significant isotopic dependence. In time-resolved attosecond photoelectron interferometry, the absorption of the extreme ultraviolet photon is accompanied by the exchange of an additional quantum of energy (typically in the infrared spectral range) with the photoelectron-photoion system, offering the opportunity to investigate in time the influence of isotopic substitution on the characteristics of the photoionisation dynamics. Here we show that attosecond photoelectron interferometry is sensitive to isotopic substitution by investigating the two-color photoionisation spectra measured in a mixture of methane (CH_4) and deuteromethane (CD_4). The isotopic dependence manifests itself in the modification of the amplitude and contrast of the oscillations of the photoelectron peaks generated in the two-color field with the two isotopologues. The observed effects are interpreted considering the differences in the time evolution of the nuclear autocorrelation functions in the two molecules.

  • 15 authors
·
Mar 2, 2023

Efficient and Scalable Density Functional Theory Hamiltonian Prediction through Adaptive Sparsity

Hamiltonian matrix prediction is pivotal in computational chemistry, serving as the foundation for determining a wide range of molecular properties. While SE(3) equivariant graph neural networks have achieved remarkable success in this domain, their substantial computational cost--driven by high-order tensor product (TP) operations--restricts their scalability to large molecular systems with extensive basis sets. To address this challenge, we introduce SPHNet, an efficient and scalable equivariant network, that incorporates adaptive SParsity into Hamiltonian prediction. SPHNet employs two innovative sparse gates to selectively constrain non-critical interaction combinations, significantly reducing tensor product computations while maintaining accuracy. To optimize the sparse representation, we develop a Three-phase Sparsity Scheduler, ensuring stable convergence and achieving high performance at sparsity rates of up to 70%. Extensive evaluations on QH9 and PubchemQH datasets demonstrate that SPHNet achieves state-of-the-art accuracy while providing up to a 7x speedup over existing models. Beyond Hamiltonian prediction, the proposed sparsification techniques also hold significant potential for improving the efficiency and scalability of other SE(3) equivariant networks, further broadening their applicability and impact. Our code can be found at https://github.com/microsoft/SPHNet.

  • 10 authors
·
Feb 3, 2025

M^{3}-20M: A Large-Scale Multi-Modal Molecule Dataset for AI-driven Drug Design and Discovery

This paper introduces M^{3}-20M, a large-scale Multi-Modal Molecular dataset that contains over 20 million molecules. Designed to support AI-driven drug design and discovery, M^{3}-20M is 71 times more in the number of molecules than the largest existing dataset, providing an unprecedented scale that can highly benefit training or fine-tuning large (language) models with superior performance for drug design and discovery. This dataset integrates one-dimensional SMILES, two-dimensional molecular graphs, three-dimensional molecular structures, physicochemical properties, and textual descriptions collected through web crawling and generated by using GPT-3.5, offering a comprehensive view of each molecule. To demonstrate the power of M^{3}-20M in drug design and discovery, we conduct extensive experiments on two key tasks: molecule generation and molecular property prediction, using large language models including GLM4, GPT-3.5, and GPT-4. Our experimental results show that M^{3}-20M can significantly boost model performance in both tasks. Specifically, it enables the models to generate more diverse and valid molecular structures and achieve higher property prediction accuracy than the existing single-modal datasets, which validates the value and potential of M^{3}-20M in supporting AI-driven drug design and discovery. The dataset is available at https://github.com/bz99bz/M-3.

  • 9 authors
·
Dec 7, 2024

What indeed can GPT models do in chemistry? A comprehensive benchmark on eight tasks

