new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 3

English Please: Evaluating Machine Translation with Large Language Models for Multilingual Bug Reports

Accurate translation of bug reports is critical for efficient collaboration in global software development. In this study, we conduct the first comprehensive evaluation of machine translation (MT) performance on bug reports, analyzing the capabilities of DeepL, AWS Translate, and large language models such as ChatGPT, Claude, Gemini, LLaMA, and Mistral using data from the Visual Studio Code GitHub repository, specifically focusing on reports labeled with the english-please tag. To assess both translation quality and source language identification accuracy, we employ a range of MT evaluation metrics-including BLEU, BERTScore, COMET, METEOR, and ROUGE-alongside classification metrics such as accuracy, precision, recall, and F1-score. Our findings reveal that while ChatGPT (gpt-4o) excels in semantic and lexical translation quality, it does not lead in source language identification. Claude and Mistral achieve the highest F1-scores (0.7182 and 0.7142, respectively), and Gemini records the best precision (0.7414). AWS Translate shows the highest accuracy (0.4717) in identifying source languages. These results highlight that no single system dominates across all tasks, reinforcing the importance of task-specific evaluations. This study underscores the need for domain adaptation when translating technical content and provides actionable insights for integrating MT into bug-triaging workflows. The code and dataset for this paper are available at GitHub-https://github.com/av9ash/English-Please

  • 3 authors
·
Feb 20, 2025

SmartDoc: A Context-Aware Agentic Method Comment Generation Plugin

Context: The software maintenance phase involves many activities such as code refactoring, bug fixing, code review or testing. Program comprehension is key to all these activities, as it demands developers to grasp the knowledge (e.g., implementation details) required to modify the codebase. Methods as main building blocks in a program can offer developers this knowledge source for code comprehension. However, reading entire method statements can be challenging, which necessitates precise and up-to-date comments. Objective: We propose a solution as an IntelliJ IDEA plugin, named SmartDoc, that assists developers in generating context-aware method comments. Method: This plugin acts as an Artificial Intelligence (AI) agent that has its own memory and is augmented by target methods' context. When a request is initiated by the end-user, the method content and all its nested method calls are used in the comment generation. At the beginning, these nested methods are visited and a call graph is generated. This graph is then traversed using depth-first search (DFS), enabling the provision of full-context to enrich Large Language Model (LLM) prompts. Result: The product is a software, as a plugin, developed for Java codebase and installable on IntelliJ IDEA. This plugin can serve concurrently for methods whose comments are being updated , and it shares memory across all flows to avoid redundant calls. o measure the accuracy of this solution, a dedicated test case is run to record SmartDoc generated comments and their corresponding ground truth. For each collected result-set, three metrics are computed, BERTScore, BLEU and ROUGE-1. These metrics will determine how accurate the generated comments are in comparison to the ground truth. Result: The obtained accuracy, in terms of the precision, recall and F1, is promising, and lies in the range of 0.80 to 0.90 for BERTScore.

  • 2 authors
·
Nov 1, 2025