Unit-1:Introduction to
Distributed Operating
Systems

Dr. Satyananda Champati Rai
Associate Professor
School of Computer Engineering
KIIT Deemed to be University
Bhubaneswar

(¥ Scanned with OKEN S

nnnnnn

V7
N

UNIT-1: Fundamentals of Distributed O0S

Introduction to DOS
Goals of DOS

Hardware Concepts

Software Concepts

Networked OS

True Distributed Systems

Time Sharing Multiprocessor OS
Design Issues

System Architectures

(% Scanned with OKEN Scanner

i

W
#1: Introduction to DOS

Background:
* 1945 - 1985 : Beginning of modern computer era
* Computers were expensive
Most organizations had only a handful of computers
Lack of communication among the computers
Most computers were operated independently

Development of two advanced technologies
* Powerful microprocessors 8-bit, 16-bit, 32-bit and 64-bit
* High-speed computer networks (LAN, MAN, WAN)

Subsequently, computing systems composed of large number of CPUs
connected by a high-speed network were formed. It is known as
“Distributed Systems”.

(% Scanned with OKEN Scanner

#1: Introduction to DOS Cont.

Distributed System:

* Adistributed system is a collection of independent computers that to the users of
the system as a single computer. '

* i.e. A Distributed system has two aspects — Hardware & Software
1. Hardware: Machines are autonomous
2. Software: The users think of the system as a single computer

Eg #1: Network of workstations in an organization

Eg: Pool of processors in the machine room that are not assigned to specific users
but are allocated as needed.

It might have a single file system, with all files accessible from all machines
uniformly and using the same path name.

A single command may be executed on user’s own workstation/idle workstation /
unassigned processors in the machine room.

If the system as a whole looked and acted like a classical single-processor
timesharing system, it would qualify as a “Distributed System”.

(% Scanned with OKEN Scanner

#1: Introduction to DOS Cont.

Eg #2: A factory full of robots, each containing a powerful computer for handling
vision, planning, communication, and other tasks.

All the robots act like peripheral devices attached to the same central computer
and the system can be programmed that way, it too count as a distributed system.

Satyananda Champati Rai

(¥ Scanned with OKEN Scanner

A
#1: Introduction to DOS Cont.

“ Eg #3: Consider large bank with hundreds of branch offices all over the world.
Each office has a master computer to store local accounts and handle local
transactions. Each computer has the ability to communicate to all other branch
computers and with a central computer at headquarters. If (transactions can be
done without regard to where a customer or account is AND the user do not
notice any difference between this system and the old centralized mainframe

that it replaced) then it is a “Distributed System”.

Unit-1: DOS Satyananda Champati Rai 6

(¥ Scanned with OKEN Scanner

e

#2: Motivation and Goals of Distributed Systems

Q. Why a Distributed System is essential?
* Reasons: Let us analyze the reasons of using Distributed System.

1. Economics: The real driving force behind the trend toward decentralization is economics.
Use of large number of chip CPUs together in a system potentially have a much better
price/performance ratio than a single large centralized system would have.

2. Speed: A collection of microprocessors cannot only give a better price/performance ration
than a single mainframe, but may vield an absolute performance than no mainframe can
achieve at any price. Multiple interconnected CPUs work together.

3. Inherent Distributed Application: Eg- A supermarket chain. The completer system look like
a single computer to the application programs, but implement decentrally, with one
computer per store. This is a commercial distributed system. Eg #2: Computer Supported
Cooperative Game. Eg #3: Cloud-based environment

4. Reliability: if k% of the machines are down at any moment, the system should be able to
continue to work with a k% loss in performance. For critical applications, such as control of
nuclear reactor or aircraft using a DOS to achieve high reliability may be the dominant
consideration.

5. Incremental Growth: With a distributed system, we may add more processors to the
system, thus allowing it to expand gradually as the need arises.

* Note: Grosch’s law: Computing power of CPU « square of its price

Unit-1: DOS Satyananda Champati Rai 7

(¥ Scanned with OKEN Scanner

Advantages of Distributed Systems over
Independent PCs

Data Sharing: Allow many users access to a common data base

Device Sharing: Allow many users to share expensive peripherals like
color printer

Communication: Make human-to-human communication easier (Eg:
Email)

Flexibility: Spread the work load over the available machines in the
most cost effective way

(¥ Scanned with OKEN Scanner

Disadvantages of Distributed Systems

Software : More software are required for different distributed
applications for smooth functioning across the locations

Networking : The network can saturate or cause other problems
Security: Easy access also applies to secret data

(% Scanned with OKEN Scanner

i

A

#3: Hardware Concepts

The multiple CPUs in distributed System - How the CPUs are

interconnected and how they communicate ?
MIMD

Parallel and
distributed
Tightly coupled computers Loosely coupled
Multiprocessors Multicomputers
(shared memory) (private memory)

Bus Switched Bus Switched

Sequent, Encore Ultracomputer, RP3 Workstations on a LAN Hypercube, Transputer

(% Scanned with OKEN Scanner

e

#3:Hardware Concepts Cont.

Flynn’s Archtecture (1972) — Two essential characteristics :
* The number of instruction streams
* SISD : Eg. All traditional uniprocessor computers (i.e., those having only one CPU)

* SIMD : Eg. Array processors (Super Computers) — one instruction unit that
fetches an instruction, and then commands many data units to carry out in
parallel, each with its own data.

* MISD : No known computers fit this model

* MIMD : Eg: A group of independent computers, each with its own program
counter (PC), program, and data. All distributed systems are MIMD.

(¥ Scanned with OKEN Scanner

Difference between Multiprocessors and
Multicomputers

Sl. (Parameters) Multiprocessors Multicomputers

1. Memory Single virtual address space that is shared by all CPUs Every machine has
its own private
memory

2a. Bus Architecture There is a single network, backplane, bus, cable, or other

medium that connects all the machines

2b. Switched Architecture There are individual wires from machine to machine, with many
different wiring patterns in use.
Eg. Worldwide public telephone system

3. Coupling Tightly coupled Loosely coupled
4. Communication time Short Long
5. Data rate High Low
Unit-1: DOS Satyananda Champati Rai 12

C} Scanned with OKEN Scanner

e

#3.1: Bus-Based Multiprocessors

It consist of k=2 number of CPUs all connected to a common bus,
along with a memory module. A high-speed backplane or
motherboard into which CPU and memory cards can be inserted. A
typical bus has 32 or 64 address lines, 32 or 64 data lines and 32 or
64 control lines, all of which operate in parallel.

CPU CPU CPU

Memory

Cache Cache Cache

Fig: A bus-based multiprocessor

Unit-1: DOS Satyananda Champati Rai

(¥ Scanned with OKEN Scanner

#3.1:

Bus-Based Multiprocessors Cont.

Characteristics:

* Coherent memory
* Bus is overloaded even with 4 or 5 CPUs, and performance will drop drastically

3

ol

Solu": Add a high-speed cache memory between the CPU and the bus.
Cache sizes of 64K to 1M are used in general provides hit rate of 90%
Write-through-cache

Snooping-cache

Snoopy-write-through-cache (combination of #3 and #4)

(¥ Scanned with OKEN Scanner

A
#3.2: Switched Multiprocessors

When number of processors > 64, then bus-based multiprocessor is
not suitable, in that case “Crossbar switch” or “omega switching”
network is used.

Memories

| : | CPUs Memories
M| (M| [M] v C / M
Tl c———b— 3 M
CPUs| [C9—6—9—0 M
- C FanY PN P Y f"\\ C
€3/ YV \J/ 3/ I =
A A AL L Crosspoint switch C
L].C C—0— o — 2 X 2 switch
Fig. (a) A Crossbar switch Fig. (b) An Omega switching network
Unit-1: DOS Satyananda Champati Rai 15

(¥ Scanned with OKEN Scanner

#3.2: Switched Multiprocessors cont.

Characteristics: Memory is divided into modules and connect them to the CPUs with a crossbar
switch. (a tiny electronic crosspoint switch).

A CPU can access a memory after closing the crosspoint switch
If two CPUs try to access the same memory simultaneously, one of them

Limitation (crossbar switch):

* n? crosspoint switches are required with n CPUs and n memories. (Maximum 64 CPUs)

Remedy:
* Omega Network (it contains four 2 X 2 switches, each having two inputs and two outputs)

* With n CPUs and n memories, the omega network requires log,n switching stages, each containing n/2
switches, for a total of (n log,n)/2 switches.

Question: Construct omega network for 8 computers with 8 memory. Explain the communication
among any pair of computer to memory. How the conflict is resolved?

(¥ Scanned with OKEN Scanner

Problem: Omega Switched Network (8 X 8)

Question: Construct 8 X 8 omega network for communication between 8 computers and 8

memory locations

Ans: There will be log,(8)= 3 stages of switches

Each stage has 8/2= 4 number of switches

Total number of switches = 12

In the switch the upper part is for 0 bit and lower part is for 1 bit
For connection it must be rotate-left-shift operation. It is as follows
000 -> 000 -> 000 -> 000 -> 000

001 ->010-> 100 -> 001 -> 001

010-> 100 -> 001 ->010->010

011->110->101->011->011

100 ->001->010->100->100

101->011->110->101->101

110->101->011->110->110

111 ->111->111 ->111->111

(¥ Scanned with OKEN Scanner

A
Problem: Omega Switched Network (8 X 8) cont.

- Explanation: 100 -> 001 -> 010 -> 100 -> 100 (rotate-left-shift operation for switches)
Computer Stagel Stage2 Stage3 Memory

C:000 M : 000 000 -> 000 -> 000 -> 000 -> 000

M : 001 001 ->010->100-> 001 -> 001

M:010| 010 ->100 -> 001 -> 010 -> 010

M : 011 011->110->101->011->011

C: 100 . |:M “100] 100->001->010 -> 100 -> 100
\ 8 T ——|

v.101] 101->011->110->101-> 101

C:101
c:110 “119] 110->101->011->110->110
C:111 o11a] 111->111->111 ->111->111

C} Scanned with OKEN Scanner

#3.2: Switched Multiprocessors cont.

Limitations of Omega Switching Network
* Slow : Because of multi-stage to-and-from communication
: Due to high performance switches

Example: n=1024, No. of switching stages=log,(1024)=10, To-and-fro
stages=10 + 10 = 20, CPU is of modern RISC with chip running at 100
MIPS, So instruction execution time is = 10 nsec. The switching time
must be 500 picosec (0.5 nsec). The complete multiprocessor
required = log2(1024) * (1024/2) = 5120 number of 2 X 2 switches
with 500-picosec switching capability. Hence

Conclusion: It is possible to build a large, tightly-coupled, shared
memory multiprocessor, but it would be difficult and expensive.

(% Scanned with OKEN Scanner

#3.3: Bus-Based Multicomputers

In bus-based multicomputer system it is required to communicate

CPU-to-CPU. It need not be a high-speed backplane bus.

It is a collection of workstations on a LAN, where each system has its
own local memory. No shared memory.

Speed is 10-100 Mbps

Workstation

Local Memory

CPU

Workstation

Local Memory

CPU

Workstation

Local Memory

CPU

Network

Fig. A multicomputer consisting of workstations on a LAN

Satyananda Cham

pati Rai

(¥ Scanned with OKEN Scanner

#3.4: Switched Multicomputers

Each CPU has direct and exclusive access to its own, private memory.