Large Language Models (LLMs) with strong abilities in natural language processing tasks have emerged and have been rapidly applied in various kinds of areas such as science, finance and software engineering. However, the capability of LLMs to advance the field of chemistry remains unclear. In this paper,we establish a comprehensive benchmark containing 8 practical chemistry tasks, including 1) name prediction, 2) property prediction, 3) yield prediction, 4) reaction prediction, 5) retrosynthesis (prediction of reactants from products), 6)text-based molecule design, 7) molecule captioning, and 8) reagent selection. Our analysis draws on widely recognized datasets including BBBP, Tox21, PubChem, USPTO, and ChEBI, facilitating a broad exploration of the capacities of LLMs within the context of practical chemistry. Three GPT models (GPT-4, GPT-3.5,and Davinci-003) are evaluated for each chemistry task in zero-shot and few-shot in-context learning settings with carefully selected demonstration examples and specially crafted prompts. The key results of our investigation are 1) GPT-4 outperforms the other two models among the three evaluated; 2) GPT models exhibit less competitive performance in tasks demanding precise understanding of molecular SMILES representation, such as reaction prediction and retrosynthesis;3) GPT models demonstrate strong capabilities in text-related explanation tasks such as molecule captioning; and 4) GPT models exhibit comparable or better performance to classical machine learning models when applied to chemical problems that can be transformed into classification or ranking tasks, such as property prediction, and yield prediction.

  • 8 authors
·
May 27, 2023

Precision measurement of the last bound states in H_2 and determination of the H + H scattering length

The binding energies of the five bound rotational levels J=0-4 in the highest vibrational level v=14 in the X^1Sigma_g^+ ground electronic state of H_2 were measured in a three-step ultraviolet-laser experiment. Two-photon UV-photolysis of H_2S produced population in these high-lying bound states, that were subsequently interrogated at high precision via Doppler-free spectroscopy of the F^1Sigma_g^+ - X^1Sigma_g^+ system. A third UV-laser was used for detection through auto-ionizing resonances. The experimentally determined binding energies were found to be in excellent agreement with calculations based on non-adiabatic perturbation theory, also including relativistic and quantum electrodynamical contributions. The s-wave scattering length of the H + H system is derived from the binding energy of the last bound J=0 level via a direct semi-empirical approach, yielding a value of a_s = 0.2724(5) a_0, in good agreement with a result from a previously followed theoretical approach. The subtle effect of the malpha^4 relativity contribution to a_s was found to be significant. In a similar manner a value for the p-wave scattering volume is determined via the J=1 binding energy yielding a_p = -134.0000(6) a_0^3. The binding energy of the last bound state in H_2, the (v=14, J=4) level, is determined at 0.023(4) cm^{-1}, in good agreement with calculation. The effect of the hyperfine substructure caused by the two hydrogen atoms at large internuclear separation, giving rise to three distinct dissociation limits, is discussed.

  • 3 authors
·
Feb 3, 2025

NovoMolGen: Rethinking Molecular Language Model Pretraining

Designing de-novo molecules with desired property profiles requires efficient exploration of the vast chemical space ranging from 10^{23} to 10^{60} possible synthesizable candidates. While various deep generative models have been developed to design small molecules using diverse input representations, Molecular Large Language Models (Mol-LLMs) based on string representations have emerged as a scalable approach capable of exploring billions of molecules. However, there remains limited understanding regarding how standard language modeling practices such as textual representations, tokenization strategies, model size, and dataset scale impact molecular generation performance. In this work, we systematically investigate these critical aspects by introducing NovoMolGen, a family of transformer-based foundation models pretrained on 1.5 billion molecules for de-novo molecule generation. Through extensive empirical analyses, we identify a weak correlation between performance metrics measured during pretraining and actual downstream performance, revealing important distinctions between molecular and general NLP training dynamics. NovoMolGen establishes new state-of-the-art results, substantially outperforming prior Mol-LLMs and specialized generative models in both unconstrained and goal-directed molecular generation tasks, thus providing a robust foundation for advancing efficient and effective molecular modeling strategies.

  • 5 authors
·
Aug 18, 2025

Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model

While various models and computational tools have been proposed for structure and property analysis of molecules, generating molecules that conform to all desired structures and properties remains a challenge. Here, we introduce a multi-constraint molecular generation large language model, TSMMG, which, akin to a student, incorporates knowledge from various small models and tools, namely, the 'teachers'. To train TSMMG, we construct a large set of text-molecule pairs by extracting molecular knowledge from these 'teachers', enabling it to generate novel molecules that conform to the descriptions through various text prompts. We experimentally show that TSMMG remarkably performs in generating molecules meeting complex, natural language-described property requirements across two-, three-, and four-constraint tasks, with an average molecular validity of over 99% and success ratio of 82.58%, 68.03%, and 67.48%, respectively. The model also exhibits adaptability through zero-shot testing, creating molecules that satisfy combinations of properties that have not been encountered. It can comprehend text inputs with various language styles, extending beyond the confines of outlined prompts, as confirmed through empirical validation. Additionally, the knowledge distillation feature of TSMMG contributes to the continuous enhancement of small models, while the innovative approach to dataset construction effectively addresses the issues of data scarcity and quality, which positions TSMMG as a promising tool in the domains of drug discovery and materials science.

