Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: LunarLander-v2
|
| 16 |
+
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 250.26 +/- 43.13
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78480c901090>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78480c901120>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78480c9011b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78480c901240>", "_build": "<function ActorCriticPolicy._build at 0x78480c9012d0>", "forward": "<function ActorCriticPolicy.forward at 0x78480c901360>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78480c9013f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78480c901480>", "_predict": "<function ActorCriticPolicy._predict at 0x78480c901510>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78480c9015a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78480c901630>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78480c9016c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78480c88dc80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1721185431872565578, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAXxr3ksQo/cB8lPfuDub71hVe9yW6luwAAAAAAAAAAmgKXPbg+zrlZMqU5Cy4wNaTUfTtaecO4AACAPwAAgD9NT6C9KOrCPgsSeT0bCIe+580tvbwMDL0AAAAAAAAAAKZ44j1P1CM986sFvoTNn70Ytig9+ZUYvAAAAAAAAAAAMyvZPBTrDD47b2G8jXV9vr4Y5bstEz89AAAAAAAAAACNmsk94emHPukHur6247C+gygWvgz4njwAAAAAAAAAAKBgCb635Rg+6XKLPt1ejb5Z8gw+MlsEPQAAAAAAAAAAgLgmvcOlSTkorE2yz5SGMZMfnTooz0szAACAPwAAgD8zp0M81wMOOhsheTuZCrA49B0kPII8HroAAIA/AACAP8040jxcDk47TQrRvElzKr4iFDm9kbivPgAAgD8AAAAAbWNCvkA3wT40rsY+wjauvoBsT71bR+Y9AAAAAAAAAABmkkS9wZ+DvE+aDj7icJ29Gir/vV2jfr4AAIA/AACAP2YNOL6caHK8Y/a/vN3+G7tGl+g9kGz7OwAAgD8AAIA/yuRfvuvBYD8Udam+VUUQv3oKd77qhNG8AAAAAAAAAADmm0o9e7r9un0DQDxOiYo8MRySu5qhcz0AAIA/AACAPyZskD1uCfQ9AUcPPsotPb7BcAU+zDeJPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBw4UN8VpOMAWyUTR0BjAF0lEdAkBWbZSNwSHV9lChoBkdAcdDBXS0BwWgHS/toCEdAkBYURSP2f3V9lChoBkdAci8gPEsJ6mgHS/poCEdAkBccYEW69XV9lChoBkdAUhe912aDw2gHS6xoCEdAkBcZaV2RrHV9lChoBkdAc6I6DoQnQmgHTSUBaAhHQJAYeagElmh1fZQoaAZHQHHg1YMfA9FoB005AWgIR0CQGSAiV0LddX2UKGgGR0BwhjIV/MGHaAdNFQFoCEdAkBk3PRiPQ3V9lChoBkdAcJg/h2nsLWgHTRMBaAhHQJAZ487p3X91fZQoaAZHQHKdZ6lchTxoB00eAWgIR0CQGmlWOp84dX2UKGgGR0BxdCG1x82KaAdNKAFoCEdAkBqtaIN3GHV9lChoBkdAcXF2n889wGgHS/RoCEdAkBuALVnVXnV9lChoBkdAbL1xPO6d2GgHTQYBaAhHQJAccIE8q4J1fZQoaAZHQHGjYKYzBRBoB0v2aAhHQJAcgU0vXbx1fZQoaAZHQHAiIgmqo61oB00IAWgIR0CQHOBiTdLydX2UKGgGR0BvUB8OTaCdaAdL/GgIR0CQHaoqTbFkdX2UKGgGR0Byqg3irDIjaAdL+GgIR0CQHoZpBX0YdX2UKGgGR0BxilE8aGYbaAdL3GgIR0CQH8GC7K7qdX2UKGgGR0BtZNijL0SRaAdNDgFoCEdAkCAtucc2i3V9lChoBkdAcsU+Lm6oVGgHS+xoCEdAkCBfIbOu73V9lChoBkdAcCMKPn0TUWgHS/JoCEdAkCJImTkhinV9lChoBkdAcQ4bd8Aq/mgHS+ZoCEdAkCJfRNRFZ3V9lChoBkdAb/xj4pMHr2gHTQcBaAhHQJAkodn003x1fZQoaAZHQHHnFP8AJcBoB00GAWgIR0CQJVfQrtmddX2UKGgGR0BtPNbs4T9LaAdNMwFoCEdAkCWJGjKxLXV9lChoBkdAbZwfV7Qb/GgHTRUBaAhHQJAlle/pMYd1fZQoaAZHQHNeIsNDtw9oB0vkaAhHQJAlvAqNIbx1fZQoaAZHQHIabdvbXYloB00MAWgIR0CQJgygf2bodX2UKGgGR0ByERH8TBZZaAdNBAFoCEdAkCZ+R1X/53V9lChoBkdAcZhBZZB9kWgHS99oCEdAkCe2SU1Q7HV9lChoBkdAcN2JfpljE2gHTRgBaAhHQJAn3DR+jM51fZQoaAZHQHGZff8/D+BoB003AWgIR0CQKEG/N7jUdX2UKGgGR0BuT4CfYjB3aAdL/2gIR0CQKRJz1bqydX2UKGgGR0BvLHN9ph4MaAdNLwFoCEdAkCkggX/HYHV9lChoBkdActsOy3Td+GgHTRQBaAhHQJAphUn5SFZ1fZQoaAZHQHBmnwCr92poB00PAWgIR0CQKs1fVqetdX2UKGgGR0Btc52r4nF6aAdNIQFoCEdAkCtpTdcjaHV9lChoBkdAcCTlnAZbZGgHS/loCEdAkCxzLbHp8nV9lChoBkdAcwZpmmLtNWgHS/9oCEdAkCzRomG/OHV9lChoBkdAcbEABDG96GgHTRoBaAhHQJAs2J66asp1fZQoaAZHQHE470z0pVloB00VAWgIR0CQLdHT7VJ+dX2UKGgGR0ByBxV1fVqfaAdNAQFoCEdAkC4i39aUzXV9lChoBkdAcKkQXhwVCWgHTSwBaAhHQJAuX+FUQ051fZQoaAZHQHMkmFN+LFZoB00cAWgIR0CQP+VQyhzvdX2UKGgGR0Bh3JTAFgUlaAdN6ANoCEdAkEBRzzVc2XV9lChoBkdAcbL9US7GvWgHS/ZoCEdAkECjfrKNhnV9lChoBkdAcg0yAxzq8mgHS/NoCEdAkEDi0ngHeXV9lChoBkdAcYrO58Sf2GgHTR0BaAhHQJBBeJj2Bat1fZQoaAZHQG79PNVzZHxoB0v1aAhHQJBBpjjJdSl1fZQoaAZHQHG3RQFcIJJoB00LAWgIR0CQQk0Nz8xcdX2UKGgGR0BxaGAmReTnaAdNBgFoCEdAkEKIw22oenV9lChoBkdAbTvWp6yB1GgHTQkBaAhHQJBDwFFDv3J1fZQoaAZHQGzo0fozN2VoB0v/aAhHQJBFDj0cwQF1fZQoaAZHQHLqe3lS0jVoB0v7aAhHQJBFUWpIczZ1fZQoaAZHQHJNrtNSIgxoB00qAWgIR0CQRVustCiRdX2UKGgGR0BxLK7lJYknaAdNDQFoCEdAkEXjOkcjq3V9lChoBkdAbTOxN7BwdmgHS/hoCEdAkEdjw+dK/XV9lChoBkdAcgAKB/Zuh2gHTRgBaAhHQJBHoOskpqh1fZQoaAZHQHAQzu0CzTpoB00vAWgIR0CQSAycCo0idX2UKGgGR0BzCD8sMAmzaAdL+WgIR0CQSC7dSEUTdX2UKGgGR0Bv8zpkf9xZaAdNEAFoCEdAkEid4VymynV9lChoBkdAcdIW9lEqlWgHTTABaAhHQJBIt9qk/KR1fZQoaAZHQHDx+XNTtLNoB00xAWgIR0CQSMyYXwb3dX2UKGgGR0By/SE/SpiraAdNAwFoCEdAkElAEpy6tnV9lChoBkdAb3zVxS5y2mgHS/5oCEdAkElTAzpHJHV9lChoBkdAcRp7z06HTWgHS+ZoCEdAkElTjvNNanV9lChoBkdAcPLsPJ7swGgHTQ0BaAhHQJBKcUvf0mN1fZQoaAZHQHIniVrylN1oB00cAWgIR0CQTCEUj9n9dX2UKGgGR0BwyzvOQhfTaAdL72gIR0CQTF/s3Q2NdX2UKGgGR0BxPWWszVMFaAdNCwFoCEdAkE2LtNSIg3V9lChoBkdAcNXvze40/GgHTQkBaAhHQJBOnQ4S6Dp1fZQoaAZHQHDzCVbA1vVoB00DAWgIR0CQUKUwztTldX2UKGgGR0BthWAPNFBqaAdL7WgIR0CQURR/EwWWdX2UKGgGR0BtbJJkGzKLaAdNBQFoCEdAkFFGGmDUVnV9lChoBkdAcDihkiD/VGgHTQgBaAhHQJBRkpON5t51fZQoaAZHQHCMuDjBEa5oB0v7aAhHQJBRxxR2r4p1fZQoaAZHQHFRfmgam41oB00EAWgIR0CQUeub7TDwdX2UKGgGR0BvzWOp84PxaAdNAAFoCEdAkFLLzshPkHV9lChoBkdAbv1pUxVQymgHTQEBaAhHQJBS2jHn2Zl1fZQoaAZHQHKWyrPt2LZoB01EAWgIR0CQUxtZmqYJdX2UKGgGR0BsPwFiay8jaAdNnwFoCEdAkFPpkGzKLnV9lChoBkdAbPO0OVgQYmgHTS0BaAhHQJBUTg0j1PF1fZQoaAZHQHIOPgWJrL1oB00pAWgIR0CQVg/xDst1dX2UKGgGR0BxYDopx3mnaAdL5WgIR0CQVjqI7/4qdX2UKGgGR0BxbU6Kcd5qaAdNGwFoCEdAkFglIRRMvnV9lChoBkdAcAbdJJ5E+mgHTRIBaAhHQJBZZuyeI2x1fZQoaAZHQHDBL7Kq4pdoB00wAWgIR0CQWd2GqPwNdX2UKGgGR0BtkiZML4N7aAdL62gIR0CQWd3WnTAndX2UKGgGR0BuLo3vQWvbaAdL9mgIR0CQWlPjGT9sdX2UKGgGR0BxJXaN+9amaAdL+mgIR0CQWsZV4oqkdX2UKGgGR0ByGMmReTmoaAdNKQFoCEdAkFtm/8EV33V9lChoBkdAbvcYF7laKWgHTRYBaAhHQJBbeOFQEZB1fZQoaAZHQHHg6dQO4G5oB00QAWgIR0CQW4plSS/1dX2UKGgGR0BwPYSZjQRgaAdNJAFoCEdAkFyhqj8DS3V9lChoBkdAcNNIuoP07WgHTR4BaAhHQJBcsgGKQ7t1fZQoaAZHQHNCd/jKgZloB00xAWgIR0CQXQOsT37DdX2UKGgGR0BuNtgDzRQaaAdNKAFoCEdAkF2WjGkvb3V9lChoBkdAbjdLPD50sGgHS/doCEdAkF3S1AqusHV9lChoBkdAbJfnEl3QlmgHS/ZoCEdAkF3l0Lc9GXV9lChoBkdAcPSiqABkqmgHTTkBaAhHQJBeSPeYUnJ1fZQoaAZHQG+O+nyd4FBoB00DAWgIR0CQX1/R3NcGdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:658bced73663ffc65c4d23bbabafe7cdeab0bfc1c4a5b99c7ee6627544c6291c
|
| 3 |
+
size 148040
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78480c901090>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78480c901120>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78480c9011b0>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78480c901240>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78480c9012d0>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78480c901