Two popular topologies are:
* Grid based switched multicomputer 4D-Hypercube
* Hypercube based switched multicomputer

Fig: A Grid-based switched multicomputers
Fig: A Hypercube-based switched multicomputers

(¥ Scanned with OKEN Scanner

#4: Software Concepts

Two types of OSs for multiple CPU systems

* Loosely-coupled:

1. A group of PCs, each has its own CPU, its own memory, Its own HDD, its own OS, but

shares some resources, such as printers, databases, over a LAN/MAN/WAN.
2. i.e. All the PCs are independent of one another.

3. Allthe PCs are connected via some network
* Tightly-coupled:

1. All CPUs are at one place

2. The microprocessors execute in parallel

(% Scanned with OKEN Scanner

#5: Networked Operating Systems

Unit-1: DOS

A network of workstations, must have their own OS, may have own
HDD, connected by a LAN and execute all commands locally.

Provision of one or more file sever(s) across the network

Sometimes a user may log into another workstation remotely by using
remote login command :

* Srlogin IP_Address_of Machine

It also allows copy of any file from one machine to another machine:
* Srcp machine_source/filel machine_destination/file2

The operating system that is used in this kind of environment must
manage the individual workstations and file servers and take care of
the communication between them.

(% Scanned with OKEN Scanner

A
#5: Networked Operating Systems Cont.

= Accessing different servers by different clients through mounting

Mounting folder M
¥ = - %
i /web/mail/a Database
Client, PP Web S
DNS
server
Client, /web/database/print
Client3 /game/file
Clientk I /mail/print (tI::o . 3
DHCP m [j L
i Gaming File Proxy
server server

server

G Scanned with OKEN Scanner

e

#6: True Distributed Systems: Fundamental Properties

A distributed system is one that runs on a collection of networked
machines but acts like a virtual uniprocessor.

There must be a single, Elobal interprocess communication mechanism so
that any process can talk to any other process.

Local and remote communication must be same.
There must be a global protection scheme.
Process management must also be same everywhere

There must be a single set of system calls available in all machines and
must make sense in distributed environment

The file system must look same everywhere too. Every file should be visible
at every location, subject to protection and security constraints.

Identical kernels must run on all the CPUs in the system.

Unit-1: DOS Satyananda Champati Rai 25

(¥ Scanned with OKEN Scanner

#7: Timesharing Multiprocessor system

Tightly-coupled software on tightly-coupled hardware

Key characteristics: Existence of — A list of all the

processes in the system that are logically unblocked and ready to run.
A is a data structure kept in the shared memory.

The methods used on the multiprocessor to achieve the appearance

of a virtual uniprocessor are not applicable to machines that do not
have shared memory.

Eg: Dedicated database machines

(% Scanned with OKEN Scanner

A
#7: Timesharing Multiprocessor system Cont.

* 3 CPUs and 5 processes that are ready to run. All the 5 processes are in the
shared memory and 3 of them are currently running- Ain CPU,, Bin CPU, and C
in CPU, Speed is 10-100 Mbps

A, B, C are executing, D & E are ready to run RoureR Mamory
= Mutual exclusion is achieved by Semaphore, Monitor Ei{peady)
. D (ready)
* If(currently running process has 1/0 < 0) TRTETEE
* Then OS makes other process :
B (running)
CPU1 CPU 2 CPU3 A ing)
Process A Process B Process C running
running running running Run Queue: D, E
Cache Cache Cache Operating System
Bus
Fig. A multiprocessor with a single run queue
Unit-1: DOS Satyananda Champati Rai 27

(¥ Scanned with OKEN Scanner

#7: Timesharing Multiprocessor system Cont.

“ Comparison among three kinds of systems

Does it look like a virtual uniprocessor

Do all have to run the same OS? No Yes Yes

How many copies of the OS are there? N N 1

How is communication achieved? Shared files Messages Shared memory
Are agreed upon network protocols required ? Yes Yes No

Is there a single run queue? No No Yes

Does file sharing have well-defined semantics? Usually no Yes Yes

Fig: Comparison of three different ways of organizing n CPUs

(¥ Scanned with OKEN Scanner

#8: Design Issues: How to Build a DOS?

How to maintain Transparency?

How to make it Flexible?

How to ensure Reliability?

How to achieve desired Performance?

How to adopt millions & billions of systems altogether to scale up?

(¥ Scanned with OKEN Scanner

#8.1: How to maintain Transparency in DOS?

How to achieve the single-system image?

How do the system designers fool everyone into thinking that the
collection systems is simply an old-fashioned timesharing system? i.e.
the working details about the systems must be hidden to the users.

How to achieve transparency?

* Hide the distribution from the users (It is a higher level work, easy to do)
1. $ make file_name // To recompile a large number of files in a directory

* Design the system call interface so that the existence of multiple processors is
not visible. (It is a lower level work, difficult to achieve)

‘Transparency means : Hiding all the distribution from the users and
even from the application programs.

Unit-1: DOS Satyananda Champati Rai 30

(% Scanned with OKEN Scanner

#8.1.1: Different Types of Transparency

Location Transparency : The users cannot tell where the resources are
located (Eg: Location of Servers, PCs, Printers, Files, data bases, S/Ws not known to the users)

Resources can move at will without changing

[h elr names. (Eg. File, Directory, S/Ws can be transferred from one server to other server without change of name)

Replication Transparency: The users cannot tell how many copies exist

(Eg. Server is free to replicate the heavily used files and provide the service without the knowledge of the users)

Concurrency Transparency: Multiple users can share resources

automatical |y (Eg. If two or more users are accessing same resource, then one should not see others access)

Parallelism Transparency: Activities can occur in parallel without the

knowledge of the users. (Eg. Programmers must not know the number of CPUs available in
the whole system)

D Satyananda Champati Rai 31

Unit-1: DOS

(% Scanned with OKEN Scanner

e

#8.2: How to make DOS Flexible?

Monolithic kernel (Eg. Centralized OS augmented with networking
facilities and the integration of remote services)or Microkernel (Eg.

Small OS with specific services)?
Flexibility + Transparency = DOS

Includes file,
Fig (a). Monolithic kernel directory and
process management

Fig (b). Microkernel

User User File Server Directory Server Process Server
Monolithic Microkernel Microkernel Microkernel Microkernel
e \
Network

(¥ Scanned with OKEN Scanner

#8.2 Monolithic kernel Vs Microkernel

Monolithic Kernel

Traditional kernel that provides most
services itself.

It is less flexible

Centralized OS, augmented with networking
facilities and integration of remote services

The system calls trap the kernel
Own disks and local files

DOS that are extension of UNIX OS use this
approach

Eg. Sprite OS

Unit-1: DOS

o
W
[+]
=3

Microkernel

Kernel should provide as little as possible; bulk
services available from user level servers.

It is more flexible & highly modular

It provides four services — IPC, Memory
management, Process management, and
scheduling, Low-level I/O

It does not provide the file system, directory
system, process management

Other services are user level service
It is highly modular
Eg. Amoeba OS

(% Scanned with OKEN Scanner

#8.3: Reliability

Availability of a system is defined as the fraction of time that the
system is usable.

Tool to improve availability is redundancy —i.e. keep h/w and s/w
replicas, so that if one of them fails the other will take over its place.

A highly reliable system must be highly available, but that is not
enough. No data loss, not grabled, consistent across, security,
protection from unauthorized access.

System should be fault tolerance (Capability to mask failures)

All the separate services should be arranged in such a manner that it
should not add substantial overhead to the system.

Unit-1: DOS Satyananda Champati Rai 34

(% Scanned with OKEN Scanner

#8.4: Performance of DOS

Response Time

Throughput

System utilization

Network capacity consumed

Communication overhead dwarfs the extra CPU cycles gained
Fine-grained parallelism (Large number of small computations)

Coarse-grained parallelism (Large computations, low interaction
rates, and little data)

Cost time

(% Scanned with OKEN Scanner

#8.5: Scalability

IPV4 ---- 232 : Number of unique IP addresses for unique systems
IPV6 ---- 2128 =~ 3.4 X 10 38: Number of unique systems to accommodate loT

Centralized database (without mirror) are almost as bad as centralized
components — vulnerable to failure

Any algorithm that operates by collecting information from all sites, sends it
to asi gle machine for processing, and then distributes the results must be

avoide
Only decentralized algorithms should be used.

The characteristics of these algorithms are
* No machine has complete information about the system state
* Machines make decisions based only on local information

* There is no implicit assumption that a global clock exist

(¥ Scanned with OKEN Scanner

8.5: Scalability cont.

Netflix's own custom global CDN (Content delivery network)

Distributed GIS technology enables modern online mapping systems (such as
Google Maps and Bing Maps), Location-based services (LBS), web-based GIS (such
as ArcGIS Online) and numerous map-enabled applications.

Examples of distributed OS are Solaris, AlX, OSF, etc.

Messaging systems like WhatsApp are known as distributed systems. They are
designed to operate on a distributed infrastructure, allowing messages to be sent
and received across multiple servers and devices.

With AWS High-Performance Computing (HPC), you can accelerate innovation with
fast networking and virtually unlimited distributed computing infrastructure.

Facebook uses thousands of distributed systems and microservices to power their
ecosystem. In order to communicate with each other, these microservices rely on a
message queue. Facebook Ordered Queueing Service (FOQS) is an internal
Facebook tool that fills that role.

(% Scanned with OKEN Scanner

#8.5 Scalability Cont.

Dropbox's key management infrastructure is designed with operational,
technical, and procedural security controls with very limited direct access to
keys. Encryption key generation, exchange, and storage is distributed for
decentralized processing.

Spotify uses a distributed network of servers to store and deliver music and
podcasts to its users. The company has multiple server locations worldwide,
which work together to ensure the content is provided quickly and reliably.

Social media applications, such as Facebook, X, and Instagram, are designed to
be accessed by users from different devices and locations, and their data and
processing are distributed across multiple servers and data centers.

(% Scanned with OKEN Scanner

8.5: Scalability Cont.

Azure Service Fabric is an example of a distributed systems platform that
is designed specifically for building microservices-based applications.

MongoDB is a general-purpose, document-based, distributed database
management system built for modern application developers.

The Hadoop distributed file system acts as the master server and can
manage the files, control a client's access to files, and overseas file
operating processes such as renaming, opening, and closing files.

is a secure, distributed system that manages consensus about
the state of accounts and the authorized transactions among them.

(% Scanned with OKEN Scanner

8.5: Scalability Cont.

Git is a Distributed Version Control System (DVCS) used to save
different versions of a file (or set of files) so that any version is
retrievable at will

Zoom builds its own distributed cloud-native infrastructure. Cloud-
Native means the system is architected to use cloud technology from
the ground up. The microservices allow developers to seamlessly
grow capacity.

(% Scanned with OKEN Scanner

Unit-1: DOS

Satyananda Champati Rai

41

(¥ Scanned with OKEN Scanner

Homework Questions

A multicomputer with 256 CPUs is organized as a 16 X 16 grid. What is the
worst-case delay (in hops) that a message might have to take?

Consider a 256- CPU hypercube. What is the worst-case delay in terms of hops?

A multiprocessor ha 4096 50-MIPS CPUs connected to memory by an omega
network. How fast do the switches have to be allow a request to go to memory
and back in one instruction time?

An experimental file server is up 3/4 of the time and down 1/4 of the time,
due to bugs. How many times does this file server have to be replicated to give
an availability of at least 99 percent?

Show the communication path for sending a message from computer 3 to
memory 6 in a 8X8 omega network.

Explain the principle to avoid any conflict in a 8 X8 omega network.
Construct a 16X16 omega network and explain its connection mechanisms.