  • 14 authors
·
Mar 19, 2024

Leveraging Biomolecule and Natural Language through Multi-Modal Learning: A Survey

The integration of biomolecular modeling with natural language (BL) has emerged as a promising interdisciplinary area at the intersection of artificial intelligence, chemistry and biology. This approach leverages the rich, multifaceted descriptions of biomolecules contained within textual data sources to enhance our fundamental understanding and enable downstream computational tasks such as biomolecule property prediction. The fusion of the nuanced narratives expressed through natural language with the structural and functional specifics of biomolecules described via various molecular modeling techniques opens new avenues for comprehensively representing and analyzing biomolecules. By incorporating the contextual language data that surrounds biomolecules into their modeling, BL aims to capture a holistic view encompassing both the symbolic qualities conveyed through language as well as quantitative structural characteristics. In this review, we provide an extensive analysis of recent advancements achieved through cross modeling of biomolecules and natural language. (1) We begin by outlining the technical representations of biomolecules employed, including sequences, 2D graphs, and 3D structures. (2) We then examine in depth the rationale and key objectives underlying effective multi-modal integration of language and molecular data sources. (3) We subsequently survey the practical applications enabled to date in this developing research area. (4) We also compile and summarize the available resources and datasets to facilitate future work. (5) Looking ahead, we identify several promising research directions worthy of further exploration and investment to continue advancing the field. The related resources and contents are updating in https://github.com/QizhiPei/Awesome-Biomolecule-Language-Cross-Modeling.

  • 8 authors
·
Mar 3, 2024

Generative Discovery of Novel Chemical Designs using Diffusion Modeling and Transformer Deep Neural Networks with Application to Deep Eutectic Solvents

We report a series of deep learning models to solve complex forward and inverse design problems in molecular modeling and design. Using both diffusion models inspired by nonequilibrium thermodynamics and attention-based transformer architectures, we demonstrate a flexible framework to capture complex chemical structures. First trained on the QM9 dataset and a series of quantum mechanical properties (e.g. homo, lumo, free energy, heat capacity, etc.), we then generalize the model to study and design key properties of deep eutectic solvents. In addition to separate forward and inverse models, we also report an integrated fully prompt-based multi-task generative pretrained transformer model that solves multiple forward, inverse design, and prediction tasks, flexibly and within one model. We show that the multi-task generative model has the overall best performance and allows for flexible integration of multiple objectives, within one model, and for distinct chemistries, suggesting that synergies emerge during training of this large language model. Trained jointly in tasks related to the QM9 dataset and deep eutectic solvents (DESs), the model can predict various quantum mechanical properties and critical properties to achieve deep eutectic solvent behavior. Several novel combinations of DESs are proposed based on this framework.

  • 3 authors
·
Apr 24, 2023

Bayesian Deep Learning for Exoplanet Atmospheric Retrieval

Over the past decade, the study of extrasolar planets has evolved rapidly from plain detection and identification to comprehensive categorization and characterization of exoplanet systems and their atmospheres. Atmospheric retrieval, the inverse modeling technique used to determine an exoplanetary atmosphere's temperature structure and composition from an observed spectrum, is both time-consuming and compute-intensive, requiring complex algorithms that compare thousands to millions of atmospheric models to the observational data to find the most probable values and associated uncertainties for each model parameter. For rocky, terrestrial planets, the retrieved atmospheric composition can give insight into the surface fluxes of gaseous species necessary to maintain the stability of that atmosphere, which may in turn provide insight into the geological and/or biological processes active on the planet. These atmospheres contain many molecules, some of them biosignatures, spectral fingerprints indicative of biological activity, which will become observable with the next generation of telescopes. Runtimes of traditional retrieval models scale with the number of model parameters, so as more molecular species are considered, runtimes can become prohibitively long. Recent advances in machine learning (ML) and computer vision offer new ways to reduce the time to perform a retrieval by orders of magnitude, given a sufficient data set to train with. Here we present an ML-based retrieval framework called Intelligent exoplaNet Atmospheric RetrievAl (INARA) that consists of a Bayesian deep learning model for retrieval and a data set of 3,000,000 synthetic rocky exoplanetary spectra generated using the NASA Planetary Spectrum Generator. Our work represents the first ML retrieval model for rocky, terrestrial exoplanets and the first synthetic data set of terrestrial spectra generated at this scale.