360>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78480c9013f0>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78480c901480>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78480c901510>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78480c9015a0>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78480c901630>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78480c9016c0>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78480c88dc80>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"num_timesteps": 1015808,
|
| 25 |
+
"_total_timesteps": 1000000,
|
| 26 |
+
"_num_timesteps_at_start": 0,
|
| 27 |
+
"seed": null,
|
| 28 |
+
"action_noise": null,
|
| 29 |
+
"start_time": 1721185431872565578,
|
| 30 |
+
"learning_rate": 0.0003,
|
| 31 |
+
"tensorboard_log": null,
|
| 32 |
+
"_last_obs": {
|
| 33 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAXxr3ksQo/cB8lPfuDub71hVe9yW6luwAAAAAAAAAAmgKXPbg+zrlZMqU5Cy4wNaTUfTtaecO4AACAPwAAgD9NT6C9KOrCPgsSeT0bCIe+580tvbwMDL0AAAAAAAAAAKZ44j1P1CM986sFvoTNn70Ytig9+ZUYvAAAAAAAAAAAMyvZPBTrDD47b2G8jXV9vr4Y5bstEz89AAAAAAAAAACNmsk94emHPukHur6247C+gygWvgz4njwAAAAAAAAAAKBgCb635Rg+6XKLPt1ejb5Z8gw+MlsEPQAAAAAAAAAAgLgmvcOlSTkorE2yz5SGMZMfnTooz0szAACAPwAAgD8zp0M81wMOOhsheTuZCrA49B0kPII8HroAAIA/AACAP8040jxcDk47TQrRvElzKr4iFDm9kbivPgAAgD8AAAAAbWNCvkA3wT40rsY+wjauvoBsT71bR+Y9AAAAAAAAAABmkkS9wZ+DvE+aDj7icJ29Gir/vV2jfr4AAIA/AACAP2YNOL6caHK8Y/a/vN3+G7tGl+g9kGz7OwAAgD8AAIA/yuRfvuvBYD8Udam+VUUQv3oKd77qhNG8AAAAAAAAAADmm0o9e7r9un0DQDxOiYo8MRySu5qhcz0AAIA/AACAPyZskD1uCfQ9AUcPPsotPb7BcAU+zDeJPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
| 35 |
+
},
|
| 36 |
+
"_last_episode_starts": {
|
| 37 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
| 39 |
+
},
|
| 40 |
+
"_last_original_obs": null,
|
| 41 |
+
"_episode_num": 0,
|
| 42 |
+
"use_sde": false,
|
| 43 |
+
"sde_sample_freq": -1,
|
| 44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
| 45 |
+
"_stats_window_size": 100,
|
| 46 |
+
"ep_info_buffer": {
|
| 47 |
+
":type:": "<class 'collections.deque'>",
|
| 48 |
+
