Upload handler.py
Browse files- handler.py +197 -0
handler.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, T5ForSequenceClassification
|
| 4 |
+
from typing import Dict, List, Any
|
| 5 |
+
|
| 6 |
+
class EndpointHandler:
|
| 7 |
+
"""
|
| 8 |
+
HuggingFace Inference Endpoint Handler for Java Vulnerability Detection
|
| 9 |
+
CodeT5 ๊ธฐ๋ฐ ๋ถ๋ฅ ๋ชจ๋ธ (LoRA fine-tuned)
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
def __init__(self, path="."):
|
| 13 |
+
"""
|
| 14 |
+
๋ชจ๋ธ๊ณผ ํ ํฌ๋์ด์ ๋ฅผ ์ด๊ธฐํํฉ๋๋ค.
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
path (str): ๋ชจ๋ธ์ด ์ ์ฅ๋ ๊ฒฝ๋ก (HuggingFace Hub์์ ์๋์ผ๋ก ์ค์ ๋จ)
|
| 18 |
+
"""
|
| 19 |
+
print(f"๐ Loading Java Vulnerability Detection Model from {path}")
|
| 20 |
+
|
| 21 |
+
# ๋๋ฐ์ด์ค ์ค์
|
| 22 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
+
print(f"๐ Device: {self.device}")
|
| 24 |
+
|
| 25 |
+
# ํ ํฌ๋์ด์ ๋ก๋
|
| 26 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
| 27 |
+
|
| 28 |
+
# T5ForSequenceClassification ๋ชจ๋ธ ๋ก๋
|
| 29 |
+
self.model = T5ForSequenceClassification.from_pretrained(
|
| 30 |
+
path,
|
| 31 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
# ๋ชจ๋ธ์ ํ๊ฐ ๋ชจ๋๋ก ์ค์ ํ๊ณ ๋๋ฐ์ด์ค๋ก ์ด๋
|
| 35 |
+
self.model.to(self.device)
|
| 36 |
+
self.model.eval()
|
| 37 |
+
|
| 38 |
+
print("โ
Model loaded successfully!")
|
| 39 |
+
|
| 40 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 41 |
+
"""
|
| 42 |
+
๋ฉ์ธ ์ถ๋ก ๋ฉ์๋ (HuggingFace Inference API๊ฐ ํธ์ถ)
|
| 43 |
+
|
| 44 |
+
Args:
|
| 45 |
+
data (dict): ์
๋ ฅ ๋ฐ์ดํฐ
|
| 46 |
+
- "inputs" (str): Java ์ฝ๋ ๋๋
|
| 47 |
+
- "code" (str): Java ์ฝ๋
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
list: ์์ธก ๊ฒฐ๊ณผ ๋ฆฌ์คํธ
|
| 51 |
+
"""
|
| 52 |
+
# 1. ์ ์ฒ๋ฆฌ
|
| 53 |
+
inputs = self.preprocess(data)
|
| 54 |
+
|
| 55 |
+
# 2. ์ถ๋ก
|
| 56 |
+
outputs = self.inference(inputs)
|
| 57 |
+
|
| 58 |
+
# 3. ํ์ฒ๋ฆฌ
|
| 59 |
+
result = self.postprocess(outputs)
|
| 60 |
+
|
| 61 |
+
return result
|
| 62 |
+
|
| 63 |
+
def preprocess(self, request: Dict[str, Any]) -> Dict[str, torch.Tensor]:
|
| 64 |
+
"""
|
| 65 |
+
์
๋ ฅ ๋ฐ์ดํฐ๋ฅผ ์ ์ฒ๋ฆฌํฉ๋๋ค.
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
request (dict): API ์์ฒญ ๋ฐ์ดํฐ
|
| 69 |
+
|
| 70 |
+
Returns:
|
| 71 |
+
dict: ํ ํฌ๋์ด์ฆ๋ ์
๋ ฅ ํ
์
|
| 72 |
+
"""
|
| 73 |
+
# ์
๋ ฅ ํ
์คํธ ์ถ์ถ
|
| 74 |
+
if isinstance(request, dict):
|
| 75 |
+
# "inputs" ๋๋ "code" ํค์์ Java ์ฝ๋ ์ถ์ถ
|
| 76 |
+
code = request.get("inputs") or request.get("code")
|
| 77 |
+
elif isinstance(request, list) and len(request) > 0:
|
| 78 |
+
code = request[0].get("inputs") or request[0].get("code")
|
| 79 |
+
elif isinstance(request, str):
|
| 80 |
+
code = request
|
| 81 |
+
else:
|
| 82 |
+
raise ValueError(
|
| 83 |
+
"Invalid request format. Expected {'inputs': 'Java code here'} "
|
| 84 |
+
"or {'code': 'Java code here'}"
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
if not code:
|
| 88 |
+
raise ValueError("No code provided in request")
|
| 89 |
+
|
| 90 |
+
# ํ๋กฌํํธ ํ
ํ๋ฆฟ ์ ์ฉ
|
| 91 |
+
input_text = f"Is this Java code vulnerable?:\n{code}"
|
| 92 |
+
|
| 93 |
+
# ํ ํฌ๋์ด์ง
|
| 94 |
+
inputs = self.tokenizer(
|
| 95 |
+
input_text,
|
| 96 |
+
max_length=512,
|
| 97 |
+
truncation=True,
|
| 98 |
+
padding="max_length",
|
| 99 |
+
return_tensors="pt"
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# ๋๋ฐ์ด์ค๋ก ์ด๋
|
| 103 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 104 |
+
|
| 105 |
+
return inputs
|
| 106 |
+
|
| 107 |
+
def inference(self, inputs: Dict[str, torch.Tensor]) -> torch.Tensor:
|
| 108 |
+
"""
|
| 109 |
+
๋ชจ๋ธ ์ถ๋ก ์ ์ํํฉ๋๋ค.
