--- license: agpl-3.0 tags: - smoltrace - smolagents - evaluation - benchmark - llm - agents ---
--- # SMOLTRACE GPU & Environmental Metrics This dataset contains time-series GPU metrics and environmental impact data from a SMOLTRACE benchmark run. ## Dataset Information | Field | Value | |-------|-------| | **Model** | `ministral-3:3b` | | **Run ID** | `48252774-d862-4c4e-8a90-54dc5fd3df2c` | | **Total Samples** | 313 | | **Generated** | 2025-12-10 13:55:15 UTC | | **GPU Metrics** | Available | ## Schema | Column | Type | Description | |--------|------|-------------| | `run_id` | string | Unique run identifier | | `timestamp` | string | ISO timestamp of measurement | | `timestamp_unix_nano` | string | Unix nanosecond timestamp | | `service_name` | string | Service identifier | | `gpu_id` | string | GPU device ID | | `gpu_name` | string | GPU model name | | `gpu_utilization_percent` | float | GPU compute utilization (0-100%) | | `gpu_memory_used_mib` | float | GPU memory used (MiB) | | `gpu_memory_total_mib` | float | Total GPU memory (MiB) | | `gpu_temperature_celsius` | float | GPU temperature (°C) | | `gpu_power_watts` | float | GPU power consumption (W) | | `co2_emissions_gco2e` | float | Cumulative CO2 emissions (gCO2e) | | `power_cost_usd` | float | Cumulative power cost (USD) | ## Environmental Impact SMOLTRACE tracks environmental metrics to help you understand the carbon footprint of your AI workloads: - **CO2 Emissions**: Calculated based on GPU power consumption and regional carbon intensity - **Power Cost**: Estimated electricity cost based on configurable rates ## Usage ```python from datasets import load_dataset import pandas as pd # Load metrics ds = load_dataset("YOUR_USERNAME/smoltrace-metrics-TIMESTAMP") # Convert to DataFrame for analysis df = pd.DataFrame(ds['train']) # Plot GPU utilization over time import matplotlib.pyplot as plt plt.plot(df['timestamp'], df['gpu_utilization_percent']) plt.xlabel('Time') plt.ylabel('GPU Utilization (%)') plt.title('GPU Utilization During Evaluation') plt.show() # Get total environmental impact total_co2 = df['co2_emissions_gco2e'].max() total_cost = df['power_cost_usd'].max() print(f"Total CO2: {total_co2:.4f} gCO2e") print(f"Total Cost: ${total_cost:.6f}") ``` ## Related Datasets This evaluation run also generated: - **Results Dataset**: Pass/fail outcomes for each test case - **Traces Dataset**: Detailed OpenTelemetry execution traces - **Leaderboard**: Aggregated metrics for model comparison --- ## About SMOLTRACE **SMOLTRACE** is a comprehensive benchmarking and evaluation framework for [Smolagents](https://huggingface.co/docs/smolagents) - HuggingFace's lightweight agent library. ### Key Features - Automated agent evaluation with customizable test cases - OpenTelemetry-based tracing for detailed execution insights - GPU metrics collection (utilization, memory, temperature, power) - CO2 emissions and power cost tracking - Leaderboard aggregation and comparison ### Quick Links - [GitHub Repository](https://github.com/Mandark-droid/SMOLTRACE) - [PyPI Package](https://pypi.org/project/smoltrace/) - [Documentation](https://github.com/Mandark-droid/SMOLTRACE#readme) - [Report Issues](https://github.com/Mandark-droid/SMOLTRACE/issues) ### Installation ```bash pip install smoltrace ``` ### Citation If you use SMOLTRACE in your research, please cite: ```bibtex @software{smoltrace, title = {SMOLTRACE: Benchmarking Framework for Smolagents}, author = {Thakkar, Kshitij}, url = {https://github.com/Mandark-droid/SMOLTRACE}, year = {2025} } ``` ---