":serialized:": "gAWVIgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBw4UN8VpOMAWyUTR0BjAF0lEdAkBWbZSNwSHV9lChoBkdAcdDBXS0BwWgHS/toCEdAkBYURSP2f3V9lChoBkdAci8gPEsJ6mgHS/poCEdAkBccYEW69XV9lChoBkdAUhe912aDw2gHS6xoCEdAkBcZaV2RrHV9lChoBkdAc6I6DoQnQmgHTSUBaAhHQJAYeagElmh1fZQoaAZHQHHg1YMfA9FoB005AWgIR0CQGSAiV0LddX2UKGgGR0BwhjIV/MGHaAdNFQFoCEdAkBk3PRiPQ3V9lChoBkdAcJg/h2nsLWgHTRMBaAhHQJAZ487p3X91fZQoaAZHQHKdZ6lchTxoB00eAWgIR0CQGmlWOp84dX2UKGgGR0BxdCG1x82KaAdNKAFoCEdAkBqtaIN3GHV9lChoBkdAcXF2n889wGgHS/RoCEdAkBuALVnVXnV9lChoBkdAbL1xPO6d2GgHTQYBaAhHQJAccIE8q4J1fZQoaAZHQHGjYKYzBRBoB0v2aAhHQJAcgU0vXbx1fZQoaAZHQHAiIgmqo61oB00IAWgIR0CQHOBiTdLydX2UKGgGR0BvUB8OTaCdaAdL/GgIR0CQHaoqTbFkdX2UKGgGR0Byqg3irDIjaAdL+GgIR0CQHoZpBX0YdX2UKGgGR0BxilE8aGYbaAdL3GgIR0CQH8GC7K7qdX2UKGgGR0BtZNijL0SRaAdNDgFoCEdAkCAtucc2i3V9lChoBkdAcsU+Lm6oVGgHS+xoCEdAkCBfIbOu73V9lChoBkdAcCMKPn0TUWgHS/JoCEdAkCJImTkhinV9lChoBkdAcQ4bd8Aq/mgHS+ZoCEdAkCJfRNRFZ3V9lChoBkdAb/xj4pMHr2gHTQcBaAhHQJAkodn003x1fZQoaAZHQHHnFP8AJcBoB00GAWgIR0CQJVfQrtmddX2UKGgGR0BtPNbs4T9LaAdNMwFoCEdAkCWJGjKxLXV9lChoBkdAbZwfV7Qb/GgHTRUBaAhHQJAlle/pMYd1fZQoaAZHQHNeIsNDtw9oB0vkaAhHQJAlvAqNIbx1fZQoaAZHQHIabdvbXYloB00MAWgIR0CQJgygf2bodX2UKGgGR0ByERH8TBZZaAdNBAFoCEdAkCZ+R1X/53V9lChoBkdAcZhBZZB9kWgHS99oCEdAkCe2SU1Q7HV9lChoBkdAcN2JfpljE2gHTRgBaAhHQJAn3DR+jM51fZQoaAZHQHGZff8/D+BoB003AWgIR0CQKEG/N7jUdX2UKGgGR0BuT4CfYjB3aAdL/2gIR0CQKRJz1bqydX2UKGgGR0BvLHN9ph4MaAdNLwFoCEdAkCkggX/HYHV9lChoBkdActsOy3Td+GgHTRQBaAhHQJAphUn5SFZ1fZQoaAZHQHBmnwCr92poB00PAWgIR0CQKs1fVqetdX2UKGgGR0Btc52r4nF6aAdNIQFoCEdAkCtpTdcjaHV9lChoBkdAcCTlnAZbZGgHS/loCEdAkCxzLbHp8nV9lChoBkdAcwZpmmLtNWgHS/9oCEdAkCzRomG/OHV9lChoBkdAcbEABDG96GgHTRoBaAhHQJAs2J66asp1fZQoaAZHQHE470z0pVloB00VAWgIR0CQLdHT7VJ+dX2UKGgGR0ByBxV1fVqfaAdNAQFoCEdAkC4i39aUzXV9lChoBkdAcKkQXhwVCWgHTSwBaAhHQJAuX+FUQ051fZQoaAZHQHMkmFN+LFZoB00cAWgIR0CQP+VQyhzvdX2UKGgGR0Bh3JTAFgUlaAdN6ANoCEdAkEBRzzVc2XV9lChoBkdAcbL9US7GvWgHS/ZoCEdAkECjfrKNhnV9lChoBkdAcg0yAxzq8mgHS/NoCEdAkEDi0ngHeXV9lChoBkdAcYrO58Sf2GgHTR0BaAhHQJBBeJj2Bat1fZQoaAZHQG79PNVzZHxoB0v1aAhHQJBBpjjJdSl1fZQoaAZHQHG3RQFcIJJoB00LAWgIR0CQQk0Nz8xcdX2UKGgGR0BxaGAmReTnaAdNBgFoCEdAkEKIw22oenV9lChoBkdAbTvWp6yB1GgHTQkBaAhHQJBDwFFDv3J1fZQoaAZHQGzo0fozN2VoB0v/aAhHQJBFDj0cwQF1fZQoaAZHQHLqe3lS0jVoB0v7aAhHQJBFUWpIczZ1fZQoaAZHQHJNrtNSIgxoB00