|
| 110 |
+
|
| 111 |
+
Args:
|
| 112 |
+
inputs (dict): ์ ์ฒ๋ฆฌ๋ ์
๋ ฅ ํ
์
|
| 113 |
+
|
| 114 |
+
Returns:
|
| 115 |
+
torch.Tensor: ๋ชจ๋ธ ์ถ๋ ฅ ๋ก์ง
|
| 116 |
+
"""
|
| 117 |
+
with torch.no_grad():
|
| 118 |
+
outputs = self.model(**inputs)
|
| 119 |
+
logits = outputs.logits
|
| 120 |
+
|
| 121 |
+
return logits
|
| 122 |
+
|
| 123 |
+
def postprocess(self, logits: torch.Tensor) -> List[Dict[str, Any]]:
|
| 124 |
+
"""
|
| 125 |
+
๋ชจ๋ธ ์ถ๋ ฅ์ ์ฌ๋์ด ์ฝ์ ์ ์๋ ํํ๋ก ๋ณํํฉ๋๋ค.
|
| 126 |
+
|
| 127 |
+
Args:
|
| 128 |
+
logits (torch.Tensor): ๋ชจ๋ธ ์ถ๋ ฅ ๋ก์ง
|
| 129 |
+
|
| 130 |
+
Returns:
|
| 131 |
+
list: ์์ธก ๊ฒฐ๊ณผ ๋ฆฌ์คํธ
|
| 132 |
+
"""
|
| 133 |
+
# ๋ก์ง ์ฒ๋ฆฌ (๋จ์ผ ์ถ๋ ฅ vs ๋ค์ค ํด๋์ค)
|
| 134 |
+
if logits.shape[-1] == 1:
|
| 135 |
+
# Binary classification with single output
|
| 136 |
+
prob = torch.sigmoid(logits).item()
|
| 137 |
+
predicted_class = 1 if prob > 0.5 else 0
|
| 138 |
+
confidence = prob if predicted_class == 1 else (1 - prob)
|
| 139 |
+
probabilities = {
|
| 140 |
+
"LABEL_0": 1 - prob,
|
| 141 |
+
"LABEL_1": prob
|
| 142 |
+
}
|
| 143 |
+
else:
|
| 144 |
+
# Multi-class classification
|
| 145 |
+
probs = torch.softmax(logits, dim=1)[0]
|
| 146 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
| 147 |
+
confidence = probs[predicted_class].item()
|
| 148 |
+
probabilities = {
|
| 149 |
+
f"LABEL_{i}": probs[i].item()
|
| 150 |
+
for i in range(len(probs))
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
# ๋ ์ด๋ธ ๋งคํ
|
| 154 |
+
label_map = {
|
| 155 |
+
0: "safe",
|
| 156 |
+
1: "vulnerable"
|
| 157 |
+
}
|
| 158 |
+
|
| 159 |
+
# ๊ฒฐ๊ณผ ํฌ๋งทํ
|
| 160 |
+
result = {
|
| 161 |
+
"label": label_map.get(predicted_class, f"LABEL_{predicted_class}"),
|
| 162 |
+
"score": confidence,
|
| 163 |
+
"probabilities": probabilities,
|
| 164 |
+
"details": {
|
| 165 |
+
"is_vulnerable": predicted_class == 1,
|
| 166 |
+
"confidence_percentage": f"{confidence * 100:.2f}%",
|
| 167 |
+
"safe_probability": probabilities.get("LABEL_0", 0),
|
| 168 |
+
"vulnerable_probability": probabilities.get("LABEL_1", 0)
|
| 169 |
+
}
|
| 170 |
+
}
|
| 171 |
+
|
| 172 |
+
return [result]
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
# ๋ก์ปฌ ํ
์คํธ์ฉ ์ฝ๋
|
| 176 |
+
if __name__ == "__main__":
|
| 177 |
+
# ๋ก์ปฌ์์ ํ
์คํธํ ๋ ์ฌ์ฉ
|
| 178 |
+
handler = EndpointHandler(path=".")
|
| 179 |
+
|
| 180 |
+
# ํ
์คํธ ์ผ์ด์ค
|
| 181 |
+
test_code = """
|
| 182 |
+
import java.sql.*;
|
| 183 |
+
public class SQLInjectionVulnerable {
|
| 184 |
+
public void getUser(String userInput) {
|
| 185 |
+
String query = "SELECT * FROM users WHERE username = '" + userInput + "'";
|
| 186 |
+
Statement statement = connection.createStatement();
|
| 187 |
+
ResultSet resultSet = statement.executeQuery(query);
|
| 188 |
+
}
|
| 189 |
+
}
|
| 190 |
+
"""
|
| 191 |
+
|
| 192 |
+
# ์ถ๋ก ์คํ
|
| 193 |
+
request = {"inputs": test_code}
|
| 194 |
+
result = handler(request)
|
| 195 |
+
|
| 196 |
+
print("\n๐ Test Result:")
|
| 197 |
+
print(result)
|