  • 11 authors
·
Nov 8, 2018

The Open Molecules 2025 (OMol25) Dataset, Evaluations, and Models

Machine learning (ML) models hold the promise of transforming atomic simulations by delivering quantum chemical accuracy at a fraction of the computational cost. Realization of this potential would enable high-throughout, high-accuracy molecular screening campaigns to explore vast regions of chemical space and facilitate ab initio simulations at sizes and time scales that were previously inaccessible. However, a fundamental challenge to creating ML models that perform well across molecular chemistry is the lack of comprehensive data for training. Despite substantial efforts in data generation, no large-scale molecular dataset exists that combines broad chemical diversity with a high level of accuracy. To address this gap, Meta FAIR introduces Open Molecules 2025 (OMol25), a large-scale dataset composed of more than 100 million density functional theory (DFT) calculations at the omegaB97M-V/def2-TZVPD level of theory, representing billions of CPU core-hours of compute. OMol25 uniquely blends elemental, chemical, and structural diversity including: 83 elements, a wide-range of intra- and intermolecular interactions, explicit solvation, variable charge/spin, conformers, and reactive structures. There are ~83M unique molecular systems in OMol25 covering small molecules, biomolecules, metal complexes, and electrolytes, including structures obtained from existing datasets. OMol25 also greatly expands on the size of systems typically included in DFT datasets, with systems of up to 350 atoms. In addition to the public release of the data, we provide baseline models and a comprehensive set of model evaluations to encourage community engagement in developing the next-generation ML models for molecular chemistry.

  • 23 authors
·
May 13, 2025

The Open Catalyst 2020 (OC20) Dataset and Community Challenges

Catalyst discovery and optimization is key to solving many societal and energy challenges including solar fuels synthesis, long-term energy storage, and renewable fertilizer production. Despite considerable effort by the catalysis community to apply machine learning models to the computational catalyst discovery process, it remains an open challenge to build models that can generalize across both elemental compositions of surfaces and adsorbate identity/configurations, perhaps because datasets have been smaller in catalysis than related fields. To address this we developed the OC20 dataset, consisting of 1,281,040 Density Functional Theory (DFT) relaxations (~264,890,000 single point evaluations) across a wide swath of materials, surfaces, and adsorbates (nitrogen, carbon, and oxygen chemistries). We supplemented this dataset with randomly perturbed structures, short timescale molecular dynamics, and electronic structure analyses. The dataset comprises three central tasks indicative of day-to-day catalyst modeling and comes with pre-defined train/validation/test splits to facilitate direct comparisons with future model development efforts. We applied three state-of-the-art graph neural network models (CGCNN, SchNet, Dimenet++) to each of these tasks as baseline demonstrations for the community to build on. In almost every task, no upper limit on model size was identified, suggesting that even larger models are likely to improve on initial results. The dataset and baseline models are both provided as open resources, as well as a public leader board to encourage community contributions to solve these important tasks.