qAWgIR0CQRVustCiRdX2UKGgGR0BxLK7lJYknaAdNDQFoCEdAkEXjOkcjq3V9lChoBkdAbTOxN7BwdmgHS/hoCEdAkEdjw+dK/XV9lChoBkdAcgAKB/Zuh2gHTRgBaAhHQJBHoOskpqh1fZQoaAZHQHAQzu0CzTpoB00vAWgIR0CQSAycCo0idX2UKGgGR0BzCD8sMAmzaAdL+WgIR0CQSC7dSEUTdX2UKGgGR0Bv8zpkf9xZaAdNEAFoCEdAkEid4VymynV9lChoBkdAcdIW9lEqlWgHTTABaAhHQJBIt9qk/KR1fZQoaAZHQHDx+XNTtLNoB00xAWgIR0CQSMyYXwb3dX2UKGgGR0By/SE/SpiraAdNAwFoCEdAkElAEpy6tnV9lChoBkdAb3zVxS5y2mgHS/5oCEdAkElTAzpHJHV9lChoBkdAcRp7z06HTWgHS+ZoCEdAkElTjvNNanV9lChoBkdAcPLsPJ7swGgHTQ0BaAhHQJBKcUvf0mN1fZQoaAZHQHIniVrylN1oB00cAWgIR0CQTCEUj9n9dX2UKGgGR0BwyzvOQhfTaAdL72gIR0CQTF/s3Q2NdX2UKGgGR0BxPWWszVMFaAdNCwFoCEdAkE2LtNSIg3V9lChoBkdAcNXvze40/GgHTQkBaAhHQJBOnQ4S6Dp1fZQoaAZHQHDzCVbA1vVoB00DAWgIR0CQUKUwztTldX2UKGgGR0BthWAPNFBqaAdL7WgIR0CQURR/EwWWdX2UKGgGR0BtbJJkGzKLaAdNBQFoCEdAkFFGGmDUVnV9lChoBkdAcDihkiD/VGgHTQgBaAhHQJBRkpON5t51fZQoaAZHQHCMuDjBEa5oB0v7aAhHQJBRxxR2r4p1fZQoaAZHQHFRfmgam41oB00EAWgIR0CQUeub7TDwdX2UKGgGR0BvzWOp84PxaAdNAAFoCEdAkFLLzshPkHV9lChoBkdAbv1pUxVQymgHTQEBaAhHQJBS2jHn2Zl1fZQoaAZHQHKWyrPt2LZoB01EAWgIR0CQUxtZmqYJdX2UKGgGR0BsPwFiay8jaAdNnwFoCEdAkFPpkGzKLnV9lChoBkdAbPO0OVgQYmgHTS0BaAhHQJBUTg0j1PF1fZQoaAZHQHIOPgWJrL1oB00pAWgIR0CQVg/xDst1dX2UKGgGR0BxYDopx3mnaAdL5WgIR0CQVjqI7/4qdX2UKGgGR0BxbU6Kcd5qaAdNGwFoCEdAkFglIRRMvnV9lChoBkdAcAbdJJ5E+mgHTRIBaAhHQJBZZuyeI2x1fZQoaAZHQHDBL7Kq4pdoB00wAWgIR0CQWd2GqPwNdX2UKGgGR0BtkiZML4N7aAdL62gIR0CQWd3WnTAndX2UKGgGR0BuLo3vQWvbaAdL9mgIR0CQWlPjGT9sdX2UKGgGR0BxJXaN+9amaAdL+mgIR0CQWsZV4oqkdX2UKGgGR0ByGMmReTmoaAdNKQFoCEdAkFtm/8EV33V9lChoBkdAbvcYF7laKWgHTRYBaAhHQJBbeOFQEZB1fZQoaAZHQHHg6dQO4G5oB00QAWgIR0CQW4plSS/1dX2UKGgGR0BwPYSZjQRgaAdNJAFoCEdAkFyhqj8DS3V9lChoBkdAcNNIuoP07WgHTR4BaAhHQJBcsgGKQ7t1fZQoaAZHQHNCd/jKgZloB00xAWgIR0CQXQOsT37DdX2UKGgGR0BuNtgDzRQaaAdNKAFoCEdAkF2WjGkvb3V9lChoBkdAbjdLPD50sGgHS/doCEdAkF3S1AqusHV9lChoBkdAbJfnEl3QlmgHS/ZoCEdAkF3l0Lc9GXV9lChoBkdAcPSiqABkqmgHTTkBaAhHQJBeSPeYUnJ1fZQoaAZHQG+O+nyd4FBoB00DAWgIR0CQX1/R3NcGdWUu"
|
| 49 |
+
},
|
| 50 |
+
"ep_success_buffer": {
|
| 51 |
+
":type:": "<class 'collections.deque'>",
|
| 52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
+
},
|
| 54 |
+
"_n_updates": 248,
|
| 55 |
+
"observation_space": {
|