(% Scanned with OKEN Scanner

Unit-1: DOS

Thank You!

Satyananda Champati Rai 43

G Scanned with OKEN Scanner

Unit-2
Communication 1n
Distributed Systems

Dr. Satyananda Champati Rai
Associate Professor
School of Computer Engineering
KIIT Deemed to be University
Bhubaneswar

(¥ Scanned with OKEN Scanner

UNIT-2: Communications in

Basics of Communication Systems
Layered Protocols

ATM Models

Client-Server Model

Blocking and Non-Blocking Primitives
Buffered and Un-Buffered Primitives
Reliable and Unreliable Primitives
Message passing

Remote Procedure Calls

Distributed Systems

(% Scanned with OKEN Scanner

ey

#1. Basics of Communication Systems

Issues : In a uniprocessor, most interprocess communication implicitly
assumes the existence of shared memory. Eg: Producer-Consumer

In Distributed system there is no shared memory

Protocols: These are the rules adhere by the communicating
processes

In Wide-Area Distributed System: These protocols have multiple
layers

Platforms for Interprocess Communication
* Open Systems Interconnection (OSlI)
* Asynchronous Transfer Mode (ATM)
* Remote Procedure Calls (RPC)
* Group Communication

(% Scanned with OKEN Scanner

e

#2. Layered Protocols

Background : Due to the absence of shared memory, all communication in

distributed systems is based on message passing.

Communication Network:

DATA COMMUNICATIONS
NETWORKS

NETWORK TYPES
PROTOCOL LAYERING
TCP/IP PROTOCOL SUITE

THE OSI MODEL

School of Computer Engineering

(¥ Scanned with OKEN Scanner

il
N3
Types of Connection

* A network is two or more devices connected through links.

* Alink is a communications pathway that transfers data from one
device to another.

* There are two possible types of connections: point-to-point and
multipoint

* Point-to-point communication is a method in which the channel
of communication is shared only between two devices or nodes.

* Multi-point communication is a form of communication in which
the channel is shared among multiple devices or nodes.

* Bus Topology is a common example of Multipoint Topology.

(¥ Scanned with OKEN Scanner

Ak
Physical Topology

The term physical topology refers to the way in which a network is laid out physically.
Two or more devices connect to a link; two or more links form a topology.

The topology of a network is the geometric representation of the relationship of all the
links and linking devices (usually called nodes) to one another.

There are four basic topologies possible: mesh, star, bus, and ring.

(¥ Scanned with OKEN Scanner

e

A fully connected mesh topology

* 10 links

Suppose, N number of devices are connected in a mesh topology, then the total number
of dedicated links required to connect them is Nc, i.e. N(N-1)/2.

In Figure 1.4, there are 5 devices connected, hence the total number of links required is
5*4/2 =10

(¥ Scanned with OKEN Scanner

A star topology

Switch or Hub

* A Star topology is a type of network topology in which all the
devices or nodes are physically connected to a central node such
as a router, switch, or hub.

* The central node (hub) acts as a server, and the connecting nodes
act as clients.

(¥ Scanned with OKEN Scanner

e

A bus topology

Drop line

Cable end Cable end

* Bus topology, alternatively known as line topology, is a type of
network topology where all devices on a network are connected
to a single cable, called a bus or backbone.

* This cable serves as a shared communication line, allowing all
devices (computers, printers, etc.) to receive the same signal

simultaneously.

(¥ Scanned with OKEN Scanner

W
A ring topology

Repeater Repeater

Repeater Repeater
Repeater Repeater

* Ring topology is a network configuration where devices are
connected in a circular structure, forming a closed loop.

* |In this topology, each device is connected to exactly two other
devices, one on either side, creating a single continuous pathway
for data transmission.

 Data travels in only one direction around the ring, passing
through each device until it reaches its destination.

10

C} Scanned with OKEN Scanner

e

Local Area Network (LAN)

A local area network (LAN) is a collection of devices connected together in one physical
location, such as a building, office, or home.

A LAN can be small or large, ranging from a home network with one user to an
enterprise network with thousands of users and devices in an office or school.

A LAN comprises cables, access points, switches, routers, and other components that
enable devices to connect to internal servers, web servers, and other LANs via wide
area networks.

(¥ Scanned with OKEN Scanner

An isolated LAN in the past and today

Hostl Host2 Host3 Host4 HostS Host6 Host7 Host8

a. LAN with a common cable (past)

Legend

~
Host 1 Host 2 Host 3 Ho_st 4

m A cabletap

I A cable end

= The common cable
g — A connection

Switch

A

Host) Host 6 Host i

b. LAN with a switch (today)

12

G Scanned with OKEN Scanner

e

Wide Area Network (WAN)

A wide area network (WAN) is also a connection of devices capable of communication.

In its simplest form, a wide-area network (WAN) is a collection of local-area networks

(LANs) or other networks that communicate with one another. A WAN is essentially a
network of networks, with the Internet the world's largest WAN.

Types of WAN technologies:Packet switching, TCP/IP protocol suite, RouterOverlay
network(network virtualization)..

(¥ Scanned with OKEN Scanner

e

Switched WAN

A switched WAN is a network with more than two ends.
A switched WAN is used in the backbone of global communication today.

Figure 1.10 shows an example of a switched WAN.

(¥ Scanned with OKEN Scanner

A switched WAN

Legend

{D A switch

me (Connecting medium

To another To another
network network
To another To another
network network
To another To another
network network
To another To another
network network

15

(¥ Scanned with OKEN Scanner

e

An internetwork made of two LANs and one WAN

Point-to-point
WAN

R1 R2

Router Router

West coast office East coast office

16

(¥ Scanned with OKEN Scanner

A heterogeneous network made of WANs and LANs

Point-to-point

Modem Modem A
WAN 7
IIIKIIIIIIIIIIIIIIII@_\\J
T
Resident

Switched WAN

Router

:,‘. Point-to-point
= WAN

Router

17

(¥ Scanned with OKEN Scanner

e

The Internet

An internet (note the lowercase i) is two or more networks that can communicate with
each other.

The most notable internet is called the Internet (uppercase I) and is composed of
millions of interconnected networks.

Figure 1.13 shows a conceptual (not geographical) view of the Internet.

(¥ Scanned with OKEN Scanner

(1]
S -
The Internet today

Customer — “ustomer Customer — ustomer

network network network network
Provider — Provider
network network

S
point g S y

Backbones

Provider
network

Customer
network

Provider

network
ustomer Customer
network network

— Provider
network
Customer Customer — Customer
network network network

19

(¥ Scanned with OKEN Scanner

N

PROTOCOL LAYERING

* We defined the term protocol before. In data communication and networking, a protocol
defines the rules that both the sender and receiver and all intermediate devices need to

follow to be able to communicate directly.

20

C} Scanned with OKEN Scanner

e

First Scenario

A large organization or a large corporation can itself become a local ISP and be

connected to the Internet.

This can be done if the organization or the corporation leases a high-speed WAN from

a carrier provider and connects itself to a regional ISP.

(¥ Scanned with OKEN Scanner

e

A single-layer protocol

a8 y X
Maria Q #Ann
Layer 1 Listen/Talk Listen/Talk Layer 1

Air

In single layer protocol, the two persons named Maria on one side and Ann on
another side communicates (listen or talk) through air medium. The listen or
talk actions on both sides are represented as layer 1.

22

(¥ Scanned with OKEN Scanner

Second Scenario

In the second scenario, we assume that Ann is offered a higher-level position in her

company, but needs to move to another branch located in a city very far from Maria.

They decide to continue their conversion using regular mail through the post office.

However, they do not want their ideas to be revealed by other people if the letters are

intercepted. They use an encryption/decryption technique.

(¥ Scanned with OKEN Scanner

fif
M A three-layer protocol
Maria i Ann #

Layer 3 Listen/Talk I Listen/Talk I Layer 3
T —| Plaintext— Identical objects . praintext P T
Layer 2 | Encrypt/Decrypt I Encrypt/Decrypt I Layer 2
Ciphertext o el » Ciphertext :
Send mail/ Send mail/
Layer 1 : ; ; : Layer 1
receive mail receive mail
[dentical objects
Mail— L >Mail P>—<

Postal carrier facility
In three layer protocol, the communication between Maria and Ann is shown in
three layers. The layer 1 is sending mail or receiving mail. The layer 2 is encrypting
or decrypting the mail to a Ciphertext. The layer 3 is listening or talking where the
ciphertext is converted to a plaintext. Each peer layers share identical objects that
is the mail, ciphertext, and plaintext in both sides (Maria and Ann) are identical
objects.

24

(¥ Scanned with OKEN Scanner

e

Principles of Protocol Layering

#1. The first principle dictates that we need to make each layer to perform two opposite

task in each direction.

#2. The second principle dictates that two objects under each layer should be identical.

(¥ Scanned with OKEN Scanner

e

Logical connection between peer layers

A A

Maria @ Ann #
Layer 3 Talk/Listen | —| - ea = Listen/Talk Layer 3
— Logical connection —
Plaintext Plaintext
— =
Layer 2 | Encrypt/Decrypt | B oiiotn oy RS R ata. > Encrypt/Decrypt | Layer 2
Logical connection
Ciphertext Ciphertext
Send mail/ Send mail/
Lagyer | receive mail | ><* . : >>< receive mail e
Mail Logical connection Mail

A three layer protocol communication between Maria and Ann is shown is
demonstrated. The layer 1 is sending mail or receiving mail. The layer 2 is
encrypting or decrypting the mail to a Ciphertext. The layer 3 is listening or
talking where the ciphertext is converted to a plaintext. Each peer layer
establishes a logical connection between the objects they share to the
successive layers.

26

(¥ Scanned with OKEN Scanner

Layers in the TCP/IP protocol suite

Application |
Transport I
Network I

Data link I
Physical

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

C} Scanned with OKEN Scanner

&

Layered Architecture

To show how the layers in the TCP/IP protocol suite are involved in communication
between two hosts, we assume that we want to use the suite in a small internet made

up of three LANSs (links), each with a link-layer switch. We also assume that the links are

connected by one router.

(¥ Scanned with OKEN Scanner

N

Communication through an internet

Source (A)
Application L__I
Transport E:I

Network [:I

Data link [|] Data link
Physical F Physical

Switch

Router

[—— | Network
Data link ED I::I Data link

Physical ’ ’ Physical

Switch

Destination (B)
m Application
E] Transport

|::| Network

Data link [] Data link
Physical F Physical

Communication from A to B

29

(¥ Scanned with OKEN Scanner

Brief Description of Layers

After the above introduction, we briefly discuss the functions and duties of layers in the
TCP/IP protocol suite. To better understand the duties of each layer, we need to think
about the logical connections between layers.

(% Scanned with OKEN Scanner

Logical connections between layers in TCP/IP

Source Destination
host . . host
Logical connections ;
Application |:I ------------------------- et AP NOT TV SRR >|:I Application
Transport D -- »D Transport

Switch Router Switch

Router

Source Link 1 Link 2 Destimtiun
host To link 3 host

31

C} Scanned with OKEN Scanner

‘;&Ur{i; Identical objects in the TCP/IP protocol suite

Notes: We have not shown switches because they don’t change Objects.\

Application Application
m Identical objects (messages) m
e e >
s T 't
TR E:I Identical objects (segments or user datagrams) E:I Ben i
- e R L »
Network E:I . . | | ') |::I Network
Identical objects (datagrams) Identical objects (datagrams)
e e e > e e -
Data link [} 0 [} Data link
Identical objects (frames) Identical objects (frames)
e e T R > ~€ - - - mmmm e m e m oo ES
si . : ; ‘ : ; Physical
E iyl - Identical objects (bits) - - Identical objects (bits) - e
e i > e e e R >

An illustration shows that the first laptop and the second laptop have physical data link,
networks, transport, and application. Reversible communication between the first and
second laptops is shown. The application of first and second laptops shares identical objects
(messages). The transport of first and second laptops shares identical objects (segments or
user datagrams). The network of first and second laptops shares identical objects
(datagrams) through the router. The data link of the first and second laptops shares
identical objects (frames) through the router. The physical of first and second laptops share
identical objects (bits) through the router.