  • 17 authors
·
Oct 19, 2020

Crystal Transformer: Self-learning neural language model for Generative and Tinkering Design of Materials

Self-supervised neural language models have recently achieved unprecedented success, from natural language processing to learning the languages of biological sequences and organic molecules. These models have demonstrated superior performance in the generation, structure classification, and functional predictions for proteins and molecules with learned representations. However, most of the masking-based pre-trained language models are not designed for generative design, and their black-box nature makes it difficult to interpret their design logic. Here we propose BLMM Crystal Transformer, a neural network based probabilistic generative model for generative and tinkering design of inorganic materials. Our model is built on the blank filling language model for text generation and has demonstrated unique advantages in learning the "materials grammars" together with high-quality generation, interpretability, and data efficiency. It can generate chemically valid materials compositions with as high as 89.7\% charge neutrality and 84.8\% balanced electronegativity, which are more than 4 and 8 times higher compared to a pseudo random sampling baseline. The probabilistic generation process of BLMM allows it to recommend tinkering operations based on learned materials chemistry and makes it useful for materials doping. Combined with the TCSP crysal structure prediction algorithm, We have applied our model to discover a set of new materials as validated using DFT calculations. Our work thus brings the unsupervised transformer language models based generative artificial intelligence to inorganic materials. A user-friendly web app has been developed for computational materials doping and can be accessed freely at www.materialsatlas.org/blmtinker.

  • 7 authors
·
Apr 25, 2022

Application of Quantum Tensor Networks for Protein Classification

We show that protein sequences can be thought of as sentences in natural language processing and can be parsed using the existing Quantum Natural Language framework into parameterized quantum circuits of reasonable qubits, which can be trained to solve various protein-related machine-learning problems. We classify proteins based on their subcellular locations, a pivotal task in bioinformatics that is key to understanding biological processes and disease mechanisms. Leveraging the quantum-enhanced processing capabilities, we demonstrate that Quantum Tensor Networks (QTN) can effectively handle the complexity and diversity of protein sequences. We present a detailed methodology that adapts QTN architectures to the nuanced requirements of protein data, supported by comprehensive experimental results. We demonstrate two distinct QTNs, inspired by classical recurrent neural networks (RNN) and convolutional neural networks (CNN), to solve the binary classification task mentioned above. Our top-performing quantum model has achieved a 94% accuracy rate, which is comparable to the performance of a classical model that uses the ESM2 protein language model embeddings. It's noteworthy that the ESM2 model is extremely large, containing 8 million parameters in its smallest configuration, whereas our best quantum model requires only around 800 parameters. We demonstrate that these hybrid models exhibit promising performance, showcasing their potential to compete with classical models of similar complexity.

  • 6 authors
·
Mar 11, 2024

Benchmarking Large Language Models for Molecule Prediction Tasks

Large Language Models (LLMs) stand at the forefront of a number of Natural Language Processing (NLP) tasks. Despite the widespread adoption of LLMs in NLP, much of their potential in broader fields remains largely unexplored, and significant limitations persist in their design and implementation. Notably, LLMs struggle with structured data, such as graphs, and often falter when tasked with answering domain-specific questions requiring deep expertise, such as those in biology and chemistry. In this paper, we explore a fundamental question: Can LLMs effectively handle molecule prediction tasks? Rather than pursuing top-tier performance, our goal is to assess how LLMs can contribute to diverse molecule tasks. We identify several classification and regression prediction tasks across six standard molecule datasets. Subsequently, we carefully design a set of prompts to query LLMs on these tasks and compare their performance with existing Machine Learning (ML) models, which include text-based models and those specifically designed for analysing the geometric structure of molecules. Our investigation reveals several key insights: Firstly, LLMs generally lag behind ML models in achieving competitive performance on molecule tasks, particularly when compared to models adept at capturing the geometric structure of molecules, highlighting the constrained ability of LLMs to comprehend graph data. Secondly, LLMs show promise in enhancing the performance of ML models when used collaboratively. Lastly, we engage in a discourse regarding the challenges and promising avenues to harness LLMs for molecule prediction tasks. The code and models are available at https://github.com/zhiqiangzhongddu/LLMaMol.

