import os import shutil import pandas as pd from pathlib import Path import argparse import csv # ===================== CONFIGURATION ===================== # parser = argparse.ArgumentParser(description="Batch split files and clean metadata.") parser.add_argument("main_dir", type=str, help="Path to the main directory containing files.") args = parser.parse_args() MAIN_DIR = args.main_dir CSV_PATH = f"{MAIN_DIR}/metadata.csv" # change this BATCH_SIZE = 9000 # ========================================================== # # ---- Load metadata ---- main_path = Path(MAIN_DIR) csv_path = Path(CSV_PATH) # =================================================== # STEP 1 — Load metadata safely # =================================================== clean_rows = [] bad_rows = [] with open(csv_path, "r", encoding="utf-8", errors="replace", newline="") as f: reader = csv.reader(f, delimiter=",", quotechar='"') header = next(reader) n_cols = len(header) clean_rows.append(header) for row in reader: # remove null bytes row = [col.replace("\x00", "").replace("\\", "_").replace("/", "_").replace(":", "_") .replace("*", "_").replace("?", "_").replace("\"", "_").replace("<", "_") .replace(">", "_").replace("|", "_") for col in row] if len(row) == n_cols: clean_rows.append(row) else: bad_rows.append(row) print(f"Header columns: {n_cols}") print(f"Total valid rows: {len(clean_rows)-1}") print(f"Bad rows skipped: {len(bad_rows)}") # Convert CSV to list of dicts for easier manipulation data = [dict(zip(header, row)) for row in clean_rows[1:]] # ----------------- Step 2: Remove files not in metadata ----------------- # metadata_filenames = {row["name"]+".mp3" for row in data} # use the 'name' column actual_files = {f.name for f in main_path.iterdir() if f.is_file()} files_to_remove = actual_files - metadata_filenames for fname in files_to_remove: print(f"Removing unlisted file: {fname}") (main_path / fname).unlink() # refresh actual files actual_files = {f.name for f in main_path.iterdir() if f.is_file()} # ----------------- Step 3: Remove metadata rows where file does not exist ----------------- # data = [row for row in data if row["name"] in actual_files] # ----------------- Step 4: Split into batches ----------------- # sorted_files = sorted(actual_files) file_to_batch = {} batch_num = 1 for i in range(0, len(sorted_files), BATCH_SIZE): batch_files = sorted_files[i:i + BATCH_SIZE] batch_dir = main_path / f"batch_{batch_num:03d}" batch_dir.mkdir(exist_ok=True) print(f"Creating {batch_dir} with {len(batch_files)} files") for fname in batch_files: src = main_path / fname dst = batch_dir / fname shutil.move(str(src), str(dst)) file_to_batch[fname] = batch_num batch_num += 1 # ----------------- Step 5: Add batch prefix to metadata ----------------- # for row in data: bn = file_to_batch.get(row["name"]) if bn is None: raise ValueError(f"Missing batch info for file: {row['name']}") row["name"] = f"batch_{bn:03d}/{row['name']}" # ----------------- Step 6: Save cleaned CSV ----------------- # output_csv = csv_path.with_name(csv_path.stem + "_clean.csv") with open(output_csv, "w", newline="", encoding="utf-8") as f: writer = csv.DictWriter(f, fieldnames=header) writer.writeheader() writer.writerows(data) # =================================================== # STEP 6 — Save cleaned metadata CSV # =================================================== print(f"Number of lines in cleaned CSV: {len(data)}") print(f"Cleaned CSV saved to: {output_csv}")