32

(¥ Scanned with OKEN Scanner

e

Characteristics of Different Layers

#1. We can say that the physical layer is responsible for carrying individual bits in a
frame across the link.

The physical layer is the lowest level in the TCP/IP protocol suite, the communication
between two devices at the physical layer is still a logical communication because
there is another, hidden layer, the transmission media, under the physical layer.

#2. We have seen that an internet is made up of several links (LANs and WANs)
connected by routers. When the next link to travel is determined by the router, the
data-link layer is responsible for taking the datagram and moving it across the link.

#3. The network layer is responsible for creating a connection between the source
computer and the destination computer.

The communication at the network layer is host-to-host.

However, since there can be several routers from the source to the destination, the
routers in the path are responsible for choosing the best route for each packet.

(¥ Scanned with OKEN Scanner

Characteristics of Different Layers Cont.

#4. The logical connection at the transport layer is also end-to-end. The transport layer
at the source host gets the message from the application layer, encapsulates it in a
transport-layer packet.

In other words, the transport layer is responsible for giving services to the application
layer: to get a message from an application program running on the source host and
deliver it to the corresponding application program on the destination host. transmits
user datagrams without first creating a logical connection.

#5. The logical connection between the two application layers is end-to-end.

The two application layers exchange messages between each other as though there
were a bridge between the two layers. However, we should know that the
communication is done through all the layers. Communication at the application layer
is between two processes (two programs running at this layer).

To communicate, a process sends a request to the other process and receives a
response. Process-to-process communication is the duty of the application layer.

(% Scanned with OKEN Scanner

e

Open System interconnection (OSI) MODEL

Although, when speaking of the Internet, everyone talks about the TCP/IP protocol
suite, this suite is not the only suite of protocols defined.

Established in 1947, the International Organization for Standardization (ISO) is a
multinational body dedicated to worldwide agreement on international standards.

Almost three-fourths of the countries in the world are represented in the 1SO. An I1SO
standard that covers all aspects of network communications is the Open Systems
Interconnection (OSI) model. It was first introduced in the late 1970s.

(¥ Scanned with OKEN Scanner

The OSI model

Layer 7 Application I
Layer 6 Presentation I
Layer 5 Session I
Layer 4 Transport I
Layer 3 Network I
Layer 2 Data link I

C} Scanned with OKEN Scanner

OSl versus TCP/IP

When we compare the two models, we find that two layers, session and presentation,
are missing from the TCP/IP protocol suite. These two layers were not added to the

TCP/IP protocol suite after the publication of the OSI model.

The application layer in the suite is usually considered to be the combination of three

layers in the OSI model.

(% Scanned with OKEN Scanner

TCP/IP and OSI model

Application I
Presentation |
Session |
Transport I
Network I
Data link I
OSI Model

Application

Transport I

Network

Physical

TCP/IP Protocol Suite

Several application
protocols

Several transport
protocols
Internet Protocol
and some helping
protocols

Underlying
LAN and WAN
technology

38

C} Scanned with OKEN Scanner

UNIT-2: Communications in Distributed Systems

Basics of Communication Systems
Layered Protocols

ATM Models

Client-Server Model

Blocking and Non-Blocking Primitives
Buffered and Un-Buffered Primitives
Reliable and Unreliable Primitives
Message passing

Remote Procedure Calls

(% Scanned with OKEN Scanner

A
#3: Asynchronous Transfer Mode (ATM)

ATM is the cell relay protocol designed by ATM forum and adopted by
ITU-T

“1t is a cell switching and multiplexing technology that combines
benefits of both circuit switching and packet switching

ATM working principles
* Sender first establishes a connection (virtual circuit) to the receiver(s)
* Aroute is determined from sender to receiver
Routing information is stored in the switches along the way
Packets can be sent through this connection by sender
Packets are chopped into small fixed-sized units (cell) by hardware
Routing information purged from switches when connection is not required

Unit-2 : DOS School of Computer Engineering 40

(¥ Scanned with OKEN Scanner

ATM Advantages

Unit-2 : DOS

A single network is used to transport voice, data, broadcast television,
videotapes, radio.

It is used for video conferencing, video-on-demand, teleconferencing,
access to thousands of remote databases

Cost saving

ATM uses cell switching which handles both point-to-point and
multicasting efficiently

ATM allows rapid switching as its cell (or packet) size is fixed

School of Computer Engineering 41

(% Scanned with OKEN Scanner

i

\/,
w#3.1 ATM Layers

7 Application | 7 Application |
6 Presentation | 6 Presentation |

5 Session | 5 Session |
4 Transport | 4 Transport |

3 Network | 3 Network |
7 ATM Adaptation 2 Data link |
ATM

1 Physical
1 Physical |

ATM Reference Model ISO/0SI Model

Unit-2 : DOS School of Computer Engineering 42

(% Scanned with OKEN Scanner

ey
3.2: ATM Physical Layer

In the Physical Layer, ATM is synchronous as it transmits empty cells while
no data to be send.

It uses SONET (Synchronous Optical NETwork) in physical Layer.

In SONET, frame size is 810 bytes (overhead: 36 bytes, payload: 744 bytes),
gross data rate 51.840 Mbps.

Basic 51.840 Mbps channel is called ' (OC-1)

OC-12 and OC-48 are used for long-haul transmission.

Unit-2 : DOS School of Computer Engineering 43

(¥ Scanned with OKEN Scanner

A
3.3: ATM Layer

Generic Flow Control (GFC) is used for flow control.

Virtual Path Identifier (VPI) and Virtual Channel Identifier (VCI)
together identify path and circuit of a cell

Payload type distinguishes data cells from control cells

Cell Loss Priority (CLP) identifies the less important cells which drop if
congestion occurs

Cyclic Redundancy Check (CRC) identifies redundancy and correct it

Virtual Path Identifier Cell Loss Priority
GFC VPI VCI CLP CRC
(4 bits) (8 bits) (16 bits) (1 bit) (8 bits)
Generic Flow Control Virtual Channel Identifier Cyclic Redundancy Check

Figure: User-to-Network Cell Header Layout

Unit-2 : DOS School of Computer Engineering 44

(¥ Scanned with OKEN Scanner

3.4: ATM Adaptation Layer

Adaptation Layer has four classes
* Constant bit rate traffic (for audio and video) : CBR Traffic
* Variable bit rate traffic but with bounded delay: VBR Traffic
* Connection-oriented data traffic
* Connectionless data traffic

Simple and Efficient Adaptation Layer (SEAL)
* 1 bit of ATM header, 1 bit of Payload Type
* Payload Type field is set to 1 for last cell, otherwise 0
* Last cell contains 8 bytes tailer with four fields
* Tailer contains packet length (2 bytes), checksum (4 bytes)
* There are no use of first two fields (1 byte each field)

Unit-2 : DOS School of Computer Engineering

(% Scanned with OKEN Scanner

ey
#3.5: ATM Switching

Network built with 4 switches and 8 computers
Cells can be switched different computers by traversing switches
= Switching fabric connects input and output lines and ensures parallel

switching Outputs
Head-of-line blocking problem .\ SL s/‘.’”""sw“"" Pt .

S —1s Computer I_{ FLI ’_L‘ ﬁ*—“ o'.?,‘éﬂte
R

(a) {b)

Solution: Keep copy of a cell in
a output buffer queue '\

(a) ATM Switching Network (b) Inside of One Switch

Unit-2 : DOS School of Computer Engineering 46

(¥ Scanned with OKEN Scanner

#3.6: ATM Implications for Distributed Systems

High-speed network but latency remains
Flow control
Transcontinental Delay

Cell drops during congression

Unit-2 : DOS School of Computer Engineering 47

(% Scanned with OKEN Scanner

#3.7: ATM Advantages

High-speed, fast-switched integrated data, voice, and video
communication.

A standards-based solution formalized by the International
Telecommunication Union (ITU)

Interoperability with standard LAN/WAN technologies

QoS technologies(The parameters are: End-to-end delay, Delay
Jitter, , Bandwidth usage etc.) that enable a single network
connection to reliably carry voice, data, and video simultaneously.

Unit-2 : DOS School of Computer Engineering 48

(% Scanned with OKEN Scanner

UNIT-2: Communications in Distributed Systems

Basics of Communication Systems
Layered Protocols

ATM Models

Client-Server Model

Blocking and Non-Blocking Primitives
Buffered and Un-Buffered Primitives
Reliable and Unreliable Primitives
Message passing

Remote Procedure Calls

(% Scanned with OKEN Scanner

4.1. Interprocess Communication

In a distributed system, it is completely different from a
uniprocessor system as there is no shared memory.

Certain rules need to be followed for interprocess
communication, called Protocols.

For wide-area distributed systems, these protocols take the
form of multiple layers, such as OS| and ATM.

The OSI| model addresses only a small aspect of the
communication - sending bits from the sender to the receiver,
with much overhead.

(% Scanned with OKEN Scanner

4.2 Client - Server Model

= |t is based on simple connectionless request / reply protocol.

= Client sends a request message to the server and the server
returns the data requested or an error code indicating the
reason of failure.

It is simple. No connection to be established before use and no
connection to be closed after use.

= Simplicity leads to efficiency. Only three levels of protocol are
needed Request

Reply

Unit-2 : DOS School of Computer Engineering 51

C} Scanned with OKEN Scanner

4.2 Client - Server Model Cont.

Physical and datalink protocol take care of getting the packets
from client to server and back.

No routing and no connections - layers 3 & 4 not needed.
Layer 5 is the request/ reply protocol. No sessions required.