| 56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
| 58 |
+
"dtype": "float32",
|
| 59 |
+
"bounded_below": "[ True True True True True True True True]",
|
| 60 |
+
"bounded_above": "[ True True True True True True True True]",
|
| 61 |
+
"_shape": [
|
| 62 |
+
8
|
| 63 |
+
],
|
| 64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 68 |
+
"_np_random": null
|
| 69 |
+
},
|
| 70 |
+
"action_space": {
|
| 71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
| 72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
| 73 |
+
"n": "4",
|
| 74 |
+
"start": "0",
|
| 75 |
+
"_shape": [],
|
| 76 |
+
"dtype": "int64",
|
| 77 |
+
"_np_random": null
|
| 78 |
+
},
|
| 79 |
+
"n_envs": 16,
|
| 80 |
+
"n_steps": 1024,
|
| 81 |
+
"gamma": 0.999,
|
| 82 |
+
"gae_lambda": 0.98,
|
| 83 |
+
"ent_coef": 0.01,
|
| 84 |
+
"vf_coef": 0.5,
|
| 85 |
+
"max_grad_norm": 0.5,
|
| 86 |
+
"batch_size": 64,
|
| 87 |
+
"n_epochs": 4,
|
| 88 |
+
"clip_range": {
|
| 89 |
+
":type:": "<class 'function'>",
|
| 90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 91 |
+
},
|
| 92 |
+
"clip_range_vf": null,
|
| 93 |
+
"normalize_advantage": true,
|
| 94 |
+
"target_kl": null,
|
| 95 |
+
"lr_schedule": {
|
| 96 |
+
":type:": "<class 'function'>",
|
| 97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 98 |
+
}
|
| 99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:01669bbe226f6aa5daeca7c67e1fb44d21a409aaeb03b08b33fe9c6c31eeb971
|
| 3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:484be79ca91ef0ca44e814a730f4df287e538dbbc57d92f51dcfc5297926844e
|
| 3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
| 3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
| 2 |
+
- Python: 3.10.12
|
| 3 |
+
- Stable-Baselines3: 2.0.0a5
|
| 4 |
+
- PyTorch: 2.3.0+cu121
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 1.25.2
|
| 7 |
+
- Cloudpickle: 2.2.1
|
| 8 |
+
- Gymnasium: 0.28.1
|
| 9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
|
Binary file (184 kB). View file
|
|
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 250.25664992819037, "std_reward": 43.12747579518968, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-17T03:23:22.013952"}
|