  • 3 authors
·
Mar 8, 2024

Classification with Quantum Neural Networks on Near Term Processors

We introduce a quantum neural network, QNN, that can represent labeled data, classical or quantum, and be trained by supervised learning. The quantum circuit consists of a sequence of parameter dependent unitary transformations which acts on an input quantum state. For binary classification a single Pauli operator is measured on a designated readout qubit. The measured output is the quantum neural network's predictor of the binary label of the input state. First we look at classifying classical data sets which consist of n-bit strings with binary labels. The input quantum state is an n-bit computational basis state corresponding to a sample string. We show how to design a circuit made from two qubit unitaries that can correctly represent the label of any Boolean function of n bits. For certain label functions the circuit is exponentially long. We introduce parameter dependent unitaries that can be adapted by supervised learning of labeled data. We study an example of real world data consisting of downsampled images of handwritten digits each of which has been labeled as one of two distinct digits. We show through classical simulation that parameters can be found that allow the QNN to learn to correctly distinguish the two data sets. We then discuss presenting the data as quantum superpositions of computational basis states corresponding to different label values. Here we show through simulation that learning is possible. We consider using our QNN to learn the label of a general quantum state. By example we show that this can be done. Our work is exploratory and relies on the classical simulation of small quantum systems. The QNN proposed here was designed with near-term quantum processors in mind. Therefore it will be possible to run this QNN on a near term gate model quantum computer where its power can be explored beyond what can be explored with simulation.

  • 2 authors
·
Feb 16, 2018

Characterising the Atmosphere of 55 Cancri e: 1D Forward Model Grid for Current and Future JWST Observations

Recent JWST observations with NIRCam and MIRI of the ultra-short-period super-Earth 55 Cancri e indicate a possible volatile atmosphere surrounding the planet. Previous analysis of the NIRCam spectra suggested potential absorption features from CO2 or CO and significant sub-weekly variability. The MIRI low-resolution spectrum does not contain substantial features but was found to be consistent with effective heat redistribution models. In this work, we computed a grid of over 25000 self-consistent 1D forward models incorporating H-N-O-C-S-P-Si-Ti equilibrium chemistry and assessed plausible atmospheric compositions based on the current JWST data. Despite exhaustive analysis, the composition and properties of the atmosphere remain elusive. While our results statistically favour a global, hydrogen-free, nitrogen-dominated atmosphere enriched in PO and CO2, various alternative compositions, including H2O-,CO-, PH3-, or Si-bearing remain viable explanations. Unconstrained heat redistribution efficiency and absolute NIRCam flux are among the largest sources of uncertainty in our analysis. We also find that the heat redistribution factor and surface pressure are highly degenerate with atmospheric composition, and that these parameters cannot be independently constrained using current JWST observations. Furthermore, we show that the observed variability may arise from dynamic interactions between the atmosphere and an underlying magma ocean, driving rapid shifts in atmospheric chemistry and thermal emission. Our results highlight the importance of using self-consistent forward models when analysing novel JWST spectra with limited signal-to-noise ratios -- such as those of 55 Cancri e -- as it allows for a more comprehensive evaluation of potential atmospheric scenarios while also being less sensitive to subtle spectral differences than retrievals...

  • 12 authors
·
Mar 20, 2025

Regression Transformer: Concurrent sequence regression and generation for molecular language modeling

Despite significant progress of generative models in the natural sciences, their controllability remains challenging. One fundamentally missing aspect of molecular or protein generative models is an inductive bias that can reflect continuous properties of interest. To that end, we propose the Regression Transformer (RT), a novel method that abstracts regression as a conditional sequence modeling problem. This introduces a new paradigm of multitask language models which seamlessly bridge sequence regression and conditional sequence generation. We thoroughly demonstrate that, despite using a nominal-scale training objective, the RT matches or surpasses the performance of conventional regression models in property prediction tasks of small molecules, proteins and chemical reactions. Critically, priming the same model with continuous properties yields a highly competitive conditional generative model that outperforms specialized approaches in a substructure-constrained, property-driven molecule generation benchmark. Our dichotomous approach is facilitated by a novel, alternating training scheme that enables the model to decorate seed sequences by desired properties, e.g., to optimize reaction yield. In sum, the RT is the first report of a multitask model that concurrently excels at predictive and generative tasks in biochemistry. This finds particular application in property-driven, local exploration of the chemical or protein space and could pave the road toward foundation models in material design. The code to reproduce all experiments of the paper is available at: https://github.com/IBM/regression-transformer