Communication provided by the micro-kernels using two system
calls -

« send (dest, &mptr)

- receive(addr, &mptr) :
mptr - message pointer Y
dest - destination process i
addr - source address 2
2 Datalink
1 Physical

(% Scanned with OKEN Scanner

N

Example :

Unit-2 : DOS

/™ Definitions needed by clients and servers. */

#define TRUE 1

#define MAX_PATH 255 /™~ maximum length of file name
#define BUF _SIZE 1024 /* how much data to transfer at once
#define FILE_SERVER 243 /* file server's network address

/* Definitions of the allowed operations */

#define CREATE
#define READ
#define WRITE
#define DELETE

hWON =

/™ Error codes. */

#define OK 0
#define E_BAD_OPCODE -1
#define E_BAD_PARAM -2
#define E_I1O -3

/= Definition of the message format.
struct message {

long source;

long dest;

long opcode;

long count;

long offset;

long resulit;

char name[MAX_PATH];

char data[BUF _SIZE];

/* create a new file

/™ read data from a file and return it

/™ write data to a file
/* delete an existing file

/™ operation performed correctly
/~ unknown operation requested
/™ error in a parameter

/* disk error or other /O error

&'

/ sender’s identity

/™ receiver’s identity

/™ requested operation

/™ number of bytes to transfer

/* position in file to start VO

/™ result of the operation

/* name of file being operated on
/* data to be read or written

School of Computer Engineering

~
i

L
i 4
g |

*/
=/

E 4

Client and Server Program

53

G Scanned with OKEN Scanner

A
Example : Client and Server Program

#include <header.h>
void main(void) {

struct message mil, me; /* incoming and outgoing messages i |
intr; /* result code */
while(TRUE) { /* server runs forever 7
receive(FILE_SERVER, &mi); /* block waiting for a message g)
switch(ml.opcode) { /* dispatch on type of request 7
case CREATE: r=do_create(&ml, &m2); break;
case READ: r = do_read(&ml, &m2); break;

case WRITE: r = do_write(&ml, &m2); break;
case DELETE: r = do_delete(&ml, &m2); break;

default: r= E_BAD_OPCODE;
}
m2.result =r; /* return result to client g |
send(ml.source, &m2); /* send reply g A
} .
}
Unit-2 : DOS School of Computer Engineering 54

(¥ Scanned with OKEN Scanner

e

Example :

Unit-2 : DOS

#include <header.h> (@)
int copy(char *src, char *dst){

struct message ml;

long position;

long client = 110;

initialize();

position = 0;

do {
ml.opcode = READ,;
ml.offset = position;
ml.count = BUF_SIZE;
strecpy(&ml.name, src);
send(FILESERVER, &mi);
receive(client, &ml);

[* procedure to copy file using the server
/* message buffer

I* current file position

* client's address

/* prepare for execution

I* operation is a read

[* current position in the file

I* copy name of file to be read to message

[* send the message to the file server
I* block waiting for the reply

[~ Write the data just received to the destination file.

ml.opcode = WRITE;
ml.offset = position;
ml.count = ml.result;
strcpy(&ml.name, dst);
send(FILE_SERVER, &ml);
receive(client, &ml);
position += ml.result;
} while(ml.result > 0);
retum(ml.result >= 0 ? OK : ml result);

[* operation is a write

[* current position in the file

/* how many bytes to write

/* copy name of file to be written to buf
/* send the message to the file server
/* block waiting for the reply

[~ ml.result is number of bytes written
[* iterate until done

I* return OK or error code

School of Computer Engineering

*/
*/
*
"/

*/

*/
"

Client and Server Program

" how many bytes to read"/

*/
*/
g

=/
/

*/
b
f
-
*/

=/
/
L |
/
|

55

G Scanned with OKEN Scanner

A
4.3 Addressing

One ,:Na}/ of mentioning server address is to mention it in header.h as a
constant.

Sending kernel can extract it (ex - 243) from message structure and use it
for sending packets to server.

= Ambiguity arises if multiple processes are running on the same server.
Alternative 1 -

- Send messages to processes , not machines.

- Process identification - two part names - machine + process no.
Ex -243.4 or4@243

Each machine can number its processes starting from 0. So there is no
1. Request to 243.0

confusion between process ‘n’ of different machines.
- No global coordination is required.
2 =
2. Reply to 199.0
Unit-2 : DOS School of Computer Engineering — —— —

(¥ Scanned with OKEN Scanner

4.3 Addressing Cont.

Alternative 2 -

use machine.local-id instead of machine.process

Each process is assigned a local-id and informs kernel that it listens to
local-id

Problem - user is aware of the location of the machine (243). If the
machine is down, compiled programs with header.h will not work,
although another machine (365) is available. No transparency.

Alternative 3-
Each process has a unique address that doesn’t contain machine number.

A centralized process address allocator maintains a counter. Upon
receiving a request, it returns the current value of the counter.

Problem - Such centralized components do not scale to large systems.

Unit-2 : DOS School of Computer Engineering 57

(% Scanned with OKEN Scanner

£

. 3
4.3 Addressing Cont. f.Boadast R
2. Here | am — 4

3. Request

Alternative 4 - s ROply %//

Each process picks its identifier from a large address space (a
space of 64-bit binary integer).

1 It is scalable.

|dentification of machine -Sender broadcasts a special Locate
packet containing the address of the destination process. All
machines on the network will receive it. The matched kernel
responds with a message “Here | am” along with the machine
number. So the sending kernel uses this machine number for
further communication.

* Problem - Broadcasting is an overload to the system.

Unit-2 : DOS School of Computer Engineering 58

(¥ Scanned with OKEN Scanner

o
4.3 Addressing !tookw

2. NS reply
3. Request
4. Reply

Alternative 5 -

= Overload can be avoided by providing an extra machine to
map high-level (ASCII) service names to machine address.

* These names are embedded in the programs, not binary
machine numbers.

= For the first time client sends a query to the Name server,
asking the machine number where the server is currently
located. Then the request can be sent directly to the machine
address.

= Problem - If the name server is replicated, consistency problem
may arise.

Unit-2 : DOS School of Computer Engineering 59

(¥ Scanned with OKEN Scanner

UNIT-2: Communications in Distributed Systems

Basics of Communication Systems
Layered Protocols
ATM Models
Client-Server Model
Blocking and Non-Blocking Primitives
Buffered and Un-Buffered Primitives
Reliable and Unreliable Primitives
Message passing

“ Remote Procedure Calls

Unit-2 : DOS School of Computer Engineering

(¥ Scanned with OKEN Scanner

e

Blocking versus Nonblocking Primitives

OMessage Passing: A message-passing system gives a collection of message-based IPC
(Inter-Process Communication) protocols.

OThe send() and receive() communication primitives are used by processes for interacting
with each other.

©®For example, Process A wants to communicate with Process B then Process A will send a

message with send() primitive and Process B will receive the message with receive()
primitive.

OSynchronization Semantics: The following are the two ways of message passing
between processes:

O Blocking (Synchronous)

©Non-blocking (Asynchronous)

Unit-2 : DOS School of Computer Engineering 61

(¥ Scanned with OKEN Scanner

;’Q%Cont. :

®In case of blocking primitive (also called as synchronous primitives), when a process
calls send it specifies a destination and a buffer to send to that destination.

®While the message is being sent, the sending process is blocked (i.¢., suspended).

OThe instruction following the call to send is not executed until the message has been
completly sent, as shown in figure below.

©OSimilarly, a call to receive does not return control until the message has actually
been received and put in the message buffer.

Client
. -
Client blocked , Client
running running
Trap to Return from
kernel, kernel,
process process
blocked released
——— Nessage being sent —D—]

Figure 1: A blocking send primitive

Unit-2 : DOS School of Computer Engineering 62

(¥ Scanned with OKEN Scanner

@y
i Cont..

O®An alternative to blocking primitives are nonblocking primitives (also called as
asynchronous primitives).

OIf send is nonblocking, it returns control to the caller immediately, before the message is
sent.

O®The advantage of this scheme is that

©®The disadvantage of this scheme is that the sender cannot modify the message buffer until
the message has been sent.

©®The sending process has no idea of when the transmission is done, so it never knows when
it 1s safe to reuse the buffer.

OThere are two possible solutions to this problem:

®The first solution is to have the kernel copy the message to an internal kernel buffer
and then allow the process to continue, as shown in Figure 2 in the next slide.

OThe of this method is that every outgoing message has to be copied from
user space to kernel space.

Unit-2 : DOS School of Computer Engineering 63

C} Scanned with OKEN Scanner

@y
e Cont..

Client
I blocked |
Client Client
running running
Trap Return
Message being sent -
Message
copied to
kernel
buffer
{b)
—
Time
Figure 2: A nonblocking send primitive
Unit-2 : DOS School of Computer Engineering 64

(¥ Scanned with OKEN Scanner

WCont. g

®The second solution is to interrupt the sender when the message has been sent to
inform it that the buffer is once again available.

®No copy 1s required here, which saves time, but programs based on user-level interrupts
are difficult to write and debug.

O Blocking and nonblocking send primitives:

O Blocking send() primitive: The blocking send() primitive refers to the blocking of
sending process.

®The process remains blocking until it receives an acknowledgment from the receiver
side that the message has been received after the execution of this primitive.

ONon-blocking send() primitive: The non-blocking send() primitive refers to the non-
blocking state of the sending process that implies after the execution of send() statement,
the process is permitted to continue further with its execution immediately when the
message has been transferred to a buffer.

Unit-2 : DOS School of Computer Engineering

(¥ Scanned with OKEN Scanner

ay
MCont. ;

@ Just as send can be blocking and nonblocking, so can receive.

OBlocking receive() primitive: when the receive statement is executed, the receiving process
1s halted until a message 1s received.

ONonblocking receive() primitive: The non-blocking receive() primitive implies that the
recelving process 1S not blocked after executing the receive() statement, control is returned
immediately after informing the kernel of the message buffer’s location.

OThe issue in a nonblocking receive() primitive is when a message arrives in the message
buffer, how does the receiving process know?

©One of the following two procedures can be used for this purpose:
OPolling: In the polling method, the receiver can check the status of the buffer when a test
primitive 1s passed in this method.

O®The receiver regularly polls the kernel to check whether the message is already 1n the buffer.

Unit-2 : DOS School of Computer Engineering 66

(¥ Scanned with OKEN Scanner

ary
e Cont..

Olnterrupt: A software interrupt is used in the software interrupt method to inform the
receiving process regarding the status of the message 1.e. when the message has been
stored into the buffer and is ready for usage by the receiver.

©®So, here in this method, receiving process keeps on running without having to submit
failed test requests.

Unit-2 : DOS School of Computer Engineering 67

(¥ Scanned with OKEN Scanner

A
Buffered versus Unbuffered Primitives

O Unbuffered Primitives:
®Unbuffered primitives involve direct communication without any intermediate storage.

© In these primitives, the sender and receiver need to be synchronized for the
communication to take place.

DA call to the primitive receive(addr, &m) tells the kernel of the machine on which it is
running that the calling process is listening to the address addr and 1s prepared to receive
one message sent to that address.

O A single message buffer, pointed to by m, 1s provided to hold the incoming message.

®When the message comes in, the receiving kernel copies it to the buffer and unblocks
the receiving process, as shown by Figure 3 in the next slide.

Unit-2 : DOS School of Computer Engineering 68

(¥ Scanned with OKEN Scanner

@
WCont. g

Chient Address refers to Server
a process

\

Kernel

. _ ‘

Figure 3: Unbuffered message passing

Unit-2 : DOS School of Computer Engineering 69

C} Scanned with OKEN Scanner

1l

N\
e Cont..

®What are the problems that occurs when the client calls send primitive before the server
calls receive primitive in unbuffered message passing mechanism?

©The problems are as follows:

®How does the server’s kernel knows which of its process is using the address in the
newly arrived message?

©®How does the server’s kernel knows where to copy the message?
® il manner Some Stseges o pande o mcluge: P e
©OPre-emptive Design: Design the system so that the receive 1s always invoked before or

concurrently with to avoid blocking.

OTimeouts and Error Handling: Implement timeouts or error handling mechanisms to
manage situations where a send operation might block indefinitely.

®Buffered Communication: Use buffered message passing where messages are stored in
a buffer temporarily, allowing the sender and receiver to operate asynchronously and
reducing the risk of blocking.

Unit-2 : DOS School of Computer Engineering 70

(¥ Scanned with OKEN Scanner

€

Cont..

OIn order to deal with the buffer management issues, a new data structure called a
“mailbox” 1s defined.

O A process that 1s interested in receiving messages tells the kernel to create a mailbox for it,
and specifies an address to look for the network packets.

O Henceforth, all incoming messages with that address are put in the mailbox.
O The call to receive removes on message from the mailbox, or blocks 1f none 1s present.

OIn this way, the kernel knows what to do with incoming messages and has a place to put
them.

O This technique is referred as buffered primitive, as shown by Figure 4, in the next slide.

Unit-2 : DOS School of Computer Engineering 7

(¥ Scanned with OKEN Scanner

oy
MCont. :

Address
refers to a
mailbox

N
COf] &

T T

Figure 4: Buffered message passing

Network

Unit-2 : DOS School of Computer Engineering 72

(¥ Scanned with OKEN Scanner

&
- Reliable vs Unreliable Primitives

Using blocking primitives, the client process gets suspended after
sending a message. When it is restarted, there is no guarantee that
message has been delivered. The message might have been lost.

Alternative solution1 - Redefine the semantics of send to be
unreliable. The system gives no guarantee about message delivery.

Alternative solution 2 - Kernel on the receiving machine sends an
acknowledgement back to the kernel on sending machine.

Sending kernel free the process after receiving this acknowledgement.
Similarly, the reply from server back to
client is acknowledged by client’s kernel.

Acknowledgement goes from kernel to kernel.

1. Request

2. ACK (kernel to kernel)
3. Reply

4. ACK (kernel to kernel)

Unit-2 : DOS School of Computer Engineering 73

(¥ Scanned with OKEN Scanner

& Reliable vs Unreliable Cont.

Alternative solution3 - Client is blocked after sending
message and the server’s reply act as an acknowledgement.

If the reply takes too long, the sender can resend the mesage
to guard against lost message.

An acknowledgement from client's kernel to the server’s
kernel is sometimes used. Until this packet is received, the

server's send does not complete and the server remains
blocked.

If the reply is lost and the request is retransmitted, then the
server kernel sends reply again without waking up the server.
2. Reply (server to client)

Client 1
2
' — 3
3. ACK (kernel to kernel)

Unit-2 : DOS School of Computer Engineering 74

1. Request (client to server)

(¥ Scanned with OKEN Scanner

Implementing client-server model

Design issues for the communication primitives

Addressing Machne address Sparse process Names looked up via
addresses server
Blocking Blocking primitives Nonblocking with copy Nonblocking with
to kernel interrupt
Bufferring Unbuffered, discarding Unbuffered, temporarly Mailboxes
unexpected messages keeping unexpected
messages
Reliability Unreliable Request-Ack-Reply-Ack Request-Reply-Ack

How message passing is implemented depends on which choices are made.

Unit-2 : DOS School of Computer Engineering 75

C} Scanned with OKEN Scanner

Unit-2 : DOS

Implementing client-server model

Issue of packet size - All packets have a limit of packet size.
Messages larger than this must be split up into multiple packets
and sent separately.

Problém - some of these packets may be lost or distorted. They may
even arrive in the wrong order.

Solution - Assign a number to each message and put it in each packet
belonging to that message, along with a sequence number indicating the
order of the packet.

Issue of acknowledgement -Acknowledge each individual packet or
Acknowledge the entire message.

case | - if a packet is lost, only one packet need to be retransmitted. But it
will cause more acknowledgements.

Case |l - Fewer packets, but more complicated to recover if a packet is
lost.

School of Computer Engineering

(% Scanned with OKEN Scanner

e

Issue of underlying protocol -

Implementing client-server model

= AYA - to check whether request is complicated or the server is crashed
- TA - if request packet cannot be accepted

mm

REQ
REP

ACK
AYA

IAA
TA
AU

Unit-2 : DOS

Request
Reply
Acknowledgement

Are you alive ?

| am alive

Try again

Address unknown

Client
Server
Either

Client

Server
Server

Server

Server
Client
Other

Server

Client
Client
Client

School of Computer Engineering

Client wants service
Reply from server to the client
Previous packet arrived

Check if the server is crashed

Server has not crashed.
Server has no space
No processis using this address

77

(¥ Scanned with OKEN Scanner

£

Implementing client-server model

Client

1
— EREAED

R S

AYA —~

N ¥ .
4
=

—

1. Request
2. ACK (kernel to kernel)

3. Reply
4. ACK (kernel to kernel) Exam[E)leS of packet excﬁanges
n 78

School of Computer Engineering

Unit-2 : DOS

G Scanned with OKEN Scanner

UNIT-2: Communications in Distributed Systems

Basics of Communication Systems
Layered Protocols

ATM Models

Client-Server Model

Blocking and Non-Blocking Primitives
Buffered and Un-Buffered Primitives
Reliable and Unreliable Primitives
Message passing

Remote Procedure Calls

(% Scanned with OKEN Scanner

Remote Procedure Call

Remote procedure call:- Information can be transported from the
caller to the callee in the parameters and can come back in the
procedure result.

Calling and Called procedures run on different machines and they
execute in different address spaces.

RPC is the widely used approach for Distributed Operating System.

Unit-2 : DOS School of Computer Engineering 80

(% Scanned with OKEN Scanner

(€

Client

Server
Client machine stub

stu{:) Server machine

1]
Ca | - Pack

/_ parameters)

\k_ Unpack
Return —-Jr-e's*llﬁ/

(-*p- Uﬂmk ‘ Call

parameters \

Server

*
w““ Return

Kernel % J

v

L

Message transport
over the network

School of Computer Engineering

0o
=

(¥ Scanned with OKEN Scanner

e

Steps for RPC Packing and Unpacking

Unit-2 : DOS

The
The
The
The
The
The
The
The
The
The

client procedure calls the client stub in the normal way.

client stub builds a message and traps to the kernel.

kernel sends the message to the remote kernel.

remote kernel gives the message to the server stub.

server stub unpacks the parameters and calls the server.

server does the work and returns the result to the stub.

server stub packs it in a message and traps to the kemnel.

remote kernel sends the message to the client’s kernel.

client’s kernel gives the message to the client stub.

stub unpacks the result and returns to the client.

School of Computer Engineering

82

(¥ Scanned with OKEN Scanner

e

Parameter Passing

Parameter Marshaling:- Packing the parameters in the message.

The Client Stub takes the parameters and put them in a message. It also puts the
number or name of the procedure to be called in the message. The server machine
might support different calls.

Stubs

Client machine / \ Server machine
sum (i, j)
sum inti,j;
n=sum (4, 7}, — 4 e Bl |
2 return (i + j);
}
\‘_‘
-Kernel Kernel
N /
Unit-2 : DOS School of Computer Engineering 83

(¥ Scanned with OKEN Scanner

Problem occurs when the system at client and server end is
different.

Each machine has its own representation for numbers ,characters and
other data items.

IBM Mainframe machines :-EBCDIC character code.

IBM personal Computer :- ASCII character code.

Similar problem occurs with representation of integers and floating
numbers.

School of Computer Engineering 84

(% Scanned with OKEN Scanner

Unit-2 : DOS

Client End:-The compiler reads the server specification and generate a

client stub that packs its parameters into the officially approved
message format.

Server End:- The compiler can also produce a server stub that unpacks
them and calls the server procedure.

The with respect to the differences in the
internal representations of the data items.

(% Scanned with OKEN Scanner

Dynamic Binding.

The client locates server in distributed syetem using Dynamic Binding.
Registering the Server to Binder:-

The server send a message to a program called a binder, to make its
existance known.

The server specifies its name, version number ,a unique identifier (32 bit
long), and a handle used to locate it.

The handle is system dependent (Ethernet Address, IP Address and X.500
Address, a sparse process identifier).

It can deregister with the binder when it is no longer prepared to offer
service.

nit-2 : DOS School of Computer Engineering

(¥ Scanned with OKEN Scanner

How client locates server?

The client stub send message to the binder asking it to import version of
the server interface.

The binder checks to see if one or more servers have already exported an
interface with the version and name . If no server is found the read call
fails.

Otherwise , the binder gives its handle and unique identifier to the client
stub. The client stub uses the handle as the address to send the request
message

School of Computer Engineering 87

(% Scanned with OKEN Scanner

N

RPC Semantics in the Presence of Failure

Five different classes of failure that can occur in RPC systems:

The client is unable to locate the server.
The request message from the client to the server is lost.
The reply message from the server to the client is lost.

The server crashes after receiving a request.

o B W NN =

The client crashes after sending a request.

Unit-2 : DOS School of Computer Engineering 88

(¥ Scanned with OKEN Scanner

Client cannot locate the server

The server might be down, for example. Alternatively, suppose that the client is compiled using a particular version of the client
stub, and the binary is not used for a considerable period of time. In the meantime, the server evolves and a new version of the
interface is installed and new stubs are generated and put into use. When the client is finally run, the binder will be unable to
match it up with a server and will report failure.

The problem remains of how this failure should be dealt with.

Wth the server of Fig. 2-9(a), each of the procedures returns a value, with the code —1 conventionally used to indicate failure.
For such procedures, just returning —1 will clearly tell the caller that something is amiss.

In UNIX, a global variable, errno, is also assigned a value indicating the error type. In such a system, adding a new error type
"Cannot locate server" is simple.

The trouble is, this solution is not general enough. Consider the sum procedure of Fig. 2-19. Here -1 is a perfectly legal value to
be returned, for example, the result of adding 7 to —8. Another error-reporting mechanism is needed.

One possible candidate is to have the error raise an exception. In some languages (e.g., Ada), programmers can write special
procedures that are invoked upon specific errors, such as division by zero.

This approach, too, has drawbacks. To start with, not every language has exceptions or signals.

Unit-2 : DOS School of Computer Engineering 89

(¥ Scanned with OKEN Scanner

i
“+* Lost Reply Messages

Lost replies are considerably more difficult to deal with. The obvious solution is just to rely on the timer again. If no reply is
forthcoming within a reasonable period, just send the request once more.

The trouble with this solution is that the client's kernel is not really sure why there was no answer. Did the request or reply
get lost, or is the server merely slow? It may make a difference.

In particular, some operations can safely be repeated as often as necessary with no damage being done. A request such as
asking for the first 1024 bytes of a file has no side effects and can be executed as often as necessary without any harm
being done. A request that has this property is said to be idempotent.

Now consider a request to a banking server asking to transfer a million dollars from one account to another. If the request
arrives and is carried out, but the reply is lost, the client will not know this and will retransmit the message. The bank
server will interpret this request as a new one, and will carry it out too. Two million dollars will be transferred. Heaven
forbid that the reply is lost 10 times. Transferring money is not idempotent.

One way of solving this problem is to try to structure all requests in an idem-potent way. In practice, however, many
requests (e.g., transferring money) are inherently nonidempotent, so something else is needed.

Another method is to have the client's kernel assign each request a sequence number. By having each server's kernel keep
track of the most recently received sequence number from each client's kernel that is using it, the server's kernel can tell
the difference between an original request and a retransmission and can refuse to carry out any request a second time.

An additional safeguard is to have a bit in the message header that is used to distinguish initial requests from
retransmissions (the idea being that it is always safe to perform an original request; retransmissions may require more

Un 1C§II’%}3: School of Computer Engineering 90

(¥ Scanned with OKEN Scanner

‘ﬁi@,}' Server Crashes

AREQ Server REQ Server REQ Server
Receive \K Recoive \ Receive
E xecute Execute Crash
ey - » L
REP No _a& No &
REP REP
(a) o) {c)

Fig. 2-24. (a) Normal case. (b) Crash after execution. (c) Crash before execution.

The next failure on the list is a server crash. It too relates to idempotency, but unfortunately it cannot be solved using sequence numbers.

Fig. 2-24(a)- A request arrives, is carried out, and a reply is sent. Now consider Fig. 2-24(b). A request arrives and is carried out, just as
before, but the server crashes before it can send the reply. Finally, look at Fig. 2-24(c). Again a request arrives, but this time the server
crashes before it can even be carried out.

- The annoying part of Fig. 2-24 is that the correct treatment differs for (b) and (c). In (b) the system has to report failure back to the client
(e.g., raise an exception), whereas in (c) it can just retransmit the request. The problem is that the client's kernel cannot tell which is which.
All it knows is that its timer has expired.

Three schools of thought exist on what to do here. One philosophy is to wait until the server reboots (or rebinds to a new server) and try
the operation again. The idea is to keep trying until a reply has been received, then give it to the client. This technique is called at least once
semantics and guarantees that the RPC has been carried out at least one time, but possibly more.

The second philosophy gives up immediately and reports back failure. This way is called at most once semantics and guarantees that the rpc
has been carried out at most one time, but possibly none at all.

The third philosophy is to guarantee nothing. When a server crashes, the client gets no help and no promises. The RPC may have been
carried out anywhere from 0 to a large number of times. The main virtue of this scheme is that it is easy to implement.

Unit-2 : DOS School of Computer Engineering 91

(¥ Scanned with OKEN Scanner

®
1

3@% Client Crashes

What happens if a client sends a request to a server to do some work and crashes before the server replies? At this point a computation is active
and no parent is waiting for the result. Such an unwanted computation is called an orphan.

Orphans can cause a variety of problems. As a bare minimum, they waste CPU cycles. They can also lock files or otherwise tie up valuable
resources. Finally, if the client reboots and does the RPC again, but the reply from the orphan comes back immediately afterward, confusion can
result.

What can be done about orphans? In solution 1, before a client stub sends an RPC message, it makes a log entry telling what it is about to do. The
log is kept on disk or some other medium that survives crashes. After a reboot, the log is checked and the orphan is explicitly killed off. This
solution is called extermination.

The disadvantage of this scheme is the horrendous expense of writing a disk record for every RPC. Furthermore, it may not even work, since
orphans themselves may do RPCs, thus creating grandorphans or further descendants that are impossible to locate. Finally, the network may be
partitioned, due to a failed gateway, making it impossible to kill them, even if they can be located.

In solution 2, called reincarnation, all these problems can be solved without the need to write disk records. The way it works is to divide time up
into sequentially numbered epochs. When a client reboots, it broadcasts a message to all machines declaring the start of a new epoch. When such
a broadcast comes in, all remote computations are killed. Of course, if the network is partitioned, some orphans may survive. However, when they
report back, their replies will contain an obsolete epoch number, making them easy to detect.

Solution 3 is a variant on this idea, but less Draconian. It is called gentle reincarnation. When an epoch broadcast comes in, each machine checks
to see if it has any remote computations, and if so, tries to locate their owner. Only if the owner cannot be found is the computation killed.

Solution 4, expiration, in which each RPC is given a standard amount of time, T, to do the job. If it cannot finish, it must explicitly ask for another
quantum, which is a nuisance. On the other hand, if after a crash the server waits a time T before rebooting, all orphans are sure to be gone. The
problem to be solved here is choosing a reasonable value of T in the face of RPCs with wildly differing requirements.

In practice, none of these methods are desirable. Worse yet, killing an orphan may have unforeseen consequences. For example, suppose that an
orphan has obtained locks on one or more files or data base records. If the orphan is suddenly killed, these locks may remain forever. Also, an
orphan may have already made entries in various remote queues to start up other processes at some future time, so even killing the orphan may
not remove all traces of it.

|
-
(%]
=]
O
(V]

School of Computer Engineering 92

(¥ Scanned with OKEN Scanner

o

1]

Lost Request Messages

Unit-2 : DOS

The second item on the list is dealing with lost request messages.

This is the easiest one to deal with: just have the kernel start a timer
when sending the request. If the timer expires before a reply or
acknowledgement comes back, the kernel sends the message again.

If the message was truly lost, the server will not be able to tell the

difference between the retransmission and the original, and
everything will work fine.

Of course, so many request messages are lost that the
and falsely concludes that the server is down, in which case we are
back to "Cannot locate server."

School of Computer Engineering

(% Scanned with OKEN Scanner

e

#H9: Remote Procedure Call - Performance

' Success or failure of a Distributed System depends on its Performance.

* Performance is critically dependent on the “Speed of the Communication*”.

1. *:Stands (50+A)% & Falls (50- A)% with its implementations rather than with its abstract
principles.

2. One should analyze where the time is spent?
' Implementation of Distributed System
* Protocol Selection
* Acknowledgement
* Critical Path
* Copying
* Timer Management

Unit-2 : DOS School of Computer Engineering 94

(¥ Scanned with OKEN Scanner

#9.1:RPC Protocol Selection

Criteria of Selection: It should gets the bits from the client’s kernel to
the server’s kernel

Connection-oriented protocol vs Connectionless protocol
Standard general-purpose protocol vs Specifically designed for RPC
Length of Packet and Message

(% Scanned with OKEN Scanner

#9.1.1:Connection-oriented Vs Connectionless Protocol

Connection-Oriented Protocol Connectionless Protocol

After connection establishment, the client is bound to No principle of connection establishment for long
the server period. However session-wise pairing between two
neighboring entities is required.

Same connection is used by all the traffic, in both The path used by all the traffic might be different
directions.
Communication is easier Communication is easier is LAN, where most of the

connections are of one hop length

When a kernel sends a message, the possibility of lost Loss of message, loss of ACK need extra work
of the message and receiving of its ACK is not

worrisome for it.

This approach is very strong in WAN Reliable in LAN

This is not suitable in LAN (" The extra s/w are Suitable in small building LAN
forming hindrance in the LAN)

Conclusion: Connection-oriented in WAN Conclusion: Connectionless in LAN
Unit-2 : DOS School of Computer Engineering 96

C} Scanned with OKEN Scanner

#9.1.2:Standard Protocol Vs Specialized RPC

Standard Protocol (IP or UDP)

The protocol is already designed. Saves substantial work.

Many implementations are available. Saves work and time.
Communication is easier

Most of the UNIX systems accept the packets of these
protocol for communication purpose
Existing networks also support IP and UDP packets

Writing, executing and testing code using these protocols are
straightforward.

IP is not an end-to-end protocol. It is executed on top of
reliable TCP. So, it bounce back several times in the network.

IP has 13 header fields. 3 are essential (Src_Addr, Dstn_addr,
Pkt _len). Header checksum is time consuming

Specialized RPC

Itis need to be invented, implemented, tested and
embedded in existing systems. Considerably more work.

More work and time
Communication need to be tested in the networks.

Needs integration into existing UNIX systems

Need to be tested across all types of networks

Several phases of software testing is required.

Specialized RPC would avoid bouncing back of the packets.

Number of header fields may differ, according to the
requirement of the problem.

Unit-2 : DOS School of Computer Engineering 97

C} Scanned with OKEN Scanner

/799
1

e
#9.1.3:Packet and Message Length

Size of file is 64K in a single 64K RPC would be efficient
Size of file is 64K in a 64 1K RPCs is not efficient

Large size file with Maxflow should be supported by both protocol and network
* Sun Microsystem’s limit is 8K (System level constraints)
* Ethernet’s limit is 1536 bytes (Network level constraints)

So, a single RPC is required to be split over multiple packets, is an overhead.

Unit-2 : DOS School of Computer Engineering 98

(¥ Scanned with OKEN Scanner

#9.2:Acknowledgements

When large RPCs have to be broken up into many small packets, then
what should be the acknowledgement process?

* Should individual packets be acknowledged? (stop-and-wait- protocol)

* Acknowledge after receiving all the packets (Blast Protocol)
% %k 3k

Unit-2 : DOS School of Computer Engineering 99

(¥ Scanned with OKEN Scanner

Automatic Repeat Request (ARQ) Algorithms

Use two basic techniques:
* Acknowledgements (ACKs)
* Timeouts

Two examples:
* Stop-and-Wait
* Sliding window

School of Computer Engineering

100

(% Scanned with OKEN Scanner

Stop-and-Wait

Receiver: send an acknowledge (ACK) back to the

sender upon receiving a packet (frame)

Sender: excepting first packet, send a packet only upon

receiving the ACK for the previous packet

Time

Sender Receiver
fm\‘
ACK
ﬁ-a\‘
ACK

(% Scanned with OKEN Scanner

What Can Go Wrong?

Sender Receiver Sender Receiver Sender Receiver
vy frame vy frame vy
3 3 2
K
£ £ hS £
== = =
JL%\‘ -!Lﬁ-ak-)
ACK ACK
Frame lost - resent it ACK lost - resent packet ACK delayed - resent packet
on Timeout
Need a mechanisms to Need a mechanism to differentiate
detect duplicate packet between ACK for current

and previous packet

School of Computer Engineering 102

(% Scanned with OKEN Scanner

i

A

How to Recognhize Retransmissions?

Use sequence numbers
* both packets and acks Pkt
0
Sequence # in packet is finite 2 i S
How big should it be? ?\dﬁ
® it?
For stop and wait: Pkt o
One bit —won’t send seq #1 until
received ACK for seq #0 CR B
K

(% Scanned with OKEN Scanner

Stop-and-Wait Disadvantage

May lead to inefficient link utilization

Example: assume

* One-way propagation = 15 ms
* Bandwidth = 100 Mbps

* Packet size = 1000 bytes = transmit = (8%1000)/10% = 0.08ms
* Neglect queue delay = Latency = approx. 15 ms; RTT =30 ms

|

Propagation = 15 ms

Bandwidth = 100 Mbps

School of Computer Engineering

ﬂﬁ[]

(% Scanned with OKEN Scanner

Stop-and-Go Disadvantage cont.

Send a message every 30 ms =2 Throughput =
(8%1000)/0.03 = 0.2666 Mbps

Thus, the protocol uses less than 0.3% of the link

capacity!
Sender Receiver

1r@\‘

[42]

=

& ACK
1 frame

[72)

=

@ ACK

Unit-2 : DOS School of Computer Engineering 105

(% Scanned with OKEN Scanner

How to Keep the Pipe Full?

Unit-2 : DOS

[w]

Send multiple packets without waiting
for first to be acked

* Number of pkts in flight = window

Reliable, unordered delivery
* Several parallel stop & waits
* Send new packet after each ack

* Sender keeps list of unack’ed packets;
resends after timeout

* Receiver same as stop & wait

How large a window is needed?

School of Computer Engineering

N/

106

(% Scanned with OKEN Scanner

e

Sliding Window Protocol: Sender

“ Each packet has a sequence number
* Assume infinite sequence numbers for simplicity

= Sender maintains a window of sequence numbers

* SWS (sender window size) — maximum number of packets
that can be sent without receiving an ACK

* LAR (last ACK received)
* LFS (last frame sent)

Acknowledged packets = Packets not acknowledged yet
A A

' v N
LAR LFS seq. number:%

Unit-2 : DOS School of Computer Engineering 107

(¥ Scanned with OKEN Scanner

e

Example

= Assume SWS =3 Sender Receiver
BT T 11

RS [[

HEN
[112]3]4] [}
[1]2[3]4]5]

Note: usually ACK contains the sequence number of the first packet in
sequence expected by receiver

Unit-2 : DOS School of Computer Engineering 108

(¥ Scanned with OKEN Scanner

Sliding Window Protocol: Receiver

Receiver maintains a window of sequence numbers

* RWS (receiver window size) — maximum number of out-of-sequence packets
that can received

* LFR (last frame received) — last frame received in sequence
* LAF (last acceptable frame)
* LAF — LFR <= RWS

Unit-2 : DOS School of Computer Engineering 109

(% Scanned with OKEN Scanner

e

Sliding Window Protocol: Receiver

* Let segNum be the sequence number of arriving packet
" If (segNum <= LFR) or (seqNum >= LAF)
* Discard packet
“ Else

* Accept packet

* ACK largest sequence number seqNumToAck, such that all packets with
sequence numbers <= seqNumToAck were received

Packets in sequence Packets out-of-sequence
A o

e N ™~
LER LAF seq. numbers

Unit-2 : DOS School of Computer Engineering 110

(¥ Scanned with OKEN Scanner

e

Sender/Receiver State

Sender Receiver

Max ACK received Next seqnum Next expected Max acceptable

' .

"IIIiDDDDiII[DDDD"' -HIRRRUCU0OL-

Sender window Receiver window

I Sent & Acked Sent Not Acked I Received & Acked Acceptable Packet
I OK to Send Not Usable Not Usable
Unit-2 : DOS School of Computer Engineering 111

(¥ Scanned with OKEN Scanner

Sequence Numbers

How large do sequence numbers need to be?
* Must be able to detect wrap-around
* Depends on sender/receiver window size

E.g.
* Max seq = 7, send win=recv win=7
* |If pkts 0..6 are sent succesfully and all acks lost
1. Receiver expects 7,0..5, sender retransmits old 0..6!!!

Max sequence must be > send window + recv window

Unit-2 : DOS School of Computer Engineering

112

(% Scanned with OKEN Scanner

Cumulative ACK + Go-Back-N

On reception of new ACK (i.e. ACK for something that was not
acked earlier)

* Increase sequence of max ACK received
* Send next packet

On reception of new in-order data packet (next expected)
* Hand packet to application

* Send cumulative ACK — acknowledges reception of all packets up to
sequence number

* Increase sequence of max acceptable packet

Unit-2 : DOS School of Computer Engineering 113

(% Scanned with OKEN Scanner

Loss Recovery

On reception of out-of-order packet
* Send nothing (wait for source to timeout)
* Cumulative ACK (helps source identify loss)

Timeout (Go-Back-N recovery)
* Set timer upon transmission of packet
* Retransmit all unacknowledged packets

Performance during loss recovery
* No longer have an entire window in transit
* Can have much more clever loss recovery

Unit-2 : DOS School of Computer Engineering

=

(% Scanned with OKEN Scanner

Unit-2 : DOS

Go-Back-N in Action

X

sender receiver
send pktO \
rcv pkio
send pkt1 seng ACKO
> send pki2 \(E)(SS) rggr?g]ACK1
send pkt3
(waif) rcv pkt3, discard
¥ send ACK]
rcv ACKO
send pkt4
rcv pkt4, discard
Sr;:r\: c)j&gkl’(ré \ sond ACK]
rcv pkid, discard
—pkt2 timeout » 4 sond ACK]
send pkt2 \
send pki3 \ rev pki2, deliver
send pkt4 send ACK?2
send pktd rcv pkid, deliver
send ACK3

School of Computer Engineering

115

C} Scanned with OKEN Scanner

Selective Ack + Selective Repeat

Receiver individually acknowledges all correctly received
pkts
* Buffers packets, as needed, for eventual in-order delivery to
upper layer
Sender only resends packets for which ACK not received
* Sender timer for each unACKed packet

Sender window
* N consecutive seq #'s
* Again limits seq #s of sent, unACKed packets

Unit-2 : DOS School of Computer Engineering

116

(% Scanned with OKEN Scanner

e

Selective Repeat: Sender, Receiver Windows

send_base nexftsegnum already usable, not
i, ack’ed yet sent
sent, not
HHHHHHHHIIHIIHllllllﬂﬂﬂﬂﬂﬂﬂ {‘yefoowed ﬂ not usable
p S WEncI ow size —4
i N
(a) sender view of sequence numbers
out of order

acceptable

(buffered) but | (ithin window)

adlready ack’'ed

[DOTCTDTPTIUERIDIROIO oot rresss

L _ vindow size—2

N
rev_base

(b) receiver view of sequence numbers

Unit-2 : DOS School of Computer Engineering 117

(¥ Scanned with OKEN Scanner

Summary of ARQ Protocols

Mechanisms:
* Sequence number
* Timeout
* Acknowledgement

Sender window: fill the pipe
Receiver window: handle out-of-order delivery

Unit-2 : DOS School of Computer Engineering

(% Scanned with OKEN Scanner

Many Nuances

What type of acknowledgements?
* Selective acknowledgement
* Cumulative acknowledgement
* Negative acknowledgement

How big should be the timeout value, Sliding Window Size (SWS),
Receiving Window Size (RWS), sequence number field?

Reliability mechanism used to implement other functions: flow
control, congestion control
* Function overloading introduces ambiguity and complexity

(% Scanned with OKEN Scanner

#9.3: Critical Path

A critical path is defined as the sequence of instructions that is executed
on every RPC (Eg. A client to a remote server)

There are 14 steps in the RPC from

1.

o B L Ll o

Call stub 8. Move packet to controller over the QBus
Get message buffer S. Ethernet transmission time

Marshal parameters 10. Get packet from controller

Fill in headers 11. Interrupt service routine

Compute UDP checksum 12. Computer UDP Checksum

Trap to Kernel 13. Context switch to user space

Queue packet for transmission 14. Server stub code

School of Computer Engineering 120

(% Scanned with OKEN Scanner

#9.3: Critical Path : Schematic View

Server Machine

*
Client 1| call stub procedure Perform service - Server
Prepare message buffer Call server
Client Marshal parameters into buffer Set up parameters on stack
stub Fill in message header fields Unmarshal parameters — Server
Trap to kernel stub
Context switch to kernel Context switch to server stub
Copy message to kernel Copy message to server stub
i inati See if stub is waitin
Kerne| < | Determine d.estlnatlon address : _ g o L RernEl
Put address in message header Decide which stub to give it to
Set up network interface Check packet for validity
Start timer Process interrupt
Unit-2 : DOS hafCampiitor Eoginaases 121

(¥ Scanned with OKEN Scanner

#9.3: Critical Path Cont.

Unit-2 : DOS

Q: Where is most of the time spent on the critical path?
Ans:

Marshaling parameters and moving messages around

In case of null RPC, context switch to the server stub when packet arrives, the
interrupt service routine, and moving the packets to the network interface for
transmission

Managing a pool of buffers — which client stubs use to avoid having to fill in
the entire UDP header every time.

All the machines don’t share the same address space, so context switch and
use of page table takes time

Entire RPC system has been carefully coded in assembly language and
optimized. So, it is faster and saves time.

% %k %k k %k

!__.
[
[

School of Computer Engineering

(% Scanned with OKEN Scanner

#9.4: Copying

Copy is an issue in RPC [+ it dominates execution time in RPC]

Q: Why does this issue occur in RPC? [+ In most of the systems the
kernel and the user address spaces are disjoint. A message must be
copied 1-to-8 times depending on the h/w, s/w and type of call].

Analysis: In general a message is required to be copied many times
during RPC communication. It hampers the performance of the RPC
execution time.

The 8 different copies degrade the performance of RPC.

(% Scanned with OKEN Scanner

Unit-2 : DOS

(.7'A The network chip can DMA the message directly out of the client stub’s
(B address space onto the network

oA If(kernel can’t map the page into the server’s address space) then kernel
, 3 copies the packet to the server stub

WA The hardware is started, causing the packet to be moved over the
network to the interface board on the destination machine

When the packet arrived, interrupt occurs, kernel copies it to its buffer
(before knowing its exact location)

Cospv Finally, the message has to be copied to the server stub

oA |f(the call has a large array passed as a value parameter) the array has to
AW be copied onto the client’s stack for the call stub,

Copy . i/ from the stack to the message buffer during marshaling within the
P client stub

A Copy from the incoming message in the server stub to the server’s stack
-39 preceding the call to the server.

School of Computer Engineering 124

G Scanned with OKEN Scanner

A
#9.4: Copying Cont.

How to eliminate unnecessary copying?
* Using the hardware scatter-gather

* At the Sender’s side: With cooperative hardware, a reusable packet header
inside the kernel and a data buffer in user space can be put out onto the
network with no internal copying on the sending side.

* At the Receiver’s side: Dump the message into a kernel buffer and let the
kernel figure out what to do with it.

* In Operating Systems: Using virtual memory

* Using mapping: If(memory map can be updated in less time)
1. Then, mapping is faster than copying
2. Else, Not
% % % %k %
Unit-2 : DOS School of Computer Engineering 125

(¥ Scanned with OKEN Scanner

i

A

#9.5: Timer Management

Timer: It is an automatic mechanism for activating an entity at a
preset time.

- ._ “requires building a data structure specifying when
the timer is to expire and what is to be done when that happens.

The list of messages are in sorted order
Timer starts just after message transmitted

If(ACK or Reply arrives before the timer expires)
* Then the timeout entry must be located and removed from the list

Timer value should be neither too high or too low
Most systems maintains a Process Table to implement Timer

Unit-2 : DOS School of Computer Engineering 126

(% Scanned with OKEN Scanner

e

m ¥

#9.5: Timer Management via

SORTED LIST
W.R.T.

TIME OUT

Unit-2 : DOS

Current time

14200

14205

Process 3

A 4

14212

Process 2

h 4

Sorted List and Process Table

14216

Process 0

Current time

14200

14216

Explanation: In process table
in stead of storing timeouts
in a sorted linked list, each
process table entry has a
field for holding its timeouts.
It is shown the left of the
process table in blue color.

Working Principle: The kernel
scans the entire process table,
checks each timer value against
the current time. If (T,o.4<=T.urrent)
then it is processed and reset.

14212

Note: Sweep Algorithms
operates by periodically
making a sequential pass

0

—

14205

through a process table.
127

(a) Timeouts in a sorted ligt'00! of Computer Engineghy'Timeouts in a process table

C} Scanned with OKEN Scanner

Unit-2 : DOS

School of Computer Engineering

128

(¥ Scanned with OKEN Scanner

n/7eec
W00

W\
Y

Homework Questions

Draw the block diagram of the OSI Reference model and the TCP/IP
protocol suite. Explain the mechanism of synchronisation between
the two models.

Explain the functionalities of Hub, Bridge, Unmanaged switch,
Managed switch, Router, Brouter and Gateway network devices.

An ATM system is transmitting cells at the OC-3 rate. Each packet is
1024 bytes long and thus, fits into a cell. An interrupt takes 1 psec.
What fraction of the CPU is devoted to interrupt handling?

The SPARC chip uses a 32-bit word in big endian format. |f a SPARC
sends the integer 2 to a 486, which is little endian, what numerical
value does the 486 see?

(% Scanned with OKEN Scanner

Homework Questions

Suppose that the time to do a null RPC (i.e., 0 data bytes) is 1.0
msec, with an additional 1.5 msec for every 1K of data. How long
does it take to read 32K from the file server in a single 32K RPC?
How about a 32 1K RPC?

Imagine that in a particular distributed system, all the machines are
redundant multiprocessors, so that the possibility of a machine
crashing is so low that it can be ignored. Devise a simple method for
implementing global time-ordered atomic broadcast using only
unicasting.

(% Scanned with OKEN Scanner

Unit-2 : DOS

Thank You!

School of Computer Engineering 131

G Scanned with OKEN Scanner

