Commit
·
2edd1f8
1
Parent(s):
db90892
Update README.md
Browse files
README.md
CHANGED
|
@@ -2,8 +2,6 @@
|
|
| 2 |
language: mn
|
| 3 |
datasets:
|
| 4 |
- common_voice
|
| 5 |
-
metrics:
|
| 6 |
-
- wer
|
| 7 |
tags:
|
| 8 |
- audio
|
| 9 |
- automatic-speech-recognition
|
|
@@ -11,15 +9,15 @@ tags:
|
|
| 11 |
- xlsr-fine-tuning-week
|
| 12 |
license: apache-2.0
|
| 13 |
model-index:
|
| 14 |
-
- name:
|
| 15 |
-
results:
|
| 16 |
- task:
|
| 17 |
name: Speech Recognition
|
| 18 |
type: automatic-speech-recognition
|
| 19 |
dataset:
|
| 20 |
-
name: Common Voice mn
|
| 21 |
type: common_voice
|
| 22 |
-
args: mn
|
| 23 |
metrics:
|
| 24 |
- name: Test WER
|
| 25 |
type: wer
|
|
@@ -51,15 +49,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
| 51 |
# Preprocessing the datasets.
|
| 52 |
# We need to read the aduio files as arrays
|
| 53 |
def speech_file_to_array_fn(batch):
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
|
| 58 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 59 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 60 |
|
| 61 |
with torch.no_grad():
|
| 62 |
-
|
| 63 |
|
| 64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 65 |
|
|
@@ -86,31 +84,31 @@ processor = Wav2Vec2Processor.from_pretrained("bayartsogt/wav2vec2-large-xlsr-mo
|
|
| 86 |
model = Wav2Vec2ForCTC.from_pretrained("bayartsogt/wav2vec2-large-xlsr-mongolian")
|
| 87 |
model.to("cuda")
|
| 88 |
|
| 89 |
-
chars_to_ignore_regex = '[
|
| 90 |
|
| 91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
| 92 |
|
| 93 |
# Preprocessing the datasets.
|
| 94 |
# We need to read the aduio files as arrays
|
| 95 |
def speech_file_to_array_fn(batch):
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
|
| 101 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 102 |
|
| 103 |
# Preprocessing the datasets.
|
| 104 |
# We need to read the aduio files as arrays
|
| 105 |
def evaluate(batch):
|
| 106 |
-
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
|
| 111 |
pred_ids = torch.argmax(logits, dim=-1)
|
| 112 |
-
|
| 113 |
-
|
| 114 |
|
| 115 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
| 116 |
|
|
|
|
| 2 |
language: mn
|
| 3 |
datasets:
|
| 4 |
- common_voice
|
|
|
|
|
|
|
| 5 |
tags:
|
| 6 |
- audio
|
| 7 |
- automatic-speech-recognition
|
|
|
|
| 9 |
- xlsr-fine-tuning-week
|
| 10 |
license: apache-2.0
|
| 11 |
model-index:
|
| 12 |
+
- name: XLSR Wav2Vec2 Mongolian by Bayartsogt
|
| 13 |
+
results:
|
| 14 |
- task:
|
| 15 |
name: Speech Recognition
|
| 16 |
type: automatic-speech-recognition
|
| 17 |
dataset:
|
| 18 |
+
name: Common Voice mn
|
| 19 |
type: common_voice
|
| 20 |
+
args: mn
|
| 21 |
metrics:
|
| 22 |
- name: Test WER
|
| 23 |
type: wer
|
|
|
|
| 49 |
# Preprocessing the datasets.
|
| 50 |
# We need to read the aduio files as arrays
|
| 51 |
def speech_file_to_array_fn(batch):
|
| 52 |
+
\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
| 53 |
+
\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 54 |
+
\\treturn batch
|
| 55 |
|
| 56 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 57 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 58 |
|
| 59 |
with torch.no_grad():
|
| 60 |
+
\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
| 61 |
|
| 62 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 63 |
|
|
|
|
| 84 |
model = Wav2Vec2ForCTC.from_pretrained("bayartsogt/wav2vec2-large-xlsr-mongolian")
|
| 85 |
model.to("cuda")
|
| 86 |
|
| 87 |
+
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�\\\\'h\\\\«\\\\»]'
|
| 88 |
|
| 89 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
| 90 |
|
| 91 |
# Preprocessing the datasets.
|
| 92 |
# We need to read the aduio files as arrays
|
| 93 |
def speech_file_to_array_fn(batch):
|
| 94 |
+
\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
| 95 |
+
\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
| 96 |
+
\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 97 |
+
\\treturn batch
|
| 98 |
|
| 99 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 100 |
|
| 101 |
# Preprocessing the datasets.
|
| 102 |
# We need to read the aduio files as arrays
|
| 103 |
def evaluate(batch):
|
| 104 |
+
\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 105 |
|
| 106 |
+
\\twith torch.no_grad():
|
| 107 |
+
\\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
| 108 |
|
| 109 |
pred_ids = torch.argmax(logits, dim=-1)
|
| 110 |
+
\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
| 111 |
+
\\treturn batch
|
| 112 |
|
| 113 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
| 114 |
|