  • 2 authors
·
Feb 1, 2022

Mol-LLM: Multimodal Generalist Molecular LLM with Improved Graph Utilization

Recent advances in large language models (LLMs) have led to models that tackle diverse molecular tasks, such as chemical reaction prediction and molecular property prediction. Large-scale molecular instruction-tuning datasets have enabled sequence-only (e.g., SMILES or SELFIES) generalist molecular LLMs, and researchers are now exploring multimodal approaches that incorporate molecular structural information for further gains. However, a genuinely multimodal, generalist LLM that covers a broad spectrum of molecular tasks has yet to be fully investigated. We observe that naive next token prediction training ignores graph-structural information, limiting an LLM's ability to exploit molecular graphs. To address this, we propose (i) Molecular structure Preference Optimization (MolPO), which facilitates graph usage by optimizing preferences between pairs of correct and perturbed molecular structures, and (ii) an advanced graph encoder with a tailored pre-training strategy to improve the effect of graph utilization by MolPO. Building on these contributions, we introduce Mol-LLM, the first multimodal generalist model that (a) handles a broad spectrum of molecular tasks among molecular LLMs, (b) explicitly leverages molecular-structure information, and (c) takes advantage of extensive instruction tuning. Mol-LLM attains state-of-the-art or comparable results across the most comprehensive molecular-LLM benchmark-even on out-of-distribution datasets for reaction and property prediction, where it surpasses prior generalist molecular LLMs by a large margin.

  • 9 authors
·
Feb 4, 2025

Diffusion Sequence Models for Enhanced Protein Representation and Generation

Proteins are fundamental to biology, executing diverse functions through complex physicochemical interactions, and they hold transformative potential across medicine, materials science, and environmental applications. Protein Language Models (pLMs) aim to unlock insights from the vast space of unlabeled protein sequences by learning rich, semantic representations from primary sequences via masked language modeling. However, these models typically exhibit limited generative capacity. In this work, we introduce the Diffusion Sequence Model (DSM), a novel pLM trained with masked diffusion to enable both high-quality representation learning and generative protein design. DSM builds upon the ESM2 architecture by incorporating a masked forward diffusion process inspired by the LLaDA framework. After training, DSM is capable of generating diverse, biomimetic sequences that align with expected amino acid compositions, secondary structures, and predicted functions, even with 90\% token corruption. Furthermore, DSM's learned representations match or exceed those of similarly sized pLMs on downstream tasks. We also introduce DSM(ppi), a variant fine-tuned to generate protein binders by attending to target sequences. We demonstrate DSM(ppi)'s effectiveness on the challenging Bench-tested Binder Benchmark (BenchBB), where both DSM and DSM(ppi) produce candidates with superior predicted binding affinity compared to known binders. Our results establish masked diffusion as a powerful paradigm for unifying protein representation and generation in a single framework.

  • 4 authors
·
Jun 9, 2025

ChemLLM: A Chemical Large Language Model

Large language models (LLMs) have made impressive progress in chemistry applications, including molecular property prediction, molecular generation, experimental protocol design, etc. However, the community lacks a dialogue-based model specifically designed for chemistry. The challenge arises from the fact that most chemical data and scientific knowledge are primarily stored in structured databases, and the direct use of these structured data compromises the model's ability to maintain coherent dialogue. To tackle this issue, we develop a novel template-based instruction construction method that transforms structured knowledge into plain dialogue, making it suitable for language model training. By leveraging this approach, we develop ChemLLM, the first large language model dedicated to chemistry, capable of performing various tasks across chemical disciplines with smooth dialogue interaction. ChemLLM beats GPT-3.5 on all three principal tasks in chemistry, i.e., name conversion, molecular caption, and reaction prediction, and surpasses GPT-4 on two of them. Remarkably, ChemLLM also shows exceptional adaptability to related mathematical and physical tasks despite being trained mainly on chemical-centric corpora. Furthermore, ChemLLM demonstrates proficiency in specialized NLP tasks within chemistry, such as literature translation and cheminformatic programming. ChemLLM opens up a new avenue for exploration within chemical studies, while our method of integrating structured chemical knowledge into dialogue systems sets a new frontier for developing LLMs across various scientific fields. Codes, Datasets, and Model weights are publicly accessible at hf.co/AI4Chem/ChemLLM-7B-Chat.

  • 15 authors
·
Feb 